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CONVERSE RESULTS FOR EXISTENCE OF MOMENTS
AND UNIFORM INTEGRABILITY
FOR STOPPED RANDOM WALKS

BY ALLAN GUT AND SVANTE JANSON

Uppsala University

Let {S,,n =1} be a random walk and N a stopping time. The Burk-
holder-Gundy-Davis inequalities for martingales can be used to give condi-
tions on the moments of N (and of X = S,), which ensure the finiteness of
the moments of the stopped random walk, Sy. We establish converses to
these results, that is, we obtain conditions on the moments of the stopped
random walk and X or N which imply the finiteness of the moments of N or
X. We also study one-sided versions of these problems and corresponding
questions concerning uniform integrability (of families of stopping times and
families of stopped random walks).

1. Introduction. Throughout this paper, X and {X,, n > 1} are i.i.d. ran-
dom variables and S, = ¥7_,X,, n > 1 (S, = 0).

Suppose that E|X|" < oo for some r > 0 and that EX = 0 when r > 1. It
follows from the ¢, inequalities (when 0 < r < 1) and the moment inequalities by
Marcinkiewicz and Zygmund (1937) and elementary computations (when r > 1)
that

nE|X|" for0<r<l,
(1.1) E|S,|" < B nE|X|" forl<r<2,

B.n?E|X|" forr>2,

where B, is a numerical constant depending on r only. (For r = 2 we have, of
course, E(S,)? = nEX2) A more compact way of writing (1.1) is

(1.1) E|S,|” < B.n/?VIE|X|" forr >0,

where, thus, B, = 1when0 <r<1and r=2.

Now, let N be a stopping time with respect to an increasing sequence of
sub-o-algebras {#,, n > 0}, where we set %, = { J, ?}. Further, assume that X,
is %,-measurable and independent of %, ; for all n. (A typical case is when
%, = of{X,, -+, X,,}.) By applying moment inequalities for martingales (Davis
(1970), when r =1; Burkholder (1966), Theorem 9, when 1 <r < 2; and
Burkholder (1973), Theorem 21.1, when r > 2), elementary computations and
Wald’s lemma, it is possible to extend (1.1) to randomly indexed sums as follows:

E|X|'EN for0<r<l,
(1.2) E|Sy|" < { B.E|X|'EN forl<r<2,
B.E|X|"EN"™/? forr=>2,
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STOPPED RANDOM WALKS 1297

where, again, B, is a numerical constant, which only depends on r. If N is
deterministic, (1.2) reduces to (1.1).
The condensed version of (1.2) is

(1.2) E|Sy|" < B,E|X|"E(N"/2¥1) forr > 0.

For a derivation of (1.2) when r > 1 and N is a first passage time we refer to
Gut (1974a), Lemma 2.3 (see also Gut (1974b)) and for the more general case to
Gut (1986), Chapter 1.

Now, let r>1. If we do not assume that p = EX =0 and apply the
elementary inequality

ISyl < ISy — wN| + |p|N,
the c,-inequality and the fact that |p|* < E|X]", it follows immediately that
(1.3) E|Sy|" < B/E|X|'EN",

where B; is a numerical constant, depending on r only (cf. Gut (1986), Theorem
1.5.2).

Let us summarize the above conclusions in the following (slightly weaker)
form. Since our main concern throughout will be the case r > 1 we confine
ourselves to that case here.

THEOREM 1.1. Letr > 1 and suppose that E|X|" < co. Then
(1) EN" < o0 = E|Sy|" < o,
(ii) EX=0 and E(N'/?'!) < o0 = E|Sy|" < .

Our first task will be to try to establish converses to Theorem 1.1, that is, we
shall investigate to what extent (if at all) the arrows may be reversed. In the next
section we shall state some general results and in Section 3 we shall look in more
detail at how the positive and negative tails of the distribution of X influence
the results.

As it turns out, the proofs of the results in Section 2 are very different for the
cases r = 1 and r > 1, respectively. In fact, once we have established that the
case r = 1 holds true it follows by an iterative procedure that the latter holds
too. We therefore present those proofs in separate sections. The proofs of the
(harder) case r = 1 are presented in Section 4 and the proofs for r > 1 are given
in Section 5. The results from Section 3 are proved in Section 6. Sections 7 and 8
contain some examples and further remarks.

The second aim of this paper is to study uniform integrability for families of
stopped random walks.

In the classical strong law of large numbers and in the central limit theorem it
is possible to prove moment convergence by proving results about uniform
integrability (see, e.g., Gut (1986), Section 1.4). With this in mind it is reasonable
to ask to what extent similar results exist for stopped random walks. Some
results, corresponding to Theorem 1.1, will be given in Section 9. In that section
we shall also present some results concerning converses, which are parallel to
Theorems 2.1 and 2.2. For proofs of the direct results we refer to Gut (1986),
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Section 1.6 (and to the original papers mentioned there). The proofs of the
converse results for r = 1, which, again, are the hardest part, are given in Section
10 and the proofs for r > 1 are found in Section 11.

Let us finally remark that the results, apart from being interesting in their
own right, are useful for proving existence of moments and moment convergence
results for, e.g., first passage times and generalizations thereof; see, e.g., Gut
(1986), Chapters III and IV and references given there.

2. Converses for moments. General results. Let us first consider the case
of positive random variables. The following result shows that Theorem 1.1(i) is
sharp in this case.

