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A NOTE ON UNDOMINATED LOWER PROBABILITIES!

BY ADRIANOS PAPAMARCOU AND TERRENCE L. FINE

Cornell University

Interest in lower probability has largely focussed on lower envelopes and,
more particularly, on belief functions. We consider those lower probabilities
that do not admit of a dominating probability measure and hence are not
lower envelopes. A simple and useful family of such undominated lower
probabilities is constructed. We briefly explore the geometry of several im-
portant classes of lower probabilities and note that the class of undominated
lower probabilities has the dimension of the set of all lower probabilities when
these are modeled as vectors. While joint experiments can always be formed
from given individual experiments characterized by probability measures, the
existence of joint experiments is an open question as regards characterizations
by lower probabilities. We constructively show the existence of joint experi-
ments for a wide, but not exhaustive, range of characterizations of the
marginal experiments. We also consider extensions of lower probabilities and
show that a lower probability (including a measure) on a finite algebra can
always be extended to an undominated lower probability on a larger, but still
finite algebra. Finally we construct continuous undominated extensions of
lower probabilities given on finite algebras.

1. Introduction. The theory of lower probability (LP) has a variety of
origins and domains of application, encompassing both subjective and objective
interpretations of chance, uncertainty, and indeterminacy. We find subjectivist
accounts of LP in the works of Dempster (1967), Good (1962), Shafer (1976, 1982),
Smith (1961), and Walley (1981). An objective basis for LP resembling the
frequentist view of numerical probability has also been suggested in Walley and
Fine (1982). All the above approaches introduce a pair of set functions P (lower
probability) and P (upper probability) on a measurable space ({2, «7) that are
related by

(1.1) (VAew) P(A)+P(A°)=1

and satisfy the following axioms:

(1.2) (VAew) P(A)=0,

(1.3) P(g) =0,

(1.4) P(Q) =1,

(1.5) (VA,Be o suchthat ANB=@) P(A)+ P(B)<P(AUB)

(superadditivity of P),

(VA,Be« suchthat AnB=9) P(A)+ P(B)>P(AUB)

(1.6) —
(subadditivity of P).
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The intractability of the superadditivity and subadditivity axioms has favored
the study of LP structures that are related to classes of probability measures;
these are the so called dominated lower probabilities, for which there exists a
probability measure p such that

(VAew) P(A)<p(A).

Trivially, all probability measures are dominated lower probabilities. Other
types of dominated LP, such as lower envelopes, 2-monotone lower probabilities,
and belief functions are well suited to computation and have provided the setting
for a variety of interesting results [see Levi (1980), Walley (1981) and Wolfenson
and Fine (1982)]. It is clear, however, that the study of just these classes cannot
bring out the full implications of the LP axioms, nor as we observe below can we
hope to successfully model the full range of significant nondeterministic physical
processes if we so restrict ourselves.

Our present aim is to investigate the relatively unexplored class of un-
dominated lower probabilities. The need for this class of statistical models for
certain noise-type processes has been argued by Kumar and Fine (1984) and Grize
(1984). These works were motivated by the thoroughly studied example of
so-called flicker or 1/f noise provided by the frequency fluctuations of high
quality quartz crystal oscillators used in conjunction with atomic clocks [e.g.,
Kroupa (1983)]. The weight of experimental evidence and the beliefs of many
experimentalists in that area support a mathematical model in which oscillator
frequency fluctuations over time form a stationary process with bounded yet
diverging time averages of frequency. The existence of such a mathematical
model, however, is ruled out by conventional numerical probability theory based
upon countably additive measures: in strengthening the well-known stationarity
convergence theorems, Kalikow (1984) has shown that if the time averages of a
stationary stochastic process have almost surely finite liminf and lim sup, then
these averages converge almost surely. If we add to that model the physically
reasonable stipulation that the expectations be finite, then we come into conflict
with the standard ergodic theorems.

