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A CONTROL PROBLEM ARISING IN THE SEQUENTIAL
DESIGN OF EXPERIMENTS
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1. Introduction and summary

The Pelé problem. Starting from an initial point x not in his playing field, a
football player is to dribble onto the field. Due to irregularities in the surface on
which the player is dribbling, and perhaps also to small inconsistencies in his
kick, the movement of the ball has a “random” component; moreover, a kick
with the left foot tends to have a somewhat different effect than a kick with the
right foot. The player’s objective is to move the ball onto the playing field with as
few kicks as possible.

To make the problem more precise, suppose that the “playing field” is the first
quadrant 2, of R® Assume that a kick with the left foot results in a (random)
displacement whose distribution is F,, while a kick with the right foot results in
a (random) displacement distributed according to a law Fj (different from F,).
Assume also that F, and Fj have finite second moments, and mean vectors p ,
and p g satisfying

(1.1) pd>py >0,  w@>p@>0.

Then the Pelé problem may be phrased as an optimal control problem: Among all
nonanticipating policies (a “policy” being a rule for deciding, at each step, which
foot to kick with), find the policy &, which minimizes EZT, where T is the
(random) number of kicks made before the first entry into 2,.

The problem as stated is, of course, a problem of “Markovian decision theory”
[cf., for example, Derman (1970)], and may be “solved” by dynamic program-
ming. But given that football players generally have neither the time nor
adequate computational facilities for backward inductions, it seems reasonable to
ask whether there is some simple policy which, although not optimal, is “nearly”
optimal in some sense. One class of rules, which is particularly appealing, is the
class of “straight-line switching” (SLS) policies: An SLS policy calls for a kick
with the left foot whenever the ball is above a certain line (or ray) and a kick
with the right whenever the ball is below this line.

We will prove

THEOREM A. Suppose F, and Fy have finite second moments and mean
vectors satisfying (1.1). If P is any straight-line switching policy whose switch-
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ing line (ray) lies in the interior of the negative cone determined by p., and p.p,
then there is a constant C = C(%) such that

(1.2) EZT <infEIT + C
for every x € R2\ 2,.

The infimum in (1.2) is meant to be taken over all (nonanticipating) policies.
The point of the theorem is that no matter how far from the field the player
starts, he uses at most C more kicks (on the average) when proceeding by
straight-line switching than when he uses the optimal strategy. The constant C
will depend on the distributions F, and Fjy and also on the switching line. The
methods of this paper may be used to obtain upper bounds for C in terms of
familiar renewal-theoretic quantities, but we shall defer discussion of this matter
to a subsequent paper.

Sequential design of experiments and acquisition of commodities. The Pelé
problem is a peculiar manifestation of a more general problem concerning the
sequential selection of experiments for discriminating between several competing
hypotheses. Imagine an experimenter confronted by several different (simple)
hypotheses {8, 0,,...,0,.,} concerning some facet of the “true state” of nature;
suppose that the correct hypothesis is 6,.,, and that this is known to the
experimenter by unscientific means (e.g., divine revelation, subjective probability,
the writings of Velikovsky). Suppose also that the experimenter has at his
disposal a finite set of experiments {1,2,...,d*}, which he may perform re-
peatedly, one at a time. Each repetition of experiment i results in a random
increment to the vector of log-likelihood ratios whose distribution is F;, and for
each repetition of i the experimenter is assessed a fixed cost ;. The experi-
menter’s objective is to accumulate a certain amount a of evidence against each
of the false hypotheses 6,,..., 8, (where “evidence” is measured by the total
change in the log-likelihood ratio during the experimentation).

This problem may be cast in a somewhat different setting. Imagine an
investor, consumer, or other variety of capitalist roader interested in acquiring
certain amounts a; of various commodities 6, (i = 1,..., d). Suppose the buyer
has several “actions” i = 1,..., d* available to him, each of which will result in
the acquisition of (random) amounts of each of the commodities 6;: Thus the
effect of each i may be described by a probability distribution F, on R< (For
example, the available actions might be (1) go to a hardware store, (2) go to a
junkyard, and (3) go to an auto parts store.) Each.action i may be performed
repeatedly, with each repetition resulting in a (random) increment to his (vector
of) acquisitions; however, each action has associated with it fixed cost §;. The
buyer’s objective is, of course, to attain his goal of acquiring amounts of
0,,0,,...,0, greater than qa,, a,,..., a, at minimum cost.

The problem concerning the sequential design of experiments as stated here
was apparently introduced by Chernoff (1959), who described a procedure (“ Pro-
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cedure A”) having the property that

E4 (cost (a))

(1.3) Eo (cost (a)) -1 asa— oo.
(Here E4 and E°" denote expectations when Procedure A and the optimal
procedure, respectively, are followed; cost (a) denotes the random cost incurred
in acquiring a units of evidence.) The problem has subsequently been studied by
Box and Hill (1967), Blot and Meeter (1973), and Keener (1980), (1981). Our
results concern only the case d = d*, where the number of experiments is the
same as the number of competing hypotheses, but provide procedures which
improve considerably on Chernoff’s Procedure A. (These results also extend to
analogous procedures for problems with d* > d, but we defer discussion of this
case to a subsequent paper.)

Assume that each of the distributions F; (i = 1,...,d) has a finite second
moment, and let the mean vectors p(F;) = [p«xF/(dx) satisfy the following
conditions:

(1.4) p(F)>=0 Vi=1,...,d;
(1.5) the vector (1,1,...,1) lies in the interior of the cone

d
H= { Y Au(E): A, >0,i= 1,...,d}

i=1
(1.6)  no convex combination of a subset of {p(F,)/8(1),...,n(Fy)/8(d)}

dominates a convex combination of a disjoint subset.

NoTe. Throughout the paper the notation x > 0 will mean x” > 0 for each
coordinate x® of x; x > 0 will mean that x® > 0 for each coordinate. The
terminology “dominates” used in (1.6) refers to the partial order > on R Thus
4 permutation w(-) of {1,2,...,d)}, and probability vectors (p,..., p,),
(@g+15--+»@q) such that

k d
Y om(F) - X qpu(F) 20.
j=1 J=k+1
At each stage of experimentation we are to choose one of the available distribu-
tions F;, which then provides a random increment to the vector W,: Thus

n
W,= ) w,
j=1

BS"p(‘vn-kll‘jfn) =:}?F

n+1’

where [, € (1,...,d} (j = 1,2,. ..) are the successive choices of experiment, and
{#,}.>0 is an increasing sequence of ¢ algebras such that for each n > 0, w,,
and T,,, are measurable with respect to .7, (cf. the definition of a “policy” at
the end of this section).
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The SLS policies for the Pelé problem have natural analogues in the sequential
design problem, policies which we will call “diagonal-stabilizing” (DS). For a
given point x € R¢, let d(x) be the orthogonal projection of x onto the diagonal
[the one-dimensional vector subspace of R¢ spanned by (1,1,...,1)] and let
r(x) = d(x) — x. A policy # will be called “diagonal-stabilizing” (DS(«; r)) if
there exist constants a« > 0 and r < oo such that

(W,)
1. F ff B0 >a on{r(W,)| >r
( 7) l‘l'( 1",,+1) (Ir(wn)l)— {I ( n)| },
i.e., if whenever W, is a distance > r from the diagonal, £ is constrained to
chose an F, whose mean pushes inward toward the diagonal [in the direction of
r(W,)] at least a units. Whenever condition (1.5) is satisfied diagonal-stabilizing
policies exist (see Section 4).

EXAMPLE. Let d =3 and # be the subspace of R® orthogonal to (1,1,1).
Suppose the mean vectors of the available controls are

pa=(2,2,1),

pp=(2,1,2),
and

pe = (1,2,2).

A natural diagonal-stabilizing policy is as follows:
[,=A iff W®>WwWOv W®,
[,=B iff W®>W® and W®>W®,
[,=C iff WOh> W®v W,

Notice that T, depends only on the projection of W, on the subspace #. (See
Figure 1.) '
Let T, = inf(n: W >a Vi=12,...,d}.

THEOREM B. For each a > 0, r, < oo there exists a constant C = C(a, 1)
such that for every DS(a; r,) policy # and every a > 0,

(1.8) Ef’g 8(T,) < i;ngf 8(T,) + C(a, rp).

n=1 n=1

The constant C(a, r,) also depends on the underlying distributions F,,..., F,
only through their mean vectors and second moments. The infimum in (1.8) is,
again, over all nonanticipating policies.