THEOREM 2.1. Let r > 1 and suppose that P(X > 0)=1 and that
P(X > 0)> 0. Then
ESj; <o =EX"<o and EN"< oo.
If we consider general random walks with nonzero mean it follows from the

following example, which deals with the theory of first passage times, that
Theorem 2.1 as stated does not hold in this generality.

ExXAMPLE 2.1. Suppose that EX > 0 and let N, be the first (strong, ascend-
ing) ladder index, that is,

N, =min{n; S, > 0}.

It is then known (see Gut (1974a), Theorem 2.1, or Gut (1986), Theorem I11.3.1)
that, for r > 1,

(2.1) E(Sy,) <o < E(X*) <
and
(2.2) EN" <w e E(X") < .

Thus, by choosing X with EX > 0, E(X*) < 00, and E(X~)" = oo for all
r > 1, ES; < oo (for every r), but none of the conclusions of Theorem 2.1 holds.

However, the following weaker converse to Theorem 1.1(i) holds for random
walks with nonzero mean.

THEOREM 2.2. Let r > 1 and suppose that EX # 0. Then
E|Sy|"< oo and E|X|" < oo = EN" < o0.
With (2.1) and (2.2) in mind we shall see in the next section how this theorem
can be generalized if one considers the two tails of the various quantities

separately.
The case EX = 0 is more complicated as is seen by the following example.
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ExAMPLE 2.2. Consider a symmetric simple random walk; that is, suppose
that P(X = 1) = P(X = —1) = ;. Also, let N, be as above, that is, let N, =
min{n; S, = +1}. Here X and Sy, obviously have moments of all orders and
yet it is well known that N, has no moment of order > . (The modification
N = min{n > Z; S, = 1}, where Z is a suitable random variable independent of
{X,}, yields an example where N has no finite moment of any positive order.)

In Theorem 2.2 we made additional assumptions on the moments of X which,
together with the assumption that E|Sy|” < oo, implied that EN" < co. Our
next results show under what additional assumptions on the moments of N we
can infer that E|X|" < co.

THEOREM 2.3. Letr > 1. Then

E|Sy|"< o and EN"< o0 = E|X|" < oo.

Note that no assumption was made about the existence of EX. However, if we
assume that EX = 0, the assumption on the moments of N can be weakened.

THEOREM 2.4. Letr > 1 and suppose that EX = 0. Then

E|Sy|" < and EN < o0 = E|X|" < c0.

Note that here we have a situation parallel to (i) and (ii) of Theorem 1.1.
Moreover, by combining these four assertions we obtain the following.

COROLLARY 2.1. Letr > 1.

() If EN” < o0, then

E|Sy|" < w0 © E|X|" < o0.

(i) If EX = 0 and EN"/?V! < o0, then

E|Sy|"< o o E|X|" < o0.

As for sharpness, the following example shows that E|S,|” < co alone does
not imply even the existence of EX.

ExaMPLE 2.3. Let P(X = +k) =3/7%k?% k=1,2,..., and define

N, = min{n > 1; S, = 0}.
Since the random walk is recurrent (cf. Feller (1966), Section XVIIL.7), N, < oo
a.s. Thus Sy (= 0) has moments of all orders, but E|X| = oco.

If we assume the existence of EX, we observe that if EX > 0 and if we choose
N = N, as in Example 2.1, then (2.1) and (2.2) show that EN" < o0 is a
necessary extra requirement for Theorem 2.3 to hold. For the case EX = 0, we
have the following variant of Example 2.3.
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EXAMPLE 2.4. Let X be integer valued and such that EX = 0 and E|X|" =
oo for every r > 1, and let N, be defined as in Example 2.3. Again, Sy, = 0 and
hence the conclusion of Theorem 2.4 (and Corollary 2.1(ii)) does not necessarily
hold if E|Sy|” < oo only.

We do not know the best possible condition on N in Theorem 2.4; it seems
possible that EN'/2 < oo would suffice. In fact, we can prove this under the
extra assumption that EX? < oo; see Remark 5.1.

3. Results for the positive and negative tails. Motivated by (2.1) and
(2.2) we shall, in this section, study problems of the previous kind, but for the
positive and negative tails of X and Sy separately. In our first result we present
one-sided versions of Theorem 1.1(i). Further, we give an improvement for the
negative tail when EX > 0 (and, symmetrically, for the positive tail when
EX < 0). Unfortunately, we do not know whether a corresponding result for the
case EX = 0 (cf. Theorem 1.1(ii)) holds true.

THEOREM 3.1. Letr > 1.

(i) E(X*) < wand EN” < oo = E(Sy)" < o0.
(ii) If EX > 0, then E(X™)" < o0 and EN"/?V! < 0 = E(Sy)" < oo.

As for converses to this result (corresponding to Theorems 2.1-2.4 in the
two-sided case), we first note that Example 2.1 shows that the opposite implica-
tions above do not hold in general. However, the following results are true.

THEOREM 3.2. Letr > 1 and suppose that E|X| < co.
(i) If EX > 0, then
E(Sy) <o =E(X") < o0.

(ii) If EX = 0, then

E(Sy) <o and EN< oo = E(X*) < .
(iii) If EX < 0, then

E(SY) <o and EN" <o = E(X*) < .
THEOREM 3.3. Let r > 1 and suppose that EX > 0. Then

E(S}) <o and E(X") <o = EN’ < oo.

REMARK 3.1. We leave the formulation of the corresponding results for Sy
to the reader.