In their search for lower probability-based models for this process, Kumar

(1982) and Kumar and Fine (1984) showed that in the absence of some form of
monotone continuity along sequences of observable events one could have lower
probability models that agree on the cylinder sets yet assign different values to,
say, divergence of time averages. Hence, one needs to postulate monotone
continuity if one is to be able to infer the lower probability of such infinitary
events as divergence of time averages from lower probabilities founded upon
observations. They then proved that, for finite sample spaces, imposing this
postulate implies that no stationary dominated lower probability that is mono-
tonely continuous along the cylinder sets can assign positive probability to the
event of bounded and diverging time averages. Hence models of the type needed
to deal with the empirically significant class of flicker-like processes, if they exist,
must be of the little-studied undominated type. Our interest in this class was
further stimulated by the work of Grize (1984), Grize and Fine (1986), which
established that the class of undominated, stationary, monotonely continuous
along cylinder sets lower probabilities supporting divergence was nonempty.



712 A. PAPAMARCOU AND T. L. FINE

In Section 2 we construct a class of undominated lower probabilities on finite
spaces. Certain geometrical properties of LP are developed in Section 3, where it
is seen that undominated lower probabilities are a sizable subclass of the existing
LP structures. In Section 4 we examine the existence of bivariate lower probabili-
ties having two given lower probabilities (dominated or undominated) as mar-
ginals. Although our account is not complete, we obtain results which allow us in
Section 5 to view undominated lower probabilities as possible extensions of
dominated lower probabilities or probability measures from a finite algebra &/ to
the power set of an infinite sample space 0.

REMARK. By virtue of (1.1), the subadditivity axiom (1.5) can be written in
terms of P only:

(17) (VA,Be«¥) P(A)+P(B)<1+ P(AnNB) (conjugacyofP).

Thus we only need to consider P in order to verify the validity of a proposed LP
structure; we shall also drop the lower bar in P.

2. Examples of undominated lower probabilities. We begin by giving a
criterion for a set function on a finite space to be undominated.

PROPOSITION 2.1. A set function P on Q = {w,,...,w,} is undominated if
and only if there exists a collection of (not necessarily distinct) sets A,,...,
A,, € Q such that

(Vo e Q) ZZI [1,(w) - P(A))] <o0.

To prove this proposition, we represent I,(w) — P(A), A C Q, by a vector in
R™ and consider the convex hull & of the resulting 2" vectors. Application of the
separating hyperplane theorem to % and the closed positive orthant yields the
final result [for a detailed proof, see Walley (1981); note that similar geometrical
arguments, dating back to Scott (1964), have been used to derive conditions
under which comparative probability structures admit numerical probability
representations, as in Walley and Fine (1979)].

The following construction is based on the above criterion and generalizes the
only example of undominated LP in related literature [Walley (1981)]. Let € be a
class of subsets of @ such that no two sets in ¢ are mutually disjoint. Take
Y € [0,1] and define the set function @, on @ as follows:

0 if A does not contain any set in €,
(2.1) Q,(A)={y if Acontainsasetin® and A + Q,
1 ifA=Q. '
Clearly @, is nonnegative, @ (%) = 0 and @.(2) = 1. By definition ¢ contains
no two mutually disjoint sets, so that
ANB=g =>Q7(A)'QY(B)=O

and the superadditivity condition (1.5) always holds. To check the conjugacy
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condition (1.7), note first that if either A or B is {2, then
Q,(4) +Q,(B)=1+@,(ANB)
holds trivially. Otherwise,
Q,(A) + Q,(B) < 2y

and thus @, is a lower probability provided that y < ;. If € has the additional
property that

Voe) Y [I(o)-@,0)] <o,

Ce¥

then the criterion of Proposition 2.1 is satisfied and @, is an undominated lower

probability. We shall now propose a candidate for %.
We take an integer £ < n/2 and let [ be the least integer greater than n/2k.
We define ¢ = {C,,...,C,} by
Ci= {W), Wyyevvy Wy Wopyovny Wy}
and
C,=1(C._,) (i=2,...,n),

where 7 is the circular shift operator on the subsets of @ [e.g., if n = 6 and
A = {wy, wg}, then 7(A) = {w3, w,}].

PROPOSITION 2.2. No two members of € are disjoint.

PrRoOF. By construction we have for1 < i, j <n
7(C,n ) = 7(C) n7(C)
and consequently
m™(C; N C;) = ™(C;) N v™(C;) (m arbitrary).