+ The major difference between Theorems A and B concerns the choice of initial
points: Theorem A allows the initial point to be anything, whereas Theorem B
stipulates that the initial point should lie on the diagonal. We have had no
success in extending the stronger result of Theorem A to dimensions d > 3 except
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)

in one special case, the so-called “additive case,” which will be discussed in a
subsequent paper. However, it is possible to relax the hypothesis that the initial
point lies on the diagonal to the somewhat weaker hypothesis that it merely lies
“near” the diagonal. This is of some significance in sequential design of experi-
ments, so we will given a complete statement of the result.

THEOREM C. For each a > 0, ry < oo there exists a constant C = C(a, 1))
such that for every DS(«; 1,) policy 2 and every initial point x € R? such that
II'(X)I =7 0>

T T
(1.9) EZY §(T,) < irlefEf? Y 8(T,) + C(a, rp).
n=1 4 n=1
Here T = T, = inf{n: W, € 2} is the first hitting time of the positive orthant
2.% (y e R% y>0).

beﬁnition of a “policy”. To allow for auxiliary randomization, but to avoid
measure-theoretic complications [see, for example, Dynkin and Yushkevich
(1979)], we adopt the following conventions regarding the notion of a policy. We
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assume that the underlying probability space (2, %, P) supports independent iid
sequences

YO Y ... did F,
Y@, Y®,... iidF,
(1.10) ‘e
YD, YD ... iid F,
U,,U,,... iid uniform (0,1).
By a “policy” # we will mean a sequence of functions ¢, ¥,,... valued in the
finite set {1,2,..., d}, with
¥y =9,(x; 1),
(1.11) Yo = ‘I{Z(X; Y Uy, Uy),
4’3 = ‘PS(X; Y1525 Uy, Uy, ua)’
etc.
The control variables T, (under P?) are given by
I =y,(x; U)),
(1.12) I, = ‘PZ(X; Y™, U, Uz),
Ty = ¥3(x; I, Y{™; Uy, Uy, Uy),
etc.

The o algebras &/, may be specified in a number of ways: The most natural
filtration is

oy = o(Uy),
(1.13) s, = o(Uy, Uy; Ty; Y(0),

oy = O(Uv U, Us; T, T,; Y, Y;Fz)),
etc.

Finally the process {W,}, which we will refer to as a “controlled random

walk,” is determined by

W, = under P?),

(1.14) o=x 7
Wn+1 = Wn + Wot1s

where
w, = YT,
It is evident that £ (w,, ,|#,) = Fr. | .

These conventions will be in force in Sections 3 and 4. In Section 5 the
notation will be altered somewhat.

2. First passage problems for a class of submartingales. The controlled
random walks described in the introduction are not random walks (in the usual



142 S.P. LALLEY AND G. LORbEN

sense of the word); if the control policy is not stationary the march may not even
be Markovian. To study first passage problems for such processes effectively a
surrogate for the usual potential theory is therefore necessary.

Let X, X,,... be a sequence of random variables adapted to the (nested)
sequence of ¢ fields {F};. : Let

wi=E[X\% ],

012 = var(XjLZ_l),
(2.1) S, =X+ +X,,

M,=p + - +p,,

Vo= ot b,
and

7, =inf{n > 1: S, > a}.
Assume that there exist constants u,, p*, and ¢2 such that with probability one,
forall j=1,2,...,

(2.2) (@) O<py<p;<p*<oo, and (b) of <o

Under these conditions it is natural to expect that {S,},. , should exhibit some
of the crude behavioral features of random walk with positive drift.

PRrROPOSITION 2.1. There exist constants C,, C, < oo, depending only on p.,,
u*, and o2, such that

(2.3) - E[r %] < Cla+1)
and
(2.4) E[s2%,] < C(a + 1)

ProoF. This is an easy exercise in the use of the first two Wald identities
(i.e., the optional stopping theorem applied to the martingales S, — M, and
(S, — M)’ = V,).

Note first that there is a finite constant A such that E[X; A A|#,_ ] > ps/2,
by (2.2): This is because

E[X1{X;2 AYF | < E[X7% ] P(X; 2 41%)

1/2 1/2

< () + 02)* (024 - o))
Since truncation of the increments X, can only have the effect of increasing the
first passage times r,, it suffices to prove the proposition under the additional

hypothesis that X; < A w.p.l
According to the first Wald identity, for each n € N and a > 0, with 7 = 7,
E[S‘r/\ nl‘gz-o] = E[M'r/\ nWO] =
E[tAnF] pe<a+A=E[1F]<(a+A)/py.
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According to the second Wald identity,
E[(S, 10~ M, ,,)1%] = ELV, %]
= E[M?, (%] = EL[V, . %] - E[S% %] + 2E[M, , S, , 1%, ]
<o’E[71%,] + 2(a + A)p*E[ 7%, ]
= (1) E[72%,] < 0®E[11%,] + 2(a + A)*E[71%,],
and thus (2.4) follows from (2.3). O
This very simple proposition will serve us well in the analysis to follow.

Having obtained bounds for the moments of the first passage times, we may
now use them to obtain bounds for the moments of the excess over the boundary.

PROPOSITION 2.2. Suppose in addition to (2.2) that there is a function
h(2)!|(z = 0) satisfying

(2.5) /”h(z)dz <
0
and
(2.6) E[(X,-2)%,_ | <h(z) Vz20,Vn.
Then there is a constant C = C(py, u*, 02, h) < oo such that for every a > 0
(2.7) E(S, -a)’<C.

Notice that if E[(X,)5"'"¢|%#,_,] < K for some K < oo and ¢ > 0, and all n,
then (2.5) and (2.6) are satisfied by

h(z)=(1+K)1 Az 0*9)

(this is just the Markov inequality). If X, X,,... are iid and E(X,)5"! < oo,
then (2.5) and (2.6) are satisfied by A(z) = E(X, — 2)%. However, in the general
case the assumption E[(X,)2"!|# _,]< K < o is not enough to guarantee the
conclusion (2.7).

ExaMpLE. The process {S,}, ., will be a Markov chain on the nonnegative
integers Z*. For x € Z* with 4* < x < 4%*1, let the transition mechanism be

P(x,x +1)=1-(4*"1 - x)7?
P(x,22k+3 —x) = (4k+1 — x)_2_.
It is clear that (2.1) and (2.2) are satisfied, so the increments S, — S, _, = X, are
L?-bounded (conditional on %, _,); however, an easy computation shows that for
T = Tyk,

E(S, — 4*) > (const) - (k — 1)

for some positive constant. O
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PROOF OF PROPOSITION 2.2. It obviously suffices to consider only integer
values of a. Letting 7 = 7,, we have

a—1 Tw+1
ES,-a)’<EY Y E[(X,+8,,-a)%_]
w=0n=1+m,

Tw+1

a—1 '
SEY Y E[(X,+w+1-a))i%

w=0n=1+m,

a—1 Tw+1
<EY Y hw+1-a)

w=0n=1+m,

a—1
<2C,- Y hw+1-a)

© w=0
<2C, -(h(o) + [7 n(z) dz),
z=0
where C; < oo is the constant in (2.3). O

Proposition 2.1 shows that, at least in a weak sense, {S,} drifts to + o at a
roughly linear rate. It is natural to inquire about the extent to which conditions
(2.2) limit excursions below 0: More precisely, how big can the tail of the
distribution of inf, _ S, be?

PROPOSITION 2.3. Suppose in addition to (2.2) that there is a function
h(2)!l(z = 0) such that

(2.8) foozh(z) dz < o0

0
and
(2.9) P(X,< —2%,_,)<h(z) Vz2=0,Yn.
Then there exists a constant C = C(uy, p*, 02, h) < oo such that
(2.10) - E[mi%sn%] <C.

REMARK. The proposition asserts not only the the expected value is finite,
but that there is an upper bound depending only on the parameters p,, p*, o2,
and A, and not on any other feature of the distribution of {S,}.

In the special case where X, X,,... are iid, this theorem was first noticed (we
think) by Kiefer and Wolfowitz (1956) (cf. Theoremr 5 there). We will use the
Kiefer—-Wolfowitz result in proving Proposition 2.3.

“ PROOF. As in the proof of Proposition 2.1, we may assume that X, < A
almost surely, for all n > 1, where A < oo is a fixed constant. Let H, ,(x) =
P(X,,, <x|#,) be defined for real x in such a way that H,, (x) is, with
probability one, a distribution function on R. We may assume, without loss of
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generality, that H, ,(x) is, with probability one, a continuous distribution
function.