REMARK 3.2. Theorems 3.2(i) and 3.3 actually hold if we include a priori the
possibility that EX = + oo, that is, if E(X*) = 00 and E(X~) < 0, although
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TABLE 1
The possible combinations when EX > 0. * signifies that the corresponding rth moment is finite,
— that it is infinite. (r > 1 is fixed.)

X+ X~ N S+ S~

1 * * * * *

2 * * — — *

3 * * — — —

4 * — * * —

5 * —_ — * *

6 * —_ — * —_

7 * — — — *

8 * — — — —

9 — * * — *

10 — * - — *
11 — * — - —
12 — — * — —
13 — — — — *
14 — — — — —

the conclusion shows that this case does not occur. The proofs remain the same,
cf. Theorem 2.1, where no assumption on EX is made. On the contrary, Theorem
3.2(iii) does not hold for EX = — o0, see Example 7.4.

We shall later see that these results are in some respects best possible, and
that, e.g., (2.1) and (2.2) do not hold for general stopping times.

Further implications may be derived by combining the statements above. As
an example we obtain the following refinement of Corollary 2.1(i) (for finite mean
only, cf. Example 7.4).

COROLLARY 3.1. Letr > 1 and suppose that E|X| < oo and EN" < 0. Then
(i) E(Sy)" < o0 = E(X") < o,
(i) E(Sy) <o e E(X7) < .

We may also obtain the following intriguing equivalence: Let r > 1 and
suppose that EX > 0. Then E(S{) < o and E(X ) < w0 & E(Sy)" < oo,
E(X*) < o0 and EN” < 0.

For the case EX > 0, the theorems above exclude 18 of the 32 conceivable
combinations of finite 7th moments (for a fixed r > 1). Table 1 exhibits the 14
remaining possibilities. Examples covering all 14 cases may be given, see Sec-
tion 7.

4. Proofs of Theorems 2.1-2.3 when r = 1. As mentioned in the introduc-
tion, the proofs of these results (for r > 1) split into two natural parts; a first
part (which is harder) in which it is shown that the expected values of the
relevant quantities exist and a second part in which it is shown that the higher
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moments exist. In this section we present the proofs of the first parts, and thus
also proofs of these theorems for the case r = 1.

PROOF OF THEOREM 2.1 WHEN r = 1. Since the summands are positive we
have Sy > X, and thus that

(4.1) p=EX, <ESy < 0.
Next, we apply Wald’s lemma to obtain
(4.2) ESy,.,=prE(N A n).

Furthermore, N A n — N and Sy ,, = Sy as n = . It therefore follows from
monotone convergence that

pEN = ESy < o,
which completes the proof. O

PRrROOF OF THEOREM 2.2 WHEN r = 1. Suppose, without restriction, that
p > 0. We use a trick due to Blackwell (1953), who used it in the context of
ladder variables. Let {N,, k > 1} be independent copies of N, constructed as
follows: Let N, = N. Restart after N,, i.e., consider the sequence
XN, +1 Xy 42 -+, and let N, be a stopping time for this sequence. Restart after
N, + N, to obtain N, and so on. Thus, {N,, & > 1} is a sequence of i.i.d. random
variables distributed as N, and {Sy , ... . 5, k = 1} is a sequence of partial sums
of i.i.d. random variables distributed as Sy, and, by assumption, with finite mean,

ES,.
Now
(4 3) Nl + .- +Nk _ SN1+-~« +N, SN1+ o + N,
' k B k N, +--- +N,’

Clearly N, + --- + N, = + 0 as £ — co. By the strong law of large numbers it
thus follows that

SN + o +N,
44 ————————— > as.ask > ©
(4.4) N, + -+ +N,
and that
SN1+ o+ N,

(4.5) — " ESy as.ask — .
Consequently,

N +---+N
(4.6) l—k—k - u ESy as.ask > oo,

from which it follows that
EN < »
by the converse of the Kolmogorov strong law of large numbers. O
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PrROOF OF THEOREM 2.3 WHEN r = 1. We can, and do, suppose ES, = 0
(otherwise we replace X with X — ES,/EN). As in the previous proof we let
{N,, k > 1} be independent copies of N and let {M,, k2 > 1} denote their partial
sums. Further, let {r,, n > 1} be the corresponding first passage times, that is,
(4.7) 7, = min{k; M, > n}

and set M(n) = M, (the first renewal after time n).
It now follows from the strong law of large numbers (recall (4.5)) that

Su,
k
Moreover, since 7, —> 00 as n — oo we also have

(4.8) -0 as.ask — .

SM(n)

(4.9) -0 as.asn—> ©

Tn

and, since, by renewal theory, 7,/n = 1/EN as. as n = oo, we conclude that

SM(n)
n

(4.10) -0 as.asn— .

The next step is to prove that

S,
(4.11) - -,0 asn— oo.
For simplicity we assume that N is aperiodic, i.e., that there exists no integer
d > 1 such that N a.s. is a multiple of d. (Otherwise, the argument below holds
for n restricted to multiples of the largest such integer d, which suffices to prove
(4.11).)

Now, the overshoot M(n) — n converges in distribution as n — oo towards
some random variable Y, say (see Prabhu (1965), Chapter 5, Theorem 4.4 and
Problem 11).

Let ¢ > 0 and j > 1 be arbitrary. Then

\C

> 23) = P(|S,| > 2ne)

< P({ISM(n)| > ne} U {|Syemy — Sal > ne})
< P(|Sy(my| > ne) + P(|S,, 4 — S,| > ne for some k < M(n) — n)

n

-0+0+P(Y>j) asn—

and, since j was arbitrary, (4.11) follows.
By using symmetrization and Lévy’s inequality it now follows that

> &

+ P( max |S,| > ne) + P(M(n) — n>j)
1<k<j

4.12 — S 0 )
(412 w TS 2 0w o
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which implies that

(4.13) : p( 112}a.sxk|sj| > k) <3 for k > some n,.