Thus it suffices to show that C, intersects every set in ¥. Observe that if we
arrange the elements of Q in a circle, then each C; will consist of £ consecutive
elements (the base) and I — 1 elements spaced k positions apart. Hence, for
1 < i < Ik, the base of each C, intersects C,.

Iflk+1<i<n,thenl<n-i+1<n- Ik By definition of [, Ik > n/2
and therefore 1 < n — i + 1 < lk. Since we can write C, as 7" *(C,), the base
of C, intersects each C; for [k + 1 < i < n. This completes our proof. O

PROPOSITION 2.3. Yocol(w)=k+1—1
_ Proor. Take 1 <i<n. Then (V ACQ)w, €A w,,, € 7(A). Therefore
Iy(w;) = I 4(w;,,) and

Z IC(‘*’;‘) = Z I‘I‘(C)(wi+1) = Z IC(""HI)'
ce¥

Ce¥ ce¥
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Thus ¥« I (w) is a constant function on {, equal to a. Then

na; i Z Io(w,) = Z il,‘(‘*’z) = n||Cy|,

i=1Ce¥% Ce¥i=1
whence we conclude that a = ||C)||=k +1— 1. O

We now return to @, of (2.1). @, is a lower probability for 0 <y < 5. If

(k+1—-1)/n<y<j,then
Y [Io(w) - Qfc)] =k+1-1-ny<0
Ce¥

and consequently @, is an undominated lower probability.

If 0<y<min{(k+{-1)/n,}}, then @, is dominated by the uniform
measure on §. It is therefore clear that our construction can yield an un-
dominated lower probability on a space of n elements only if

Ck+I1-1 1
w(n) = min ——— < —.
k n 2
We shall see for which n this is possible.

(i) n < 3. For n = 1 every lower probability is a measure and for n = 2 every
lower probability is dominated. Also, if P is a lower probability on {w,, w,, w;},
then one can easily show that the measure p defined by

p({w})=1- P({w2,w3}),
p({wy}) = P({w,}),
p({ws}) = P({w,, w3}) — P({w,})
dominates P. Hence undominated lower probabilities do not exist for n < 3.

(ii) 4 < n < 6. It can be easily verified that w(n) > ;. Our construction is
inapplicable. Grize (1984, page 28) has shown that lower probabilities on four
elements are dominated, but the cases of five or six elements are as yet unre-
solved.

(ii) n = 7. w(7) =2 achieved at k£ = 2. Thus an undominated @, can be
constructed.

(iv) n=8. w(8) = 1. achieved at k=2 or 3. Our construction is again
unsuitable, but we can obtain an undominated example by regarding two ele-
ments as a single atom and applying the seven-atom construction.

(v) n>9. By definition of /, I — 1 < n/2k and therefore

k+1-1 [k 1 ]

w(n) = min ———— < min
k n k

N =

_+_
n 2k
Forn>9and k=2

w(n)<2+%i<;

and our construction can give distinct examples of undominated lower probabili-

ties. It is interesting to note that despite the absence of dominating measures,

none of these examples assigns a lower probability greater than ; to proper
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subsets of Q. The following proposition develops this fact and will be of use in
Section 4.

PROPOSITION 2.4. For any € > 0 there exists on some finite space Q an
undominated lower probability P such that
maxP(A) <.

AcCQ
A+Q

Proor. It suffices to show that w(n) can be made arbitrarily small. As we

saw above,
k1
w(n) < o + 5%
Take k = [/n/2]. Then

JZ+1 1 2 1

< + =
w(n) . Ve ta

and w(n) can be made arbitrarily small. O

3. The geometry of lower probability. We can gain further insight into
the class of undominated lower probabilities by considering certain geometrical
properties that follow from the isomorphism between the set functions on a space
of n elements and the 2"-dimensional Euclidean space. We can define the
following sets in R%":

#: Theclassof all LP’son @ = {w,,..., w,};
M the class of all probability measures on Q;
9: the class of all dominated LP’s on ;

%: the class of all undominated LP’s on Q.