[If H,,,(x) is not continuous, then modify the problem as follows. Let
§1, €5,... be iid with exponential distribution P{{; > y} = e~2%/k+ and all inde-
pendent of %, £ o(U%_,%,). Let

Xn= Xn—gn’
~n = 6(3‘.—;—1, £17"',£n)’
S,=X,+---+X,

I:In+l(x) = P(Xn+1 < x|#,),

etc. Then H, ., is continuous. Moreover, inf, . ,S, < inf, > 05, Thus if we prove
(2.10) for X,,, S,, etc., it will follow for X, S, etc.]

The first step of the argument consists of showing that there is a finite
collection of probability distributions {G,, G,,...,G,} and a sequence {J,} of

random variables valued in {1,2,..., [} such that

(2.11) o, .1 is measurable with respect to %, V n;
(2.12) Gi((—0,A])=1 Vj=1,2,..., L

(2.13) e/ < foGj(dx) Vi=1,2..,1
(2.14) j';x2Gj(dx) <w Vj=1,2,..., L

and

(2.15) Hy,\(x) <G, (x) Vx€R, wpl

This is actually quite easy in view of (2.9). Choose a constant B < oo large
enough that

[ h(x) dx < oy,
B

h(B) <,
and hence
P(X,.,< —-B|#)<e Vn=1,2,...,

where ¢ > 0 is some small constant to be chosen later. Notice that sucha B < oo
exists by virtue of (2.8) and (2.9). We set G(—2)=h(z) for all z> B, j=
1,2,...,1 (I will be specified in due course). Clearly (2.12), (2.14), and (2.15) will
hold regardless of how G, G,, ..., G, are defined on [~ B, A].

By Helly’s Selection Theorem [cf. Feller (1966), Chapter VIII, Section 6], the
family of subprobability measures on the interval [— B, A] is compact in the
weak-* topology. Consequently, there exists a finite collection H,, H,,..., H, of
subprobability measures on [—B, A], each with total mass Ji-B, aiH{(dx) =
1 — h(B), and such that for every subprobability measure F on [— B, A] with
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total mass > 1 — A(B), thereisa j € {1,2,..., 1} with
|F(x) —H(x) <2, Vxel[-B,A]
Define G,(x) = (H{(x) + 2¢) A 1 for x € [~ B, A]. Then
F(x) < Gj(x) Vxe[-B,A]
and
|F(x) — G(x)| <4e Vxe[-B,A]

It is now clear that if ¢ > 0 is sufficiently small (e < p,/16 should do), then
(2.11)—(2.15) must be satisfied.

[NoTe. In defining J, it might be that several different G, would satisfy
(2.15). In such a case oJ, should be defined as the least j for Wthh (2.15) holds;
then there will be no measurablhty difficulties. Notice also that the selection of
{G,,...,G,) depends only on p,, u*, 62, and A.]

The next part of the proof consists of showing that there exist independent

sequences of random variables {Y(f)} k=12... and j=1,2,...,[ such that
(2.16) {Y(l)}k=1,2,... areiid G;;

and

(2.17) Y, < X, wpl. Vn,

where

N 2 T1(%=5).

However, it may be that we will need a somewhat larger probability space to
manage this. We will assume, therefore, that the underlying probability space
supports 1ndependent sequences {y},_, 2..» J=1,...,1 which are indepen-
dent of % _ *_0%,), and such that for each J=12,...,1, the random
variables { y,‘ef )} k=1,2,... are iid with distribution G;.

Recall that the conditional distributions H +1(Jc) were assumed to be continu-
ous; thus it is peI'rnlss1ble to define Z,_ , by

= G . ( +1(Xn+1))

By (2.11) and (2.15) it follows that
Z,.1<X,., wpl VYnx=0,

and
P(Z

w1 SXI%) =G, (x) VxeR, wpl
Set

Y =2, on{N,(j)=k>N, ()))
0 on s, () < Bl

n>0
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then by construction (2.16) and (2.17) are satisfied, and the sequences {Y}”’},
J=1,2,...,1 are independent.
It is now apparent that
infS,> inf (YO + -+ +¥®)+ -+ + inf (YO + -+ + YD),

n>0 n>0 n>0

By the Kiefer-Wolfowitz theorem,

l
Z —E[ inf(Yl(j)+ +Y’§j))|g:0]
Jj=1

n>=0

=C(G,) + -+ +C(G)) < . O

The final result of this section concerns randomly stopped vector-valued
processes. Let {X,}, {S,}, {r,}, etc., satisfy conditions (2.1)~(2.2). In addition,
suppose £, &,,... is a sequence of nonnegative random variables adapted to
F, Poy..., and let §, =&, + -+ +£,.

PROPOSITION 2.4. Suppose that there exist continuous functions h(z)| and
h*(2)| such that

(2.18) [ 2(h(2) + k*(2)) dz < w;
0
(2.19) P(X,.,< —-2%)<h(z) Vz>0 wpl
and
(2.20) P(¢,.,>21%)<h*(z) Vz>0 wpl
Then there is a function k(z)| such thatl > k(z) > 0,
(2.21) foozk(z) dz < o0
0
and
(2.22) P($, > 2|%) <k(z) Vz>0 wpl

NoTE. Asin@1)r,=min{n>0: S, £ X, + -+ +X, > a).

COROLLARY 2.1. Suppose v > 1 is an integer-valued random variable mea-
surable (%#,), and suppose that for some ¢ algebra %_, C %, and some
sequence g(n)| with g(1) =1,

(2.23) f‘,ng(n) < oo,
and
(2.24) P(v > n|#_,) < g(n).

If the hypotheses of Proposition 2.4 are satisfied, then
(2.25) P(¢, >217 ) <g*(z) Vz20,
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where g* | and
(2.26) [“eg*(2) dz < .
0

Observe that the function k(z) may always be chosen in such a way that
K(z)=1 — k(z) is a distribution function on [0, ). Iterating the inequality
(2.22) gives

P(¢, > 21%,) <1~ K*™(2)

for m > 1, where K*™ = K*K*...*K is the usual convolution product. The
inequality (2.25) follows from this for

g*(z)=1- X (8(n) - g(n + 1))K*"(2),
n=1
since » is #;,-measurable. Notice that

[T () de = B (atn) g+ ) [ 20 - K(2))

o0

< Y n*(g(n)—g(n+ 1))foozk(z) dz < .
n=1 0
Thus Corollary 2.1 follows from (2.21) and (2.22).

The functions k(z), g*(z), whose existence is asserted in Proposition 2.4 and
Corollary 2.1, may actually be chosen in such a way that they depend only on p,,
p*, o2, and the functions h(z) and h*(z). This should be apparent from the
proof.

The proof of Proposition 2.4 will, like the proof of Proposition 2.3, essentially
consist of reducing the problem to the case of a (vector-valued) random walk with
iid increments by stochastic comparison argument. In this case the reduction is
substantially harder, however, since the “quantile transformation” is not avail-
able in dimensions larger than one, and since (2.19)-(2.20) give no information
about the joint distribution of X, , and £, conditional on %,. We know of no
approach to Propositions 2.3 or 2.4 which does not make use of a stochastic
comparison-coupling argument: In particular, it seems impossible to prove them
by using “martingale” methods.

The iid analogues of Proposition 2.4 and Corollary 2.1 are easy consequences of
the Wald identities for martingales.

LEMMA 2.1. Suppose that the random vectors (X, £,) are iid, and that
(X, 415 £,41) i independent of %, for each n > 0. If
(2.27) E(X2, +£,)) <o,
: E(Xn+1)E’J‘>O’

and
£,..=0 wpl
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for all n > 0, then
(2.28) E($21%,) = E¢? < 4{(E¢,)’Er} + Eryart,} < co.

If in addition v > 1 is an integer-valued random variable measurable with
respect to Y C F,, if (X, £,) is independent of 9, and if E(v*|%,) < C < oo for
some constant C, then .

(2.29) E($21%,) < C(ES, )" + CV2ES? < .
PROOF. By Proposition 2.1 E(72|%,) = Et% < . Now
E($21%,) = EX2
T 2
-5 14
n=1

2
+2uEr ) (§, — ) + p’Er?

n=1

a 2\ 1/2
E( ; (gn - ,u,)) ) )

- X (6=

But the Cauchy-Schwarz inequality gives

pET Y (¢, — 1) < p(Er?)'”?

7 2\ 1/2) 2
E( g (£n—u))) }

n 2
< 4p’Er! + 4E( Y (&, - u)) :

n=1

SO

E{? < {M(E#)’” +

Finally,
n 2
E( Y (¢, - p)) = Ervar{,
n=1

by Wald’s identity [cf., for example, Chow, Robbins, and Siegmund (1971),
Theorem 2.3]. This proves (2.28).