For k£ > n, we thus have

p( min |5 > k) 2 P({|X1| > 2k} N {lxggk@ ~ S < k})

= P(1X,| > 2k)P(1 ax |5 < k)

m

<j<k
> 1P(|1X| > 2k).

On the other hand, we have, for all k&,

P( min |S)| > k) - P({ min || > k} n{N> k})

<J=<
+P({1§1}2k|sj| >k} 0 (N < k})

< P(N > k) + P(|Sy| > k).
Summation finally yields
5§ 3 P(XI>20) < ¥ P(N>R) + 3 P(Syl > &)
k=n, k=1 k=1
< EN + E|Sy| < oo,
and thus that E|X| < c0.O

REMARK 4.1. The weak law of large numbers (4.11) is not by itself sufficient
to guarantee that EX exists; see Feller (1966), Chapter VIL.7 and Lemma 10.1.

5. Proofs of Theorems 2.1-2.4 when r > 1.
PROOF OF THEOREM 2.1. Since ESy < (ES})/" < o we know from Section

4 that p = EX < o0 and that EN < o0. Moreover, the positivity of the sum-
mands implies that

(5.1) EX] < ES}; < o0.
Next, we note that

(5.2) pN < |Sy — Np| + Sy.

We claim

(a) E|Sy — Np|" < o0

(b) EN" < 0.

To prove this we proceed by induction on r through the powers of 2 (cf. Gut
(1974a, b)).
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Let 1 < r < 2. By (1.2) we have
(5.3) E|Sy — Nu|" < B,E|X — u|"EN < oo,
so (a) holds for this case, from which (b) follows by (5.2) and Minkowski’s
inequality or the c,-inequality.

Next, suppose that 2 < r < 2% Since 1 < r/2 < 2 we know from what has just
been proved that (b) holds with r replaced by r/2. This together with (1.2)
shows that

(5.4) E|Sy — Np|" < B,E|X — u|'EN"? < w0,
and another application of (5.2) shows that EN” < 0. Thus (a) and (b) hold
again.

In general, if 2% < r < 2**! for some k > 2 we repeat the same procedure
from r/2* to r/2*1, etc., until r is reached and the conclusion follows. O

PrOOF OF THEOREM 2.2. Since the summands may take negative values we
first have to replace (5.2) by
(5.5) WIN < Sy — Nu| + [Syl.

An inspection of the proof of Theorem 2.1 shows that the positivity there was
only used to conclude that the summands had a finite moment of order r and
that the stopping time had finite expectation. Now, in the present result the first
fact was assumed and the second fact has been proved in Section 4. Therefore,
the last part of the previous proof, with (5.2) replaced by (5.5) carries over
verbatim to the present theorem. We can thus conclude that EN” < o and the
proof is complete. O

ProOF OoF THEOREM 2.3. Since E|Sy| and EN both are finite, we know,
from Section 4, that p = EX is finite. The conclusion therefore follows im-
mediately from Corollary 3.1. Alternatively, one can use Theorem 2.4 applied to
{Xp—p}.D

PrRoOF OF THEOREM 2.4. Since {S,} is a martingale, it follows that
E(Syanl#) = X, forall n=1,2,....Further, sup,|Sy » .| < ZN|X,|, and

N
(5.6) EY|X,|= ENE|X| < .
1
Hence, by dominated convergence,
(6.7) E(SN|5Z-1) = '}Lnolo E(Sy A o) = X,
whence
(5.8) E|X)|" = E|E(Sy|#,)|” < E|Sy|" < o0. o

REMARK 5.1.  The crucial formula (5.7) may be written as E(CYX,|%#,) = 0,
and can thus be recognized as a conditional version of Wald’s lemma, EXYX, = 0.
In fact, we may derive (5.7) by restricting attention to an arbitrary subset
A € #, with P(A) > 0 and applying Wald’s lemma to obtain E(Z}X,|A) = 0.
Similarly, the extension of Wald’s lemma by Burkholder and Gundy (1970) and
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Chow, Robbins, and Siegmund (1971), implies that (5.7) and Theorem 2.4 hold as

soon as EN® < o for some a > 1, provided we assume that E|X|"/* < oo.

6. Proofs of the results in Section 3.

PrROOF OF THEOREM 3.1. Since

N
(6.1) Sy < XX§
1
we have
N r
(62) B(St) < E(ZX,:) ,
1

from which part (i) follows from Theorem 1.1(i) applied to { X} }.

In order to prove part (ii), we construct an i.i.d. sequence {Y,} by truncating
the positive tails of X,, such that Y, < X,, EY, =0, and E|Y,|" < co. Then

Sy = £Y,, whence Sy < [£'Y,|, and the result follows by The

applied to {Y,}. O

orem 1.1(ii)

ProoF oF THEOREM 3.2(1). By the law of large numbers S, — + o a.s. Thus
min,, , ,S, is an a.s. finite random variable and for some real number A we have
P(min,, , S, > —A) > 3. Since S{ > Sy = min,.,S, = X, + min,,,>3X,,
where X, and min, ,,X7X, are independent and the latter minimum is distri-

buted as min , , (S,, it follows that
P(X, > t) < 2P(X, > t)P(mi%sn > —4)
nz=
<2P(Sy >t—A)=2P(S5 + A>t).
Consequently, by integrating over ¢,
E(X;}) <2E(Sf + A)" < .