The sets # and 4 are defined by finite systems of linear inequalities and
equalities and are therefore closed and convex polyhedra. For each vertex u of ./,
let %, be the set of vectors P such that p > P. Clearly %, is closed and so
is U Fs where the union is taken over the finite vertex set of .#. 2 is the
intersection of & and the convex hull of U %,; it is thus both closed and convex.
The set function Py defined by
_ (1 if Bc A, B fixed, nonempty

Pa(4) {0 if B¢ A :

is a lower probability dominated by the measure that gives unit mass to a sample
point in B. By varying B over the 2" — 2 nonempty proper subsets of 2, we
obtain 2" — 2 linearly independent vectors Pg. Therefore 2 and £ are at least of
dimension 2" — 2 and since P(2) and P(Q) are fixed, they are exactly of
dimension 2" — 2. # is of dimension n — 1.
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If %= — 2 is nonempty (e.g., for n > 7) then it is also of dimension 2" — 2,
since 2 and £ are convex and of the same dimension. Thus in a sense # is as
large as 2; it is not, however, always convex, as the following example shows.

EXAMPLE 3.1. Let n = 7 and consider the standard construction @, based on
= {T{({w, @y, W P|i = ,n — 1}. Now replace ¢ by

¢ = {T'({w4,w6, w})i=0,...,n— 1}
and define @/, in a similar way. Then
P= %(Quz + Q{/z)
is a lower probability by convexity of . Furthermore,
(i) if ||A]l < 3, then @, 5(A) = Q] x(A) = P(A) =
(ii) if ||A]| = 3, then since ¥ and ¥’ have no set in common, P(A) < i,
(iii) if 3 <||A]| <7, then @, ,(A) < 3, Q] 2(A) < 3, and thus P(A) < 3.

Therefore P is dominated by the uniform measure on €. O

Finally we should note that .# is on the relative boundary (with respect to the
affine hull) of £, since every probability measure satisfies the superadditivity
relationships (1.5) with equality. Furthermore, .# C 2 and thus .# is on the
relative boundary of 2. We now show that .# is also on the relative boundary
of .

ProPOSITION 3.2. Let P be an undominated LP, u a probability measure.
Then @ = AP + (1 — AM)p is an undominated LP if A € (0,1).

ProOOF. @ is a lower probability by convexity of 2. If  is dominated by a
probability measure », then
AP+ (1—-Ap<vw
and thus
y—(1 -2
— -

Since R is a linear combination of two measures, it is additive. Also R(¢) =
R(2) =1, and R > 0 by nonnegativity of P. Therefore R is a probability
measure and P is dominated. This contradicts our assumption and thus @ is
undominated. O

The above result allows us to construct unlimited examples of undominated
lower probabilities by taking convex combinations of probability measures
with @..

4. Joint experiments. In numerical probability, joint experiments between

two arbitrary experiments always exist. In lower probablhty,v howe LVt [ PR
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absence of additivity significantly complicates the formation of bivariate joint
lower probability. Take for example the simple case of two finite spaces X =
{(x,..5 %), Y={»,..., 5} and two lower probabilities P (on X) and R (on
Y). We seek a lower probability @ on X X Y which satisfies the marginal
constraints

(VA cCX) Q(A X Y)=P(A),

(VBCY) Q(X X B) = R(B).
These constraints, together with the LP axioms for @, form a system of linear
equations and inequalities in R2"". The solvability of this system can be reduced,
by Theorems of the Alternative, to the validity of relationships such as

Y «(A)P(A) + ¥ B(B)R(B) <,

AcX Bcy
but such an approach has yielded little. We might also attempt the construction

of a joint experiment € in a fashion similar to the development of product
measures:;

(i) Specification of a suitable set function @’ on the class # of rectangles in
X X Y. As the cylinder sets A X Y and X X B are rectangles and £ is closed
under intersections, we expect @’ to be consistent with the marginal constraints
and satisfy the conjugacy condition. Examples of such @’ include

Qi(A x B) = P(A) - R(B),
Q4(A x B) = max{0, P(A) + R(B) — 1}.

(ii) Extension of @’ to a lower probability @ on X X Y. In light of the
superadditivity constraint, the set function @ defined by

M
(VGcXXxY) @QG)= max{ Y Q(A,; x B)): {A,; X B;} a partition of G
i=1

becomes a natural candidate for the joint order.