Next notice that ({,  — f,k), k=0,1,..., areiid, with ({,  — ¢, ) indepen-
dent of &% foreach k =0,1,... (here 7, = 0). Also {, is 1ndependent of 9. Thus

E

E($2\%,) =E

and (2.29) follows. O
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The quantile transformation which was used in proving Proposition 2.3 will be
replaced by the transformation provided by the following lemma. Let
A= {probability distributions H on R 2 which are absolutely continuous,
with H({(x, y): x > 2}) < h(z) and
H({(x,y): y>2}) < h*(z) Vz2>0},

where A(:) and A*(:) are the functions from the hypothesis of Proposition 2.4.
Let # be the smallest ¢ algebra of subsets of 2" such that all maps H — H(B)
are measurable, where B is a Borel set of R2.

LEMMA 2.2. For any € > 0 there exists a finite collection {G,, G,,...G,} of
probability measures on R% and measurable (wrt #) maps

J: o> (1,2,...,1)

T: X R2—> R%
such that

(2.30) foreachH €X', T(H; (x,y)) = (x, y)
(relative to the usual partial order R2);
(2.31) foreachH € X andf: R2— [0,1] measurable,

jl;lz f(T(Ha (x’ y))) dH(xr y) = Lz f((x’ y)) dGJ(H)(x’ y);

(2.32) /xdGJ(H)(x, y) < /de(x, y)+e VHeX;
‘and
(2.33) G,({(x, y): max(x, y) > z}) < 2(h(2) + h*(2))

forallj=1,2,...,1and all large z > 0.

Thus whenever X is a random vector with law H, T(H; X) > X, and T(H; X)
has law G ,. Furthermore, under (2.18), each of the distributions G; has finite
second moment.

There is a theorem in the literature which is closely related to Lemma 2.2 [cf.
Kamae, Krengel, and O’Brien (1977), Theorem 1, who derive it as a special case of
Theorem 11 in Strassen (1965)]. This theorem states that if H and G are
probability distributions on R¢ satisfying

/ fdG < / fdH V¥ bounded increasing f on R?,

then on some probability space ([0, 1] with Lebesgue measure will do), there exist
random vectors X, Y such that X < Y almost surely, X has law G, and Y has law
H. Unfortunately, it seems impossible to conclude from this that the construction
can be made to depend measurably on H and G (Strassen’s proof is nonconstruc-
tive, relying on the Hahn-Banach Theorem).

The proof of Lemma 2.2 has been banished to the appendix.



A CONTROL PROBLEM 151

PROOF OF PROPOSITION 2.4. We may assume, as in the proofs of Propositions
2.1 and 2.3, that X, < A for some constant A < oco. Define conditional distri-
butions H, on R% by

Hn+1(21’ 22) = P(_(Xn+l - A) < 215 £n+1 < 22"%;)’

As in the proof of Proposition 2.3 we may assume that H,, ,(z,, z,) is absolutely
continuous in (z,, z,) (by adding small exponentially distributed randorm vari-
ables to the £, and subtracting others from the X,).

Again we assume that the underlying probability space is sufficiently accom-
modating to support sequences {yu(/)}r=12.. ., (J=1,...,1 of random vectors
which are independent of each other and of %, £ o(U%_,%,), and such that

Ply,(j)edy} =Gi(dy) VyeR:, k>1,,=1,2,..,1

Here G, G,, ..., G, are the distributions provided by Lemma 2.3, with ¢ = p, /2.
[For Corollary 2.1 &%, should be defined as %, = o(UX_,%,)U%)].
Define random vectors {Z,,,, = (Z{),, Z2) )} by

Zn+1 = T(Hn+1; (_(Xn+1 - A), §n+1))'
Notice that

(2.34) -ZMW +A<X,,,
and
(2.35) VARSI

Notice also that each Z,,, is measurable with respect to %,., since T is
measurable and H,_ , (as an element of ") is measurable with respect to %,.
By (2.31)

(2.36) P(Z,,, €dz\#,) = GJ(H,,H)(dz)-

As in the proof of Proposition 2.3, set
n
N.(j)= X YJ(H,) =}
m=1

and
Y.(j)=Z, on{N,(j)=k>N, ,(j)}

v(J) on{supN,(j) < k}.

y oo

j =
are independent sequences of iid random vectors, with ZL(Y,(j)) = G, [cf.
By (2.33)-(2.35) .

YN,,(J(H,,))( J(Hn)) < (—(Xn - A)’ gn) Wp.l
Fiilally, notice that because we chose ¢ < p, /2, and by (2.32) and (2.2),
supN,(j) =0
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for all j € {1,2,..., 1} such that
(2.37) fmxdG,(x, y) > pe/2.

The result (2.22) now follows easily from Lemma 2.1, since (2.28) and (2.29)
may be applied to each of the independent sequences

(X)), E.(0)},
where
X.(J)=A-Y"(j)
and " -
£(7) = Y2()),
where j € {1,2,...,1} is such that (2.37) does not hold (thus EX,(j) > pt./2).

That the second moment condition is (2.27) of Lemma 2.1 holds is guaranteed by
(2.18) and (2.33). O

3. A martingale. The purpose of this section is to identify a certain
martingale function of W, — W, and to verify that the martingale property
persists under optional stopping (i.e., that the first Wald identity holds). This will
give both an explicit representation and a lower bound for the expected cost
EZ(T_5(T,)).

Recall from (1.6) that no convex combination of a subset of

may dominate a convex combination of a disjoint subset. In other words, there do
not exist a permutation 7 of {1,2,...,d} and probability vectors

(P1y--+s Pr)s(Qri1s---»qq) such that
d

k
> pju(F,,m) < X qu(F,)-
Jj=1 J=k+1

Recall also that each mean lies in the first orthant 2,: i.e., p(F;) > 0 for each
Jj=1,...,d.

LEMMA 3.1. Under assumptions (1.4) and (1.6), the vectors pn(F,)/8(1),
WM Fy)/8(2),..., n(F,)/8(d) are linearly independent.

PROOF. Suppose there exist B, B, ..., 8; € R, not all zero, such that

l

> u(F)/a(0) = 0.

Let
B,={i: B;>0} and B_= {i: ;< 0};
then since p(F;)/8(i) > 0 for each i = 1,..., d, we must have both B_# & and
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B,+# @. [NoTeE: We cannot have wn(F;)/8(i) = 0 for any i, since p(F;)/8(i)
would then trivially be dominated by p(F;)/8(j) for any other j, contradicting

(1.6).]
Since both B_+# @ and B,+ @, one of the following relations obtain [again,

since each w(F;)/8(i) = 0]:
5 (w(E)/8() -(Bi/;ﬁi) < X (w(E)/8() -(B,/BZBi),'

5 (u(F)/8(0) -(B,/Bz_ﬁi) < X (w(E)/8(0) ~(ﬁi/BZ+Bi).

+

Both contradict assumption (1.6). O

LEMMA 3.2. If assumptions (1.4) and (1.6) hold then there is a unit vector
u > 0 and a real number p. > 0, such that for each i = 1,2,...,d,

(3.1) up(F;)/8(i) = p.
We will reserve the letter u for the unit vector satisfying (3.1) throughout the
paper.

PROOF. This consists of showing that the hyperplane # = (Y%, 8,u(F,)/8(i):
T .B; =1, B; € R} contains points A,e,;, As€,,..., A€, where each A; > 0 and
e; is the ith unit vector [e, = (1,0,0,...,0), e, = (0,1,0,0,...,0), etc.]. For if this
is true then the vector

u= (HM, | LY ﬂM)/'

i#1 i1#2 i+d

(nxi,...,ﬂxi)

i#1 i#d

will satisfy (3.2) (since u‘v =p for v=»\Ae, i =1,...,d, it must be true for
every v e %, as \e,,..., A e, span ¥).

There are two ways that % might fail to contain a positive multiple of e:
Either (i) Ae, € ¥ for some A < 0, or (ii) Ae, € ¥ for no A € R. We will show
that each of these possibilities leads to a contradiction of assumption (1.6).

Consider first (i). If T ,8,u(F.)/8(i) = Ne, for some A <0 and B;€R,
Y& ,B; =1, then let ‘

B,={i: B;>0} and B_= {i: ;< 0}.

Recall that each p(F;)/8(i) > 0 and that no p(F;)/8(i) = 0 (Lemma 3.1). Thus
in order for

L Bir(F,)/8(i) = Ne;
“with A < 0, it must be the case that B_# @. Moreover, since L8, = 1,
0< Z(".B;) < ZB;
B_ B,
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Using again the fact that n(F;)/8(i) > 0 for each i, we conclude that
> (w(F)/() -8/ T8+ Z(WE)B(0) 8/ E (~8)) < he, < 0,
B, B, B_ -B

which clearly contradicts assumption (1.6).