ProoF OF THEOREM 3.2(ii)). By (5.7) and convexity we have

(6.3) X} < E(S§|#,)
and hence (cf. (5.8)) that
(6.4) E(X;) < E(Sy)" < .

O

ProoF oF THEOREM 3.2(iii). Set EX = p and let, for £ > 1, Y, = X, — 2p.

Then EY, = —p > 0 and
N

(6.5) Y Y,=Sy - 2uN < S5 + 2|u|N.

k=1
Consequently

N +\r
(6.6) E(( Y Yk) ) < o0,
k=1

and thus, by part (i), we conclude that
(6.7) E(Y}) < .
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Finally, since X, = 2|u| + Y, < 2|u| + Y}/, it follows that X, < 2|u| + Y, and
the proof is complete. O

ProoF oF THEOREM 3.3. By Theorem 3.2(i) we may assume that E|X|" < .
The first part of the proof of Theorem 2.2 (EN < o) now carries over without
modification once we note that, since ESy < oo, (4.5) holds with ESy either
finite or — oo, the latter case being ruled out by (4.4) and the fact that p > 0.
Similarly, the second part of the proof carries over, if we replace (5.5) by

(6.8) pN =pN — Sy + Sy < |Sy — Np| + Sy O

7. Examples. Here we collect some further examples relating to the sharp-
ness of the theorems in Sections 2 and 3. We begin with two trivial cases.

ExampLE 7.1. Let N =1. Thus Sy = X,. This shows that we cannot, in
general, obtain higher moments on S, than on X and conversely. The same
holds for the positive and negative tails.

ExXAMPLE 7.2. Let X = 1. Thus Sy = N (which is arbitrary) and we cannot,
in general (when EX # 0), obtain higher moments on Sy than on N and
conversely. However, note that when EX = 0, Theorem 1.1(ii) yields an improve-
ment in the order of the moments, while the converse utterly fails by Example
2.2.

When EX > 0, the law of large numbers implies that S, » + o as. as
n — oo and thus that S, — 0. One might therefore suspect that the only way to
get Sy large is to let N be comparatively small, which, in particular, would
indicate that the moment condition on N in Theorem 3.1(ii) might be superflu-
ous, i.e.,, that E(Sy)” be finite as soon as E(X~)" is. The following example
shows that this is false, and that, indeed, no moment condition weaker than
EN < o is sufficient. However, when r > 2 we do not know whether EN"/2 < o
(as given in Theorem 3.1(ii)) really is required or whether, e.g., EN < oo suffices.
Note also that
(7.1) EX>0 and E(X )<= E|mir(;Sn

n=

r
.
’

see, e.g., Janson (1986), from which it follows that E(Sy)” < oo for any N
(stopping time or not).

ExXAMPLE 7.3. Let 1 <r <s and let X be such that EX =1 and P(X <
—t) =t"% t > t, By the law of large numbers P(S,/n < 2) > ; for n > n,. Fix
n > max(¢,, n,) and let E, denote the event {S, < —n and X, < —3n}, k=
1,...,n. Then

P(S,< -n) > P( kL:)1Ek) > z,::P(Ek) - Y P(E;NE,)

j<k
=nP(E,) — in(n - 1)P(E, N E,).
Further,
P(E,) > P(S,_, <2nand X, < —3n)
= P(S,-, <2n)P(X, < —3n) > ;(3n) "
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and
P(E,NE,) < P(X,< —3nand X, < —3n) = (3n) .
Consequently, for some positive numbers c,, c,, c3,
P(S,< —n) = e;n' ™% — ¢yn? 7% > ¢ynl
and
E(S;) = c,n**™°,  n>max(ty, n,).

It follows that if N isindependent of { X;},and EN'**"~¢ = o, then E(Sy)" = .
In particular, if e > 0 and s < r + ¢ we may have

EN'"*<w and E(X ) <o but E(Sy) = .

The next example shows that Corollary 3.1 (unlike the two-sided version
Corollary 2.1(i)) may fail if E|X| = co.

EXAMPLE 7.4. Let1l <r < 2and let {U,} and {Y,} be independent sequences
of random variables, such that U,, k > 1, are ii.d. standard normal random
variables and Y,, £ > 1 and i.i.d. symmetric and stable with index r.

Set Z, = Uy % (that is, Z,, is positive and stable with index 1) and X, = Y, +
Z,. Thus
(7.2) EX* = o0, EX™ < o0, E(X*) =E(X) = .

Define N, as in Example 2.1. Fix a number «, such that 1 + r~! < a < 2. Then

P(N+>n)sP(Snso)=P(Zst -YY
E—1 E—1

k=1 k=1

-#{(f2s-En)n(Easn)
Y,

k=1 k=1

n n
=P(2stn“ +P ZYan“)

k=1 k=1

=P(Z<n*%) +P(Y>n~Vr)

=P(U2<n*?)+ P(Y=>n*Vr)

= P(|U|¥@ % > n) + 1P(|Y|/""V > n)
and it follows that

(73) E(N+ — ]_)" < E|U|2r/(2—a) + E|Y|r2/(ar—1) < o0.

since r¥/(ar — 1) <r.
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Consequently, N, and Sy (= 0) have finite moments of order r, whereas X~
does not. Thus, Corollary 3.1 is false without the assumption that EX is finite,
and (by a change of signs) Theorem 3.2(iii) fails for EX = — o0.