Yet this extension is problematic. On the one hand it may not be a true
extension of @’ [i.e, Q(A X B) > Q'(A X B)] and thus violate the marginal
constraints; on the other, we have seen examples in which it violates the
conjugacy condition when applied to @] and @} defined above [see Papamarcou
(1983)]. In view of such difficulties we are unable to treat the general problem and
proceed instead to show the existence of joint experiments in the following cases:

(a) When at least one of the marginals is a lower envelope (see below).
(b) When the sum of the maximum nonunity values taken by the marginals is
less than or equal to unity. '

.DEFINITION 4.1. Let P be a dominated LP on (£, &/) and .# ,, the collection
of probability measures dominating P. Then P is a lower envelope if

(VAesw) P(A)= inf u(A).
‘LE./”,)
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If Z(w) is a bounded random variable on (£, /), then we define E,Z, the lower
expectation of Z with respect to P, by

E,Z= inf [Zdp.

pEM p

PROPOSITION 4.2. Let P be a lower envelope on X and R be a lower
probability on Y, where X and Y are finite. Then the set function @ on X X Y

defined by
Q(G) = ExR(G,),
where G, is the section of G at x, is a lower probability with P and R as
marginals. Furthermore, @ is dominated if and only if R is dominated.
ProoF. Clearly (VG C XX Y)Q(G) =0
Q(2) = Ex0) =0,

Q(X X Y)=Ey1)=1.

If Ac X, BCY, then

= I, = i = i =
QA X Y)=Epl, = inf [Iidu= inf u(4)=P(4),

Q(X x B) = EpR(B) = R(B),

and thus @ agrees with P and R on the cylinder sets. It remains to show that @
satisfies the superadditivity and conjugacy conditions. If G, H € X X Y, then

Q(G) + Q(H) = EpR(G,) + EpR(H,)
= inf fR(Gx)d,u+ inf fR(Hx)dv

pEMAp

i + .
< inf [[R(G,) + R(H,)] du
If G and H are disjoint, then (V x € X)G, N H, = @ and thus by superad-
ditivity of R
(Vxe X) R(G,) + R(H,) < R(G, U H,).
Hence
Q(G) + Q(H) < inf fR(Gx UH,)dp=Q(GUH).
REMA p
If G and H are not disjoint, then by conjugacy of R
(VxeX) R(G,)+R(H)<1+R(G.nH,).
Hence

Q(G) + QH) < inf f[1 + R(G, N H,)] du
neMp
=1+ Q(GnH).
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Therefore @ is a lower probability on X X Y with P and R as marginals. Now
assume that R is dominated. Then if p > P, » > R, we have

(VGCXXY) QG)=EyR(G,) < [R(G,) dp

< [(G) dr = (nx»)(G).

Therefore @ is dominated. If, on the other hand, R is undominated and @ were
dominated by some measure = on X X Y, then the restriction of 7 on the subsets
of Y would dominate R, contradicting our assumption. O

The above result demonstrates the usefulness of measure-theoretic concepts in
LP. Of different flavor is the proof of the following proposition, which applies to
both dominated and undominated lower probabilities.

PROPOSITION 4.3. Let P be a lower probability on X and R a lower prob-
ability on Y, where X and Y are finite. Then if
max P(A) + max R(B) <1,
AcX BcyY
P(A)#1 R(B)#1

there exists a lower probability @ on X X Y with P and R as marginals.

Proor. Let T be the intersection of all subsets A of X with P(A) = 1. Then
by conjugacy P(I') = 1 and for E ¢ X we have P(E) = P(I' N E). Similarly let
A be the intersection of all subsets B of Y with @(B) = 1. Consider the product
space I' X A and define T on the class % of cylinder sets (¢¥= {A X A,T X B:
., AcT,BcA})by