Consider now the possibility (ii). Notice first that the hyperplane % is
(d — 1)-dimensional, since the vectors p(Fl)/S(l),..., p(Fd)/S(d ) are linearly
independent. Thus if no real multiple of e1 is contained in %, then there exist
reals a;,...,a, and B,,.. Bd such that ¥ a, = Y% .8, = 1, and

Z (o; = B)p(F,)/8(i) = e,.
i=1
Set
by now familiar arguments we have B, # @ and B_# @&. We also have
Z(ai‘ﬁi)= Z(Bi— a;)
B, B_
S0

¥ (u(F)/5(0) [( - B/ (o - ﬁ»]
—01+Z(u(F)/8(l))[ ~ )/ Z (6~ ]

> T ((F)/0(0) -[(ﬁi - a)/ S (hi- )]
which again contradicts assumption (1.6). O

COROLLARY 3.1. For any control policy # and any initial point W, = x,

(3:2) EZ[u'w, 1, ] = p8(T,..).
In other words, the process {u (W, — W) — pX?_,8(I)},., is @ martingale
relative to the filtration {#,}, o

This is an immediate consequence of Lemma 3.2 and the definition of a control
policy (cf. Section 1).

COROLLARY 3.2. For any control policy 2, any znztzal point W, = x, and any
stopping time T, either of the relations

(3.3) EZr < 0
(34) E? Z 8(T,) < 0

n=1
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implies
(3.5) pEZ Y §(T,) = —u'x + EZ(u'W,).

In particular, for any policy # and any initial point W, =x, and T =
inf{n: W, € 2}, :

T
(3.6) EZ Z;, 8(T,) = (—u'x)/p.

With Corollary 3.2 it becomes clear that the problem of minimizing EZY78(T,)
is equivalent to minimizing EZ(uW,), i.e., to hitting the target 2, as close to
the corner as possible. It is also worth noting that the lower bound (—u‘x)/p is,
for certain x (namely those x in the negative cone —#= (L¢\ u(F,): A; < 0))
the solution of the linear programming problem

d
min Y 5,8(i)
i=1

d

subjecttos; >0 (i=1,...,d) and ) su(F)+x>0.
i=1

Thus the quantity inf, EZ(u’W;) may be interpreted as the additional cost for
noise and discretization of time.

Notice that the condition EZr < 00 and EZ¥L[8(T,) < oo are equivalent, since
0 < é8(i) < o0, for each i = 1,2,..., d. Also (3.6) follows immediately from (3.5),
since u'W, > 0 with probability one. Therefore Corollary 3.2 follows from
Corollary 3.1 and the Wald Identity (Theorem 2.3 of Chow, Robbins, and
Siegmund (1971).

4. Stability. Proof of Theorem C. The defining characteristic of a diago-
nal-stabilizing policy [cf. (1.7)] is that it applies a “restoring force” to the random
walk when it begins to wander away from the diagonal. The optimality theorem
(Theorem C) depends to a large extent on the fact that when the available
control distributions have finite second moments, the random walk does not
wander far away from the diagonal. Thus, in the regime of a diagonal-stabilizing
policy, the diagonal is “stable” for the random walk; the main part of the proof
of Theorem C consists of quantifying the stability property.

Before embarking on the proof of Theorem C is behooves us to make certain
that, under the hypotheses (1.4)-(1.6), there do exist diagonal-stabilizing policies.
Let % be the linear subspace of R? consisting of vectors orthogonal to the
diagonal, i.e., .

i=1

d
@ = {VERdZ Zv”)=0};
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and let % be the unit vectors in %, i.e.,
d .
xz= {v e?: Y (v9)? = 1}.

i=1

LeMMA 4.1.  If conditions (1.4)~(1.6) are satisfied, then
(4.1) inf max viu(F) > 0.

veEX1<i<d

ProoF. By Lemma 3.1 the vectors p(F)), ..., p(F,) are linearly independent,

so for each v € % there exists i € {1,2,..., d} such that -
viu(F,) # 0.
Since 1 is in the interior of the cone . # generated by w(Fy),..., p(Fy)
moreover, there must exist positive numbers A, Ay, ..., A, such that
d
1= Z Au(F).
i=1
Consequently, for each v € %,
0=v41
d
= Zki(vtﬂ(ﬂ)y
i=1

It must be the case that at least one of viu(F,),..., v'u(F,) is strictly positive,
since each A, > 0.
Now each of the functions A,(v) = vw(F)) is continuous in v, and therefore

A .
P e )

is continuous in v. A continuous function on a compact set must attain its
infimum, so by the result of the last paragraph
inf A(v) > 0. o

veY

COROLLARY 4.1.  If conditions (1.4)-(1.6) are satisfied, then there exist diago-
nal-stabilizing policies.

PROOF. As in Section 1 for each x € R, let d(x) be the orthogonal projection
of x onto the one-dimensional vector subspace of R¢ containing the vector 1 and
let r(x) = d(x) — x. Then r(x)/|r(x)| € % for each x € R By Lemma 4.1

r(x
inf max p(F)° ()

> 0.
xeR? 1<i<d |r(x)|
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Let {T,} be defined by

1 if [r(W,)] = 0;
I‘n+1 = . { t r(Wn) t r(Wn) }
min{ i: p(F; = max p(F; otherwise.
M ety ~ 2 ) e,

Then clearly T, is a measurable function of W, and (1.7) is satisfied, so {I}
determines a diagonal-stabilizing policy. O

Stability. For a controlled random walk {W,},.,, define stopping times
{n(n)}n5 o by
0)=0,
(42) 1(0) .
n(n +1) = inf{m > n(n): |x(W,)| <r},

for some constant r > 0; and random variables {X,,}, {1}, and {¢?} by
X, = lt(Wn(n) - Wn(n—l))’

n
Sn = Z Xj’
Jj=1

p'n = Exg[Xn n(nvl)]’

0n2 = Varxga(Xan(n—l))'
The intervals {m: n(n — 1) < m < 7(n)} should be thought of as “excursions”

away from the diagonal; thus n(n) — n(n — 1) is the length of the excursion and
X, is the displacement of {W,, } in the direction 1 over the excursion.

(4.3)

PROPOSITION 4.1. For each a > 0 and r < oo there exist constants g, p*,
o2, and B and a function h(z)| with [Ph(z)dz < o (all depending only on «a,
r, and the underlying distributions F\, ..., F,) such that for each DS(a; r) policy
2 and each x € R? with |r(x)| <,

(4.4) O<py<p,= E;f"[an,,(,,_l)] <p*<o Vnx1,
(4.5) ol = Ef[(Xn - un)zl.;z{,,(n_l)] <0’<o00 Vnx1,
(4.6) Ef[(X,, - z)+Mn(n__1)] <h(z) V220, Yn>1,
and

(1) EZ[n(n) ~n(n - Dityu o] <8 Vns1

This result limits, if only in a weak sense, the average “size” of an excursion
away from the diagonal, hence it seems natural to call it a stability theorem. The
diagonal-stabilizing condition (1.7) is a natural stochastic analogue of the
.Lyapunov function often used for establishing stability of an ordinary differential
equation [cf., for example, Hale (1969), Chapter 20].

Before proving Proposition 4.1 we will show how, in conjunction with Proposi-
tion 2.2 and Corollary 3.2, it may be used to prove Theorem C.
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Proor or THEOREM C. Let
T= ;rzlfo {n(n): 1'W, ,, > r};

clearly 7 > T = min{n: W, € 2_}, and, since 8(i) > 0 for each i, X]_,8(T,) >
YT_ 8(T,). We will show that, for some constant C(a, r) < oo

(4.8) EZY 8(T,) < —ux+ C(a,r)
n=1
for all initial points x € R? such that |r(x)| < r. (Recall that u is the unit vector
defined in Lemma 3.2.) In view of Corollary 3.2 this will suffice to establish
Theorem C.
Now Corollary 3.2 guarantees that if EZ7 < oo, then

EZY §(T,) = —ux + EZu'W,.

n=1
Hence to prove (4.8) we need only show
(4.9) EZr < foreachx € RY, |r(x) <r;
and
(4.10) EZ|W)| < C(a,r) foreachx € R?,  |r(x) <r.

Let » = inf{n: S, > 1‘W, + r)} then 7 = n(»), and furthermore, » is a stopping
time of the type considered in Section 2. Consequently, by Proposition 2.1 and
(4.4)—(4.5) of Proposition 4.1,

(4.11) EZv<o VxeRY? |r(x) <r.

