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A SPECTRAL CRITERION FOR THE FINITENESS OR
INFINITENESS OF STOPPED FEYNMAN-KAC
FUNCTIONALS OF DIFFUSION PROCESSES!

By Ross PINskY

Technion— Israel Institute of Technology

Consider the Feynman-Kac functional
u(q, D; x) = E.exp( [57q(x(s)) ds),

where D is a bounded open region in R?, 1, is the first exit time from D,
q € C(D), and x(s) is a diffusion process on R? with generator L. We give a
criterion for the finiteness or infiniteness of u(q, D; x) in terms of the top of
the spectrum of the Schrodinger operator L, ;, an extension of L + ¢ acting
on smooth functions which vanish on dD. As we also have a variational
formula for the top of the spectrum, we thus obtain a criterion explicitly in
terms of a variational formula.

1. Let L =3V -av + bv where a is a d X d matrix with terms a;; €
C'(R?) and b is a d vector with components b, € C(R?). Assume a is strictly

elliptic on R i.e.,

d
Y a; (x)AA; = c|A)?

i, j=1

for some ¢ > 0 independent of x € R% Let D C R be an open, connected set
and put 7, = inf{¢ > 0: x(¢) € D}. A number of recent papers have studied the
consequences of the Feynman-Kac functional u(q, D; x) = E.exp( [j°q(x(s)) ds)
being finite in the case that x(s) is Brownian motion or Brownian motion
conditioned to exit D at a certain point, with various assumptions on q and D.
(See for example [1], [2], [6], [12].)

The finiteness of the above expression is connected with the existence of
strictly positive solutions, v, in D of Lv + gv = 0. For example, in [1] Chung and
Rao show that if D has finite Lebesgue measure, u(q, D; x) # oo, dD is regular,
and q is uniformly Holder continuous on compact subsets of D, then for every
bounded f € C(D), there exists a unique solution of ;Av + qv = 0, v|,, = f; in
fact v(x) = E (exp([jrq(x(s))ds)f(x(7p))). It was also shown in [1] that
u(q, D; x) # oo is equivalent to [°E (exp( [{q(x(s))ds), T, > t)dt < o, if ¢ is
bounded, x(t) is Brownian motion, and D is arbitrary. With the exception of
[12], none of these papers gives an explicit criterion for the finiteness of
u(q, D; x). In [12], which is principally concerned with unbounded potentials, a
finiteness criterion is given in the Brownian motion case when D is a ball. This
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result depends heavily on the explicit representation of the Green’s function
which is available in this case.

In this paper, we first consider a bounded D with a CZ?boundary and
g € C(D). We make use of the large deviation results of Donsker and Varadhan
to elaborate on the finiteness criterion of Chung and Rao and obtain a criterion
for finiteness or infiniteness of a Feynman—-Kac functional of a diffusion with
generator L in terms of the spectrum of the related Schrodinger operator,
an extension, L, j, of the operator L + ¢ acting on smooth functions which
vanish at -dD. In fact L, ,, is the generator of the semigroup T D defined by
T2 Pf(x)=E (exp(/oq(x(s))ds)f(x(t)), T > t) acting on C(D) T*P leaves
invariant CO(D), the continuous functions on D which vanish at dD. Specifi-
cally, we shall show that

supre(spec(Lq'D)) <0 implies u(q,D;x) < oo forallx € D
and
sup re(spec(Lq‘D)) >0 implies u(gq,D;x)=co forall x € D.
Since an explicit variational formula exists for
A, p = sup re(spec(Lq‘D)),

we actually obtain a criterion for finiteness or infiniteness explicitly, in terms of a
variational formula. In the case that a,;, b,, ¢ € C%(D) and q > 0, we show that
A, p = 0 also implies u(q, D; x) = co for all x € D.

Next we consider domains D which are the complement of the closure of the
domains considered above, and we assume that ¢ is bounded and continuous on
D. In this case A 4, p 1S not necessarily given by the variational formula. Let /, ,
denote the number obtained from the variational formula [see Equation (11)]. As
noted above, [, , = A, p, in the compact case and our criterion in that case can
be written as:

i I, ,<0 implies u(q,D;x) <o forallxeD,
q,D
(ii) l, p>0 implies u(q,D;x)= oo forallx e D.

In the present case where D is not compact, we present a counterexample to (i)
and show that (ii) still holds. If one imposes what amounts to a strong positive
recurrence condition on the process, then in fact (i) holds. In Section 2, we
present the appropriate forms of the large deviation results that we shall need.
In Section 3 we treat the compact case and in Section 4 the noncompact case.