T(A xA)=P(A),
T(T x B) = R(B).
We now define the set function S on I' X A by
S(G) = gg(%T(C).
Clearly S is nonnegative, S(&) = 0, S(F X A) = 1. For the sets G and H, let
S(G) = T(Cy),
S(H) = T(C,),

where C, and C, are cylinder sets. We shall write C,||C, if the bases of C; and C,
lie on the same coordinate axis.
If G and H are disjoint, then necessarily C,||C, and superadditivity of the

marginals gives
S(G) + S(H) =T(C,)) + T(C,) < T(C, v C,) < S(GU H).
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Thus S is superadditive. To establish conjugacy, it suffices to take G and H as
proper subsets of T’ X A, so that T(C,) < 1, T(C,) < 1. If C,||C,, we have
S(G) + S(H) =T(C,) + T(C,) <1+ T(C,nCy) <1+ S(GNH)
by conjugacy of the marginals. If not C,||C,, then
S(G) + S(H) = T(C,) + T(C,) < max P(A) + max R(B) <1
AcX Bcy -
P(A)#1 R(B)#1
by hypothesis. Therefore S is a lower probability on I' X A. We propose to
extend S to a lower probability @ on X X Y according to the specification
Q(G) = S(G N (T x A)).
Clearly
QXXxY)=S(I'xA)=1,
Q(2) =S(2) =0
and @ agrees with the marginals:
QAXY)=S(ANT)xA)=P(ANT)=P(A),
Q(X x B)=8(I' x (BN A)) =R(BnNA) =R(B).
Superadditivity and conjugacy of @ follow from that of S, since
(GUH)N(TxA)=[Gn(TxA)]U[HN(TxA4)],
(GNH)N(TxA)=[Gn(TxA)]n[HN(T xA4)].
Hence Q is a bivariate LP with marginals P and R. O

It is therefore possible to combine an undominated LP with a dominated one
when the condition of Proposition 4.3 is satisfied. Joint experiments also exist for
certain pairs of undominated marginals; take for example the constructions of
Section 2, where

max Q,(A) <y and y<g3.
Q,*1

5. Extensions and refinements. Consider now a lower probability P on a
finite space X. By Proposition 2.4, there exists on a finite space Y of size
n = n(P) an undominated lower probability R such that

maxR(B) <1 — max P(A).
AcX

BcyY
B+Y P(A)#1

Thus an undominated joint experiment @ exists between P and R. Similarly, if
Q is an infinite space and P is defined on a finite algebra .=/ generated by a
partition of @ into infinite sets E,,..., E,,, we can

(i) partition each E; into nonempty sets E;,..., E,,;
(ii) define, on the algebra % generated by the partition {U, ., ,E;;,1 <J < n},
“ an undominated lower probability R such that
maxR(B) <1 - max P(A);
Aes

Be#
B+Q P(A)Y+#1
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(iii) construct an undominated joint experiment @ on &/’ =&/ X # with P and
R as marginals.

We thus obtain

ProrosITION 5.1. Consider an infinite space Q and a finite partition of
into infinite sets: &= {E,,..., E,}. Let P be a lower probability defined on <,
the algebra generated by &. Then there exists on some finite algebra /' O </ of
subsets of © an undominated lower probability which agrees with P on /.

In statistical terms, &/ may represent a finite experiment and P its em-
pirically suggested model (numerical or lower probabilistic). It is then possible
that further data leading to a refinement of &/ will point to an undominated
lower probability as the correct model. As an example, let 7 be the ¢-algebra
generated by the simple random variables Z,,...,Z, and P be the suggested
model for these N observations. If further observations are made, it may be
possible to attribute Z,, ..., Z,,(M > N) to an undominated lower probability @
which agrees with P on the first N observations. Assuming that the entire
sequence {Z;}?>, admits a LP model, we must then conclude that this overall
model is undominated.

In practice, it may be quite difficult to discriminate between a dominated and
an undominated LP model. However, recent works by Kumar (1982), Kumar and
Fine (1984), and Grize (1984) have pointed out the following.

(i) The two types of model can have different implications for the limiting
behavior of certain sequences.

(ii) Estimation based on limiting behavior is meaningful only with LP models
that are monotonely continuous along suitable sequences of sets (such as
cylinder sets).

It thus seems desirable to carry the extension in Proposition 5.1 further to a
lower probability R that is monotonely continuous on the o-algebra generated by
the cylinder sets. In fact, this is possible on the entire power set of .

LEMMA 5.2. Let P be a lower probability on a finite algebra </ of subsets of
Q. Then there exists on 2% a monotonely continuous lower probability R that
agrees with P on /. Furthermore, R is dominated if and only if P is dominated.

PrOOF. Let &/ be generated by the partition &= {E,,..., E,}. We choose a
point x; in each E; and define the function y: 2% - &/ by

l1’(A)= U E,.