Also, by Proposition 2.2 and (4.4)—(4.6) of Proposition 4.1 there exists a constant
C(a, r) < oo such that for every x € R? with |r(x)| < r

(4.12) EZ(S,—-(1*x + r)) < C(a, r).

The inequalities (4.9) and (4.10) follow easily from (4.11) and (4.12). First, since
7 =n(r) and W, is at a distance no greater than r from the diagonal, |W,| <
2r + (S, — A*W, + r)), so (4.10) follows immediately from (4.12). To get (4.9)
from (4.11) reason as follows:

r=n(s) = T (a(n) = 1(n - 1)

vAm

’rlli?:o 1 gl(n(n) - 1q(n - 1)),

so by (4.7), (4.11) and the optional stopping theorem for supermartingales
vAm

Elr = lim 1ES Y (n(n) —n(n - 1)

n=1

< lim (8- EZ(» A m))

<B-EZv < . O
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The remainder of this section will be devoted to the proof of Proposition 4.1.
The general results of Section 2, especially Proposition 2.4 and Corollary 2.1, will
play a key role.

Let

R, = |r(W,)|

= dist(W,,, diagonal).

LEMMA 4.2. For each fixed a > 0 there is an r > 0 so large that for every
DS(«; r) policy #

(4.13) E?(R,- R, \\#,)>a/2 on{R,>r}.

The upshot of this is that the process — R, satisfies the conditions (2.2) of
Section 2. [The fact that (2.2)(b) holds follows from the fact that each increment
w, has its law (conditional on %,_,) in the finite collection {F,,..., F,}, and
Jre|v|*Fi(dv) < oo for each i.]

ProoF. Since each F; has a finite first moment

f |w|F(dw) > 0 asx — + 0.
{w:|w|>z}

Thus it is possible to choose z < oo so large that all of the integrals
(1=1,2,...,d) are less than a/8.

Next, the geometry of R¢ guarantees that for any fixed z > 0, the level
surfaces {w: |r(w)| = const} differ by increasingly small amounts from hyper-
planes over patches of diameter z, as (const) > oo. Consequently, for r suffi-
ciently large,

Ef((Rn - Rn+1)1{|wn+1| < z}Mn)I{Rn > Y'}
r(wn)

> Ef((3/4)w,f+l(R—)1{|wn+1| < Z}Mn)l{Rn >r}.

It then follows from the defining property of a diagonal-stabilizing policy
[cf. (1.7)] that

EZ((R,~ R, )|#){R,>r} > (3/4)a — 2 -(a/8). o
PRrROOF OF PROPOSITION 4.1.

(1) ProoF OF (4.7). For each integer m > 0 define a sequence {y,},., of
random variables as follows:

In = Rn(m)+n - Rn(m)+n+l if n(m) tn< n(m + 1)
=1 otherwise.
These random variables satisfy the conditions (2.2) (with respect to the ¢
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algebras { %, ) ,},>1) because by Lemma 4.2
E‘x?(ynl‘”n(m)«i-n) > 0/2,

and clearly, since w,_; has its (conditional) distribution in the finite collection
(F,,..., E;},

d
Ef(yfwn(m)m) <1+ Eﬁ Ld|v|2Fi(dV)~

Notice also that the constants p, u*, and 62 in (2.2) can be chosen in such a way
that they depend only on « and the distributions F,,..., F,, not on the initial
point x or the policy £.

As in (2.1), define first passage times
7(a¢) =min{n>0: y, +y,+ -+ +y,> a}.
Then it is evident that
n(m+1)=n(m) + T(R'q(m)+l -r) if Rymys1 2T
=n(m) +1 Ry <7

since by definition n(m + 1) is the first n > n(m) for which R, < r. Conse-
quently, by Proposition 2.1

Ef("?(m +1) - n('n)W,,(mm) =< Cl(.“'*, p*, 02)(Rn(m)+1) +1

implies that

L. dlvlFi(dv)) +1,

i=1

Exga("l(m +1) - ’T(m)wn(m)) = Cl(.‘"*’ .u*,az)(r +

for each x € R? with |r(x)| < r. This proves (4.7).
Similarly, Proposition 2.1 implies that

d

(414) BZ((n(m + 1) = n(m) = )ilym)) < G X [ (r+ IV)*Fi(dv),
i=1

for all x € R? with |r(x)| < r and C, = Cy(i, p*, 62) the constant in (2.4).

(2) PROOF OF (4.4). Recall that X, = X"~ "»"Ditw, . . . where w), =
W, — W, _, is the kth increment in the (controlled) random walk. Now

0<

13

,,,,,,

4
< EZ(1Wy(n 1y Ay /1)

< 1 (F,

sl
. < o0, -

and .
2 2 d

Ex ((ltw"l(n—l)"'j) IJZ{n(n—l)+j—1) <d- Z

i=1

[ VPE(dv).
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Consequently, by (4.7) and the Wald identity
| 0<$: min 1W(F)
< EZ(X\tyn-1)
< B max 1u(F),
for all x € R? with |r(x)| < r. This proves (4.4).

(3) PROOF OF (4.5). For notational convenience (in this paragraph only) set
»(n) =n(n) =n(n—1)
and
Y = 1'Wy ooy~ E(ltwnm—lwwn(n—lw)'

By (4.7) E(»(n)|Z,(,-1)) < B and »(n)isa stopping time relative to the filtration
{Hy(n-1)+))j= 0> SO by the Wald identity
2

Ef((Xn - “n)ZMn(n—l)) =E7 ‘Mn(n—l))

v(n)
>y,
Jj=1

v(n)
= Efp Z Ef(lczwn(n—l)ﬁ)"ﬂn(n%))

J=1

‘Mn(n—l))

d
<E? v(n)~(,§ f| ltwlei(dw))
d
<8 ¥ J1xwiPE(dw).

(4) PROOF OF (4.6). This is really the large intestine of the proof. We
actually did most of the work in Section 2—namely, Proposition 2.4—in the
hope that the entire project would be more easily digested.

Set
Yo = Royimysn— R, (my+n+1 ifg(m)+n+1< n(m + 1)
=1 otherwise,
Y, = (ltwn(m)+n+1)+
and
v=d- | Wypml + T
Then

n(m+1)<n(m)+2+min{n: y,+ - +y,2v+r}
=n(m)+2+t7(v+r).
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Notice that

d
Pfa(yn < _ZWn(m)+n) < Z f 'Ft(dv)
i=1Y {vilvlzz}
2 h(z);
also
d
Pfa(Yn = ng(m)+n) < E f B E(dD)
=1 (villv>z)

£ h*(2);

and [°z(h(z) + h*(2))dz < w0 because of the fact that each F, has a finite
second moment! In addition,

Xm+l ='1t(W11(m+1) - Wn(m))
<vH(Y+ Y+ - +Y1(v+r))‘

Since

d
P2(v > 2iy) < ¥ [ F(dv),
i=1

(vidv|+R=>z)
the conditions of Corollary 2.1 are satisfied, and hence
P X, 2 21, ) < g*(2) Vz>0, wpl,
where g*(2) is the function given in Corollary 2.1. This clearly implies (4.6). O

5. Global optimality in dimension 2. Using Theorem C we now proceed to
prove the much stronger Theorem A for straight-line switching policies. In fact
an analogous result holds for all diagonal-stabilizing policies in dimension 2, but
we will refrain from proving this.

The proof of Theorem A essentially consists of a path-by-path comparison of
two controlled random walks, one evolving according to the straight-line switch-
ing rule &, the other according to a competing policy #. Such a comparison
requires that the two random walks be constructed on the same probability
space; this in turn will force us to abandon some of the notation and conventions
established in the preceding sections:

Let (2, #, P) be a probability space on which are defined two independent
sequences of iid random vectors, and an independent sequence of iid uniform-(0, 1)
variables:

Y,,Y,,... areiid (F,),
Z,,7,,... areiid (Fg),

and
Uy, Uy, ... areidd uniform on (0,1).

Recall that a (randomized) control policy % consists of a sequence of functions
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Yo, ¥1, - .. which carry instructions for choosing from the two available controls A
and B [cf. (1.12)]. For each x € R2, let

Wy(x, 2) = x,
(5.1) W, (x,2)=W,(X,2)+Y,,, ify,(W,,...,W,;Up,...,U,)=A
=W,(x,2)+2Z,,, ify,(W,,...,W,;U,,...,U,)=B.
Then clearly {W,(x, %)}, evolves according to the policy #. Similarly, let
Wy(x) = x,
(5.2) W, 1(®) = Wo(x) + Y, if WP(x) > W(x)
=W, (x) +Z,,, if WP(x)< W (x),

where, as usual, W® and W@ are the first and second coordinates of W. The
process {W,(X)}, . , evolves according to the straight-line switching rule 2.