Returning to the case EX > 0, r > 1, we note that Examples 2.1 and 7.1-7.3
yield examples of 9 of the 14 cases in Table 1. Examples of the remaining 5 cases
may be obtained by simple modifications, e.g., N= N, + 1 and N = min{n;
S, > Z}, where Z is a random variable independent of { X,}.

8. Further remarks.

A. The case r <1. We note, without any attempt at completeness, that
some of the results above also hold for r < 1. For example, Theorems 2.1 and 2.2
still hold; we may prove them by a simple modification of the proof of Theorem
2.2 for r = 1, given in Section 4, by using the Marcinkiewicz strong law of large
numbers and its converse. On the other hand, we shall now see that Theorem
1.1(i) is not true for r < 1. From (1.2) we obtain

(8.1) E|X|"<oo and EN<oo = E|Sy|"< oo, 0<r<l,

which, by the following example, is best possible. The converse to (8.1) is
obviously false (take X = 1), and thus there is a gap between the conditions in
the two directions.

ExamPLE 8.1. Let (Y,} be iid. random variables that are symmetric and
stable with index a > 2r and let X, = Y2 Then by the Marcinkiewicz—
Zygmund inequalities,

n 2r

LY,

1

ES'~E = n¥/eE|Y|?".

Hence, if N is independent of {X,},
(8.2) ES, ~ EN?/~,

Here 2r/a may be arbitrarily close to 1.

B. N independent of {X,}. In Examples 7.1-7.3, N is independent of {X,}.
This is a rather trivial type of stopping time, and one may ask whether sharper
results are true in this case. In fact, we have the following improvements of the
results in Sections 2 and 3.

THEOREM 8.1. Letr > 0. If N is independent of {X,}, then
(i) E(S{)" < 0 = E(X*)" < oo,

(ii) E(Sy) <o =E(X) < o,

(iii) E|Sy|" < o0 = E|X|" < 0.
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ProoF. Assume that E(Sy)” < oo. Then E(S;)" < oo for some n (every n
with P(N = n) > 0), and E(X™*)" < oo follows. (ii) and (iii) follow immediately.
O

THEOREM 8.2. Letr > 0 and let N be independent of {X,}. If EX > 0 and
E(Sy) < oo then EN™ < oo.

Proor. By the law of large numbers, P(S, > nu/2) > ; for n > n,. Conse-
quently E((Sy)’|N = n) = E(S/)" > 2(p/2)n", n>n, and N <nj +
CE((Sy)"|N). The conclusion follows. O

By combining these results with Theorem 3.1 we obtain

COROLLARY 8.1. Let r > 1. If N is independent of {X,} and EX > 0, then
(i) E(Sy) <o e E(X*) <o and EN’ < oo,

(ii) E|Sy|"< 0 @ E|X|"< o and EN’ < oo.

Looking at Table 1, we see that four cases (5,6, 7, 13) are impossible; examples

of the other ten cases may be given.
Furthermore, in this situation, Theorem 3.1(ii) may be sharpened to

EX>0, E(X ) <o and EN < o = E(Sy) < .

The proof is omitted.
We repeat that we do not know whether this holds for arbitrary stopping
times.

C. N not a stopping time. In the previous remark we specialized N (to be
independent of the summands) and found that some of the results could be
strengthened. In this remark we shall, conversely, see to what extent (if any) the
results remain true if we only assume that N is a positive, integer valued random
variable, that is, not necessarily a stopping time.

- We first show that Theorem 1.1 fails. In fact, the next example yields a
counterexample to both parts.

ExaMPLE 8.2. Let B8, s > 1 and let X be a symmetric random variable with
P(|X|>t) = t™* t> 1. Then, by standard arguments,

P(|S,|>t) ~nt™®, t>nx>1.

Let N = max{n;n=2* for some 2>0 and S, > nf} (where we define
max & = 1). Thus Sy > N? unless N = 1, i.e.,

(8.3) Sy = NF —1.
Now, let 2 > 1. Then

P(Sy > 2f) < P(N > 2%) < ¥ P(Sn > 2F™).
m=k
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Thus
P(N > 2%) ~ P(Szk > 2Bk) ~ gk(-=fs),

Consequently EN? < .0 & p < s — 1.

Now, given r > 1, take s such that r<s<r+1 and let B=(s—r)" L.
Then r < Br = ,Bs — 1. Hence EX = 0, E|X|" < 0, and EN” < oo but EN#" =
oo and it follows, in view of (8.3), that E(S{)" = + .

Turning to the converses, we note that Theorem 2.1 still holds when X is
nonnegative. This follows from the inequality X; < Sy and the following ana-
logue of Theorem 3.3.

THEOREM 8.3. Suppose that N is an arbitrary random variable and EX > 0.
If r > 1, then

E(S%) <o and E(X)"' <o = EN" < 0.
PROOF Let Y,=X, —u/2. Then EY>0 and E(Y )"*! < o and thus

min,, , XY, € L7, see e.g., Janson (1986). Since Sy — Np/2 = XVY, >
min , , (XY, the conclusion follows from the fact that

Nu/2 < S + (—Sy + Nu/2)" < S + el O

n
min )Y,
nz0 ;|

EXAMPLE 8.3. One interesting application of Theorem 8.3 is when N is the
last exit time

N = N,=max{n; S, < t}, wheret> 0.