(i: x, €A}
We also define the set function R on 2% by
(VAcQ)  R(A) = P(3(4)).
It is easy to show that R is a lower probability on 2% by observing that
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V(D)= 2, $(Q) =9 Y(AUB)=y(A)UY(B), and Y(A N B)=y(A)N
¥(B). To show monotone continuity, consider first an increasing sequence { A ,) of
subsets of £ converging to A. Let ¢(A) = E, U --- UE, . Then clearly

x, €EA=AM)Vj=M)x, €A,
and
(VJj=jp=max{M,..., M;})A; > {x,,...,x,

Consequently (V j > jy)¥(A;) = y(A) and R(A;) = R(A). Hence R is continu-
ous from below on 2% Continuity from above is shown similarly.

Finally note that if P is undominated, so is R. If, on the other hand, P is
dominated by a measure p on .7, then for (A C Q)

m(A) = u(¥(A))

defines a discrete measure on 2%, concentrated at Xy,..., x, and dominating R.
Therefore R is dominated if and only if ‘P is. O

PrOPOSITION 5.3. Let Q be an infinite space and </ a finite algebra of
subsets of  in which every nonempty set is infinite. Then any lower probability P
defined on & has an undominated, monotonely continuous extension to the
power set of 2.

This follows immediately from Proposition 5.1 and Lemma 5.2. We conclude
that empirical models based on probability measures or dominated lower prob-
abilities always admit refinements in terms of undominated lower probabilities
with desirable continuity properties.

REFERENCES

DEMPSTER, A. P. (1967). Upper and lower probabilities induced by a multivalued mapping. Ann.
Math. Statist. 38 325-339.

Goop, 1. J. (1962). Subjective probability as the measure of a non-measurable set. In Logic,
Methodology and Philosophy of Science (E. Nagel, P. Suppes and A. Tarski, eds.) 319-329.
Stanford Univ. Press. .

GRIZE, Y. L. (1984). Towards a stationary continuous lower probability-based model for flicker noise.
Ph.D. thesis, Cornell Univ., Ithaca, New York.

GRIZE, Y. L. and FINE, T. L. (1986). Continuous lower probability-based models for stationary
processes with bounded and divergent time averages. Ann. Prob. To appear.

KaLIKOw, S. (1984). Private communication.

KRoura, V. (1983). Frequency Stability: Fundamentals and Measurement. IEEE, New York.

KUMAR, A. and FINE, T. (1984). Stationary lower probabilities and unstable averages. Z. Wahrsch.
verw Gebiete. 69 1-17.

KUMAR, A. (1982). Lower probabilities on infinite spaces and instability of stationary sequences.
Ph.D. thesis, Cornell Univ., Ithaca, New York.

LEvy, 1. (1980). The Enterprise of Knowledge. MIT Press.

PAaPAMARcCOU, A. (1983). Some results on undominated lower probabilities. M.S. thesis, Cornell Univ.,

) Ithaca, New York.

Scott, D. (1964). Measurement structures and linear inequalities. /. Math. Psych.1 233-247.

SHAFER, G. (1976). A Mathematical Theory of Evidence. Princeton Univ. Press.

SHAFER, G. (1982). Belief functions and parametric models. J. Roy. Statist. Soc. Ser. B 44 322-352.



UNDOMINATED LOWER PROBABILITIES 723

SMITH, C. A. B. (1961). Consistency in statistical inference and decision. JJ. Roy. Statist. Soc. Ser. B

23 1-25.
WALLEY, P. (1981). Coherent lower (and upper) probabilities. Technical Report, Dept. Statist.,

University of Warwick, England.
WALLEY, P. and FINE, T. L. (1979). Varieties of modal (classificatory) and comparative probability.

Synthese 41 321-374.
WALLEY, P. and FINE, T. L. (1982). Towards a frequentist theory of upper and lower probability.

Ann. Statist. 10 741-761.
WOLFENSON, M. and FINE, T. L. (1982). Bayes-like decision making with upper and lower
ties. J. Amer. Statist. Assoc. 17 80-88.

probabili-

ScHOOL OF ELECTRICAL ENGINEERING
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853