NoTE. We will continue to use a lower case w to denote the increments in the
controlled random walks W. Thus

wn+1(x) = Wn+1(x) - Wn(x)
and
Wn+1(x’ '@) = Wn+1(x’ ‘%) - Wn(x1 ‘@)

REMARK. Strictly speaking, a straight-line switching policy, as defined in
Section 1, may use any line (ray) as the switching line, as long as it lies in the
negative cone determined by p, and pp. However, we may, by a simple linear
transformation of R? having the form (x®, x®) > (¢,x, c,x®) with ¢, ¢, > 0,
always reduce the problem to one where the switching line is the diagonal
xD = x@_ and the mean vectors satisfy

WD > 4 > 0,

pg > p@ >0,

5.3
(53) £y > p®Q, and
Wg > .
More notation will be needed. Let’
(5.4) T(x) = inf{n > 0: W,(x) € 2, }
and

T(x,2)=inf{n>0:W,(x,2)€2,}.
Alsolet A, A,, and A_ be the sets
A= {(x®,x@): x® > xD 4 r},
(5.5) A_={(x®,x@): x® > x® 4 r},

A,=R2\(A,UA).
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Here r > 0 is a large but fixed constant. Define stopping times
(5.6) mo(x) = inf{n > 0: W,(x) € F}.
We note at the outset that {W(x, 2)} (i = 1 or 2) is always a submartingale,

since p4 > 0 and pp > 0. It will be convenient to have a sufficient condition for
when the submartingale property is preserved by optional stopping.

LeEMMA 5.1. Suppose S, = Xix; is a submartingale relative to a filtration
{#.}. >0 and suppose t,, t, are stopping times. If

2
(5.7) EYE[x3%_,] < 0,
1
then
(5.8) E(S;ZI.%l ,\,2) =S, \;,, WL

Proor. This is a simple consequence of the Doob decomposition of S, into
the sum of a martingale and an increasing process, and the Wald identity. O

LEMMA 5.2. There is a constant C < oo such that for all x € R%\ 2,,
(5.9) E| Wrp(x)| 1{7, (%) < T(x)} < C.

Proor. Straight-line switching is a diagonal-stabilizing policy, and so Pro-
position 4.1 applies. Let

y€&€ AO \"@+’
T*(y) = min{n > 0: W,(y) € A, and WP(y) + W2(y) > r}
> T(y).
Proposition 4.1 implies that the conditions of Proposition 2.1 and 2.2 are satisfied,

)
ET*(y) < 0

and
E [WT(I*)(w(y) + W2, (y)] < ¢’

for ally € A\ 2,. Here C’ is the constant provided by Proposition 2.2.
Now by the submartingale property of {W)(y)}, i = 1 or 2, and Lemma 2.1, it
follows that

E[Wiy) + Wigy)] < ¢
The inequality (5.9) follows easily from this and the Markov property of {W(x)}
[condition on W, (%) =y]. O
LEMMA 5.3. There is a constant C < oo such that
(5.10) E| Wr(x)| 1{rs_(x) < T(x) < 74, (x)} < C
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forallx e A\2,, and
(5.11) E|Wrp(x)1{7, (x) < T(x) < 74(x)} < C
forallx e A \2,

ProOF. First notice that for each y € R?,
EW{,(9)H{T(y) < ma(¥))

(512) <E[Woy| 110 <), =12

This is because {W,(y)},.~ , is a submartingale with
. ; 9
E[(W\) - W) ] < [ JVEE + Fy)(av),

and E7,(y) < oo by Proposition 2.1 and 4.1. Thus Lemma 5.3 applies.
Next notice that there is a constant C < co such that for every y € R?2\ 2,,

(5.13) E [W’,fjo’(y)(y)] . < C|r(y)| = C dist (y, diagonal).

This is a relatively straightforward consequence of Corollary 2.1: Just make the
identifications

Xn+l « Ir(wn(y)l - |r(Wn+1(Y))I lf Ir(wn(y))l = r;
-1 otherwise

£n+1 « (wr(zl-zl(y))-;-’
and
v < [|r(y)| + 11.

The hypotheses of Corollary 2.1 are satisfied because (i) straight-line switching is
a diagonal-stabilizing policy, so E[ X, ,|%,] = ps > 0 by Lemma 4.2, provided
r > 0 is sufficiently large; and (ii) the increments w,(y) are always chosen from
the finite set {F,, Fj), so (2.19) and (2.20) hold.

When one of the random walks {W,(x)} crosses from one side of the diagonal
to the other, the jump cannot be too large. More precisely, there exists a constant
C* < oo such that forallx € A,

(5.14) Er(W,Aoqu_(x)(x)) < C*.

This is a straightward consequence of Proposition 2.1: Just make the identifica-
tion
X, <« wP(x) —wP(x) ifn <y (%)

« 1 otherwise.
Using the Markov property of {W, (x)} and the inequalities (5.12)—(5.14) one
may easily deduce (5.8). Obviously (5.9) follows by symmetry: Just reflect the
entire problem through the diagonal. O
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LEMMA 5.4. There exists a constant C < oo such that for every x € A \ 2,,

(5.15) EW, g)(x)l{T(x) < mua (¥} <C,
and for everyx € A_\2,,
(5.16) EWfy(x)YT(x) < 74,04, ()} < C.

Proor. This is an easy exercise in the use of Proposition 2.2. Make the
identification

X, «wP(x) ifn<T(x)A Taua_(X),

« 1 otherwise.
Then
L(X,%-1) =F, ifn-1<T(x)Anua (%),
=0, otherwise.

Since p) > 0 and since F, has finite second moment, the conditions of Proposi-
tion 2.2 are satisfied. On {T(x) < 74 ;4 (%)},

T(x) = min{n: X, + --- +X,> —x®}
so (5.15) follows from (2.7). The inequality (5.16) comes about the same way. O

LEMMA 5.5. There exists a constant C < oo such that for all x € A \ 2.,
(5.17) E(W}ﬂ)(x) - x‘”)l{T(x) < ’TAOUA’(X)} < —Cx®.

PrOOF. Let
X,=wP(x) ifn<T(x)A Taua_(X)
=1 otherwise,
£, = wP(x),.

Clearly all of the hypotheses of Corollary 2.1 are satisfied, so by integrating (2.25)
over z € (0, c0), we obtain (5.17). O

Proor or THEOREM A. In accordance with Corollary 3.2, it is enough to
show that there is a constant C < oo such that for each policy # and each

x € R\ 2,,
E [Wiy(x) + Wiy(x)] < E[ Wik a(x, #) + Wi a(x, 2)] + C.
In view of Lemmas 5.2-5.4, it suffices to show that there is a constant C < oo
such that for each policy # and eachx € A \ 2.,
EW(x)YT(x) < 74,04 (%)}

5.18
(5.18) < EWE, a)(%, 2)YT(x) < 14,54 (x)} +C.
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[NoTeE. T(x, %) is the first time W (x, #) enters 2, [cf. (5.4)]. However, T(x)
and 7, ;4 _(X) are first passage times for W,(x)].

The proof rests on the observation that when T(x) < 7,4 ,4 (%), the incre-
ments w,(x) in the random walk W,(x) are all drawn from F,. The competing
policy # may draw from either F, or Fp; the resulting increment w, (x, %) will
be different from w,(x) only when % draws from Fy. Recall that

1 1 2 2
pP > pg and p@ > pf.

This will be crucial since it allows us to use the (martingale version of the)
Kiefer-Wolfowitz Theorem (cf. Proposition 2.3) on the components
(Wh(x, Z) — W(x)} and (WP(x) — WP (x, #)}. More precisely, let

H(x) = T(x) A T(x, Z) A 14,54_(X),

then Proposition 2.3 implies that

(5.19) E max (WO (x, 2) - WH(x)) < C
n<yx)

and

(5.20) E max (W®(x) - WA(x, 2)) < C.
n<H(x)

Here C < oo is the constant provided by Proposition 2.3: It should be borne in
mind that C depends only on F, and Fj not on x or %.
To prove (5.18) we partition the event {T(x) < 74 ;4 _(x)} as follows:

B, = (T(x) = T(x, %) = (x)},

B, = {T(x) = ¢(x) < T(x, #)},
and

By = {T(x, ®) = #(x) < T(x) < 74,04 _(x)}.
We will show that for suitable constants C,, C,, C5 < o0,
(5.21) E[Wy(x) — W, a(x, 2)]15 < C,

for i = 1,2, 3. This will prove (5.18) and hence Theorem A.
The easiest of the three cases is i = 1. In this case (5.20) directly implies (5.21).
For the case i = 2 we must assume that ET(x, #) < co. This is no great loss,
however, because if it is not satisfied then (1.2) holds trivially. Now recall that
(W®(x, #)} is a submartingale; thus by Lemma 5.1

(5.22) EW 2(X, Z)1p, = EWR(x, Z)1p,.
But (5.20) implies that
(5.23) E[Wg,(x) — W(x, 2)]1,, < C.