Since Sy is bounded, Theorem 8.3 shows that EN” < oo provided E(X~)*! <
co. Moreover, in this case the converse holds, i.e., EN” < 00 = E(X~)"*! < oo;
see, e.g., Janson (1986).

This shows that we really do need one extra moment on X~ here in contrast
to when N is a stopping time; cf. Theorem 3.3.

9. Uniform integrability. In the remainder of this paper we consider the
random walk {S,, n > 1} and the sequence {%,, n > 1} of o-algebras as before,
but, instead of a single stopping time, we have a family of stopping times,
{N,, a € I}, where I is an arbitrary index set. A typical case with applications,
e.g., in renewal theory is I = R™.

We shall extend some of the above results about existence of moments to
results about uniform integrability.

Let {b,, « € I} be an arbitrary family of positive, normalizing constants. We
begin by stating a result corresponding to Theorem 1.1.
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THEOREM 9.1. Let r > 0 and suppose that E|X|” < oo.

@ If
(9.1) {b2'NJ V1) is uniformly integrable,
then
(9.2) {b; 1|SNa|’} is uniformly integrable.
(ii) Let r > 1 and suppose, in addition, that EX = 0. If
(9.3) {b2'N]/2V1} is uniformly integrable,
then
(9.4) {b; 1|SNm|’} is uniformly integrable.

If, in particular, we have I = [t,, c0) for some ¢, > 0 and let b, = ¢, b, =t
and b, = t'/? (where we use t instead of a) we obtain the following results
related to the classical strong law, the Marcinkiewicz strong law, and the central
limit theorem, respectively.

COROLLARY 9.1. Let r > 1 and suppose that E|X|" < oo. If

N(¢)\" o :
(T , t = t,} is uniformly integrable,

then

{ S
COROLLARY 9.2. Let 0 < r < 2. Suppose that E|X|" < oo and that EX = 0

whenr > 1. If

,
,t = to} is uniformly integrable.

N(¢) o .
{ ( — ) t> to} is uniformly integrable,

SN(t)
tl/r

then

r

, 1> to} is uniformly integrable.

COROLLARY 9.3. Let r > 2. Suppose that E|X|” < oo and that EX = 0. If

N(t)\7* .
(— , t =ty is uniformly integrable,

t
then

r

Sney

vt

,t> to} is uniformly integrable.
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Corollaries 9.1-9.3 are due to Lai (1975), Chang and Hsiung (1979), and Yu
(1979), respectively. Theorem 9.1 can be proved by the same methods. For proofs
of the corollaries and some applications see also Gut (1986).

We now turn our attention to the converse results, corresponding to Theorems
2.1 and 2.2.

THEOREM 9.2. Letr > 1, suppose that P(X > 0) = 1, and P(X > 0) > 0. If

(9.5) {ba' S,(,“} is uniformly integrable,
then
(9.6) {b7'N]} is uniformly integrable.

THEOREM 9.3. Let r > 1 and suppose that E|X|” < o and EX # 0. If

(9.7) {ba' 1|SNu|’} is uniformly integrable,
then
(9.8) {b,IN]} is uniformly integrable.

In particular, for EX # 0, it follows that the converse to Corollary 9.1 holds.
Example 2.2 shows that no converse is possible when EX = 0.

It follows from Theorem 2.1 that the assumptions in Theorem 9.2 imply that
EX" < co. Theorem 9.2 thus follows from Theorem 9.3. The proof of Theorem
9.3 is given in Sections 10 and 11; as before we treat the cases r =1 and r > 1
separately.

10. Proof of Theorem 9.3 for r = 1. The theorem is a uniform version of
Theorem 2.2 and we will use the same idea as in that proof, making all assertions
uniform in a. However, here we will work with the weak law of large numbers,
and begin by stating a uniformization of it, the proof of which will be given at
the end of this section.

LemMA 10.1. Let {Z,} be a family of random variables and let {a,} be a
bounded set of real numbers. Let {Z, ,}%_, be independent copies of Z,.

(a) If 0 < p < 1, the following are equivalent:
(i) EN/n¥iZ,  — a,? — 0, uniformly in a, as n — oo.
(i) 1/nX7Z, , =, @, uniformly in a, as n - oo.
(iiia) tP(|Z,| > t) — 0, uniformly in a, as t > «© and
(iiib) E(Z,I{|Z,| < t}) = a,, uniformly in a, as t > .
(b) If {Z,}, furthermore, is uniformly integrable, then (i)-(iii) hold with
a,=EZ,.
(© IfZ, 20 a.s. for all « and (one of ) (i)-(iii) hold(s), then {Z,} is uniformly
integrable.
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For the case of a single random variable (a) reduces to the weak law of large
numbers; see Feller (1966), Section VII.7. We also refer to Esseen and Janson
(1984) for some other generalizations.

PrOOF OF THEOREM 9.3 WHEN r = 1. Set p = EX. Construct, for every a,
independent copies { k} %-10f N, as in Section 4 and let M, , = XN, ;. Thus,
for a fixed a, M, , is an increasing sequence of stopping tlmos and {Sn, }n Lisa

sequence of partial sums of independent random variables distributed as Sy,

Set Z, = b; 'Sy, Since, by assumption, {Z,} is uniformly integrable, Lemma
10.1(b) 1mphes that

1
(10.1) ;ba“ Spta,n ~p ba 'ESy,, uniformlyin a,as n - 0.

On the other hand, M, A > n, whence

a,n —

(|SM /M, , —p|>e) < P(|S,/m — p| > & for some m > n).