The case i = 2 of (5.21) follows-from (5.22) and (5.23).
On the event B; we must use both (5.19) and (5.20). These imply that

(5.24) EWR\ a(X)1p, < EW) a(x, Z)15 + C
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and
(5.25) E[- W8 a(x)]15, < C

[notice that on B; Wf{) 4/(x, #) > 0]. Now by Lemma 5.5 and the Markov
property,

526)  E[WRo® — WL (0|15, < CE[ - Wi a(x)]1,
<C-c,
by (5.25); here C is the constant provided by Lemma 5.5, and C is the constant in
(5.25). Combining (5.24) and (5.26) yields the case i =3 of (5.21) (with C,
=C+C-C).
This complete the proof of Theorem A. O

APPENDIX

ProoF oF LEMMA 2.3. The distributions G; are easy to describe. Let m,, m,
and n be large integers, m, < m, < n, and let B > 0 be a real constant such

that
2(h(z), h*(2)) = 27 ™=,
The distributions G; will all be concentrated on
{(Ry27™B, k2" ™B):1 <k, ky <2™}U{(2,2): zER and z > B)
=A, UA,.
For z, > 2z, > B,
Gi{(z,2): 2,2 2> 2,} = 2-(h(z)) + h*(z,) — h(zy) — h*(2,))

and for any point (k,27 ™, k,2"™B) € A,,
Gi({(k27™B, k327 ™B)}) = alky, ky)27"

where a = a(k,, k,) is an integer, 0 < a < 2" It is clear that for each triple
(my, my, n) the set of G; satisfying these specifications is finite.
The mapping T(H, -): R2— A,UA, is also relatively simple. The main fea-

tures are as follows.

For (x, y) € R% with x V y > 8, T(H, -) first moves (x, y) to the diagonal
(A.1) point (x V y,x V y) and then moves it up aléong the diagonal to a point
(2,2)=T(H(x, y)) with z > x Vv y.

5 For (x, y) € R2 with x V y < B8, T(H, -) either moves (x, y) to the nearest
(A.2) point (k27™B, k,27™B) > (x, ¥), to (B, B), or to a point of A, to be
specified later.
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[The reason for not simply moving all points (x, y) with x Vy < 8 to the
nearest upper corner is that the distributions G; must assign dyadic weights a2 ™"

to these points.]
Let

A(z)=H({(x,y):xVvy>2z2}), z=8,

H(z) = 2n(2) + h*(2)), 225,

Sy(z) = min{zl >z ﬁ(zl) = H(z)}, H(z)>0

+oo if H(z) = 0.

Notice that H(z) < (é)ﬁ(z), according to the definition of the class ). Now
define

T(H,(x, y)) = (Su(x V ¥), Sy(x V ¥)),x V y = B.
This is in agreement with (A.1); moreover it is clear that for any H € ', and G,

H{(x, y): Sy(x Vv y) > z} = 2(h(z) + h*(z))
= Gi{(2),25): 2, = 25} forz > Sy(B).

It is also clear that the component of the mapping 7(:, -) specified thus far is

measurable.
The next step is to fill in the remainder of A,: This consists of those points

{(2,2): B<2z<84(B)} 2 A%H).
The only points remaining to be moved by T(H, -) are those in the square
{(x, y): x V y < B}, which we subdivide into the squares
K(ky, ky) = {(x,y): k) —1<2™MB " 'x <k and ky — 1 < 2™B"'y < k,}

and columns
om

J(kl) = U K(k1§ k).

ky=1

Our plan is to move through the columns J(%,) from left to right until we have
accumulated just enough H mass to fill in A%(H): This is indicated schematically
in Figure 2. Thus let

1

.
U J(&,)

k=1
k(H)=max{k>1: L(k—1,B8) <27 ™ — H(B))},
5(H) = max{y < B: L(k(H), y) <2™™ — H(B)}

=min{y < B: L(k(H), y) = 27" — H(B)}.

The set (U¥H)~W(k)U{((x, y) € J(k(H)): y < $(H)} may now be moved by
the one-dimensional quantile transformation to fill in the segment A% H). For
(x,y) € J(k), k < k(H), and also (x, y) € J(k(H)) with y < 3(H), let

S.((x, y)) = min{z > B: L(k, y) =2"™ — ﬁ(z)}

L(k,y)=H + H{(x, y’) € J(k); ¥y <y},
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(Su(B), Sy (AN

(8.p)

NN

(B.p)

: to indicated segment of
diagonal above (B ,P)

\
7

\\\-i

: to nearest corner above

NN

and to the right

i to (B,p)

7.
BN

NN

Fic. 2.

and let
T(H, (.‘JC, y)) = (SL((xa y)), SL((x, y)))'
Notice that by construction, V 8 < z, < z, < Sy(B),

H({(x,5): 2, < 8,((x, ¥)) < 2,)) = A(2,) - A(z,)
= G{(2,2): 2, < 2 < 2,)

for all of the G, in our collection. It is once again clear that the component of
T(-, -) we have just defined is measurable.

To complete the definition of T(H, -) we need to specify its action on those
points (x, y) such that

(A3) 2mB % >k(H) or k(H)-1<2™B x <k(H) and y>3(H).

The plan is to move most of thesé points to the upper right-hand corners of their
respective squares K(k,, k,). However, because the mass assigned to any of these
corners must be an integer multiple of 27", there will in general be “leftover”
points (x, y) in some of the squares K(k,, k,): These points will all be moved to
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(B, B). It should be noted that when this plan is carried out, the total H mass of
those points assigned to (8, 8) will be an integer multiple of 2. This is because
the total H mass of points (x, y) remaining for this third phase of the operation
[i.e., those satisfying (A.3)] is exactly 1 — 27 ™2,

Within any square K(k,, k,) containing points satisfying (A.3) there should be
a number y(k,, k,) such that

T(H’(x, y)) = (klﬁ2_ml, k2[))2_m1) fOl‘ (x’ y) € K(kl’ k2)
satisfying (A.3) and with y < y(ky, k,)
=(B)B) for(x’ y)EK(kl’ k2)

satisfying (A.3) and with y > y(k,, k). The number y(k,, k) is uniquely
determined by the requirement that

H({(x, y) € K(k,, k,) satisfying (A.3) with y < y(k,, k,)})
is an integer multiple of 27" and
H({(x, y) € K(k,, k,) satisfying (A.3) with y > y(k,, ky)}) < 27"

. [Such a y(k,, k,) always exists, since H € )" is absolutely continuous.] Notice
that with this requirement in force, for any square K(k,, k,) the H mass of
those points satisfying (A.3) which are not moved to the upper corner
(B B27 ™, ky27 ™) is less than 277

This completes the definition of the mapping TY(-, -). It is apparent from the
construction that T' is measurable, and that (2.32), (2.33), and (2.35) are satisfied.
To assure that (2.34) holds, we choose m;, m,, and n very large:

(1) If m, is chosen very large, then B is large, and [, . 42 - (A(2) + h*(2)) dz <
e. Consequently, the contributions to the integrals in (2.34) from those points
(2, 2) € A,, and those (x, y) such that T(H, (x, y) € A,, is negligible com-
pared to e.

(ii) If m, is chosen very large, so that 2™ < ¢, then those points in the squares
K(k,, ky) which T(H, ) moves to the upper corner (k,827™, k,82™™)
have a negligible (< 27™) effect on the difference of the two integrals in
(2.34).

(iii) If n is chosen sufficiently large, then no more an H mass of points than
22m . 27" < ¢/B will be moved to (B, 8). Thus the contribution to the
integral on RHS (2.34) from those (x, ) which T(H, ) maps to (8, 8) will
be no larger than B - 22™ . 27" < ¢. Also the contribution to the integral on
LHS (2.34) from the images of these points will be negligible.

The mapping J: X'— (1,2,..., 1} has not yet been mentioned. It is, however,
obviously determined by 7. O :
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