The right-hand side is independent of a and tends to 0 for every & by the strong
law of large numbers. Hence

1
M SMG’,, -—)p “,

a,n

Since p # 0 and {b, IESN,,} is bounded, (10.1) and (10.2) yield, by division,

(10.2) uniformly in a as n - co.

1
(10.3) ;b; 'M, , =, by 'w'ESy, uniformlyin a,as n — oo.
An application of Lemma 10.1(c) with Z, = b, 'N, concludes the proof. O

ProorF oF LEMMA 10.1(a). (iii) = (i). Truncate Z,, and similarly Zy 1> by
defining

Z!=7Z,Z,<t}, t>0.

We note that if (iiia) holds, then E|Z!|> = o(t) and E|Z, — Z!|? = o(¢t?"}) as
t = oo, uniformly in a. Hence, by taking ¢ = n, we obtain

P n 2\ p/2
e~ EZ})| < Zy v~ EZ7)
= (nB(2; - BZ2Y)"" < (nE(22))"" = o(n?),
and
wk—2Z2:)| <nE|Z,— Z}|P = o(n®), uniformly in a.

The c,-inequality now yields

n P

YZ, ,— nEZr
1

E =o0(n?) asn — oo, uniformly in a.
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We have thus shown that
4

1 n
(10.4) (iiia) = E‘~ YZ, ,— EZ*| -0 uniformlyina,asn — .
ng

Since (iiib) may be written EZ! — a_, uniformly in a, as t = oo, it is now clear
that (iii) = (@).

(i) = (ii)). Use Markov’s inequality.

(ii) = (iii). Assume first that the variables Z, are symmetric. Then, by Feller
(1966), formula (V.5.11),

n

ZZa, k

1

exp(—nP(|Z,|>n))=1- 2P(

> n) — 1, uniformly in a, as n - 0.

Consequently, nP(|Z,| > n) — 0, uniformly in «, as n — co. In general, we
symmetrize by letting Z, = Z, — Z., where Z/, is an independent copy of Z,, and
obtain nP(|Z,| > n) — 0, uniformly in a, as n > .

Let A =1 + sup|a,|. For some integer m and every a we have

1 m 1 m -
e‘1>P(—ZZak—aa>1)zP(—ZZak>A)zP(Za>A) .
mT m;

Thus P(Z, > A) <e V™ and P(Z,<A)>1—-e ™ for all a. Since
tP(Z, > t)P(Z, < A) < tP(Z, > t — A), it follows that tP(Z,> t) - 0, uni-
formly in a, as t > oo.

By using the same arguments for the negative tails we obtain (iiia). By (10.4)
we know that

1 n
-Yz, r— EZ; —,0, uniformlyina,asn — oo,
=1

which, together with (ii), shows that
EZ" - a,, uniformlyin a,asn — oo,

which, in view of (iiia), yields (iiib). O

ProoF or LEMMA 10.1(b). In view of (a) if suffices to prove (iii). (iiia) follows,
because tP(|Z,| > t) < E|Z |I{|Z,| > t} — O, uniformly in &, as ¢t = oo and (iiib)
with a, = EZ, follows, because

|EZ,I{|Z,| < t} - EZ,| =|EZ I{|Z,| > t}| < E\Z|I{|Z,| > t}. =

ProoF oF LEMMA 10.1(c). By (iiib) and monotone convergence it follows
that EZ, = a, and thus that EZ I{Z, 6 > t} — 0, uniformly in a, as n - oo,
which proves the desired uniform integrability. O

11. Proof of Theorem 9.3 for » > 1. We repeat the induction argument in
Section 5, using Theorem 9.1 instead of the moment inequalities. We thus
assume that the theorem is true for 1 < r < 2%~ ! and let 27! < r < 2% (The
induction is started by the case r = 1 established in the preceding section.)
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Let us first establish that inf b, is strictly positive. By assumption and
Liapounov’s inequality we have

E|b;'/" Sy | < constant, uniformly in a.
By Wald’s lemma we further obtain (note that N, > 1)
E|Sy| =z |ESy | = [W|EN, > |pl,
from which it follows that
b, /" < constant.
Next we observe that
{B11Sy, |72V} is uniformly integrable.

This is due to the fact that b '|Sy |/?V! < max{b, ", b, '|Sy |"}. By the induc-
tion hypothesis it now follows that

{b;'N;/?V1} is uniformly integrable.

We can thus apply Theorem 9.1(ii) to the sequence {X, — p} and conclude
that {b, 1|SNa — N,u|"} is uniformly integrable. The triangle inequality (5.5)
completes the proof. O

Finally, suppose that EX = 0. Recall from Section 2, Example 2.2 that the
situation here is completely different. By expanding that example a little we
shall see that Theorem 9.3 does not hold in this case.

ExaMPLE 11.1. Consider the coin-tossing example from Section 2; that is, let
{X,,n > 1} be a sequence of ii.d. random variables such that P{X, =1} =
P{X, = —1} = ;. Define

N(t) = min{n; S, > [¢]} = min{n; S,=[¢]} (¢=0).
Clearly, Sy, = [t], and so
S t
(0 s)—% = % <1, forallt> 0,

that is, {(Sy/t)"} is uniformly integrable for all > 0. On the other hand, we
know from random walk theory (see, e.g., Example 2.2) that E(N(0))” = + co for
all »>1 (r=3) and, since N(t) > N(0), {(N(¢)/t)"} cannot be uniformly
integrable for any r > 1.
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