2. Let Q = C([0, ), R?), the space of continuous R%valued paths from
[0, ). Let w = x(¢) be a diffusion process on (£, #, P.) with generator L as
defined in Section 1. (Actually, more precisely, it will be an extension of -L which
we shall persist in calling L.) For B c R let % w, B) = 1/t/{x5(*(s)) ds.
Then Zy(w, ) € P(R?), the space of probability measures on R? under weak
convergence; it is the occupation measure up to time ¢ for the path « = x(*).
Define I: #(R?) —» R* by I(p) = —inf, ¢ o [geLu/udp, where 9% = (u € 9:
inf, . pets(x) > 0} and 2 is the domain of the generator L of the process. That I
maps into R* can be seen by letting u = const in the variational formula above
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which defines I. It is also easy to see that I is lower semicontinuous on 2( R%).
The basic large deviation results of Donsker and Varadhan [3], [4] are:
For open U C #(R%),

1
(1) liminf —log P(%,(w, ) € U) > — inf I(p), forall x € R%.
t—-oo L pelU
For compact C € Z(R%),

(2) lim sup —logP(.Sf(w )el) < - 1nf I(p.) for all x € R,

t— o0
Now, for any set G C R define #(G) = {u € P(R?): suppp C G}. On Q, for
open D, we have {.,S,”(w ‘) €A (D)} = {r, > t} and up to a set of P-measure
zZero, {.S,” (w, - )E.//l(D)} = {1, > t}. Now assume D is also bounded. Since
M (D) is compact in #(R%), the upper bound, (2) above, gives

1 —
(3) lim sup —log P(m,>t)< — inf _I(p), forall x € D.
t— o0 supppcD

In fact then, it is not hard to show [11] that for ¢ € C(D),

lim sup —logE (exp(/q x(s)) ds) Tp > "')
t— o0

(4)
< sup [/ qdp — I(p)]—qu forall x € D.

supp /.LCD

We would like to obtain a lower bound corresponding to the upper bound in (4).
However, we cannot use (1) directly. The problem is that, regardless of what G
is, sets of the form .#(G) are never open in Z( R?). However, Theorem 8.1 in [4]
shows that for G open, p € #(G), and N any neighborhood of p,

1
(5) liminf?log P(%(w,") e NN A(G)) = —I(p), forall x € D.
t— o0

In particular letting G = D, we obtain, similarly to (4), for ¢ € C(D),

lim inf —logE (expftq(x(s)) ds, T, > t) sup [f qdp — I(p)|,
(6) t— o0 0 supppcD

forall x € D.
In fact,

sup [f qdp — I(u)] = sup _[f qdp - I(u)]~
suppuc D LYR? suppueD LVR?

The problem with proving this is that I(p) is only lower semicontin-
uous. However, if we let D,=tD = {tx,x € D} for t> 0, and oJ, =
SUPguppyc p,[ [req dp — I(p)], then J, is nondecreasing in ¢ and hence has at most
a countable number of jumps. But by the smoothness of dD and the explicit
formula for I(p) which we present below, sufficient regularity exists to conclude
that if J, had a jump at some particular ¢, then it would have a jump at any
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other ¢, which is impossible. Thus we obtain

lim inf —l—log Ex(exp(fOTDq(x(s)) ds), T > t) > sup [/;?dqdu - I(p)]

t—oo 1 supppcD
=1, p, forallx €D.

Consider the semigroup T, on C( D) which was defined in the introduction. As
mentioned there, 77 P leaves invariant Cy(D) and is generated by L, p, which is
an extension of L + g acting on smooth functions which vanish on 9D. Let

1 1
A, p = limsup ?logHTt"' D) = limsup ;log sup (T,1)(x).

t— o0 t— 0 xeD

Donsker and Varadhan [5] show that A op € spec(L, p) and A, p =
sup re(spec( L, p)), and furthermore that

(8) sup re(spec(Lq,D)) =1, p

It is also of interest to note that if we consider 7,2 defined like T, ” but
acting on L%(R?), and call its generator L, , z, then in fact since D is compact,
it can be shown that

(9) >‘q,D= >\q,D,H’
where
Ngpu= supre(spec(Lq’D’H)).

We utilize (4), (7), and (8) to prove our results in the compact case. In the
unbounded case, (4) and (8) do not generally hold. This will be discussed further
in Section 4.

Finally, we give the formula for the I function [10]. For u with compact
support,

\Y% \%
I(p) = sup AL a'bla Ve _ a'b|g?dx
d
heC (R \"R g

(10)
- fd(vh ~—a B)a(vh - a—lb)g2dx)
R
if du/dx = g% and [pe|vg|?dx < oo, and I(p) = oo, otherwise. (By [r¢|vg|® dx
< o0 we mean that g has one generalized L?(R“) derivative.) This formula

presumably holds even if p does not have compact support. For our purposes, we
will define I(p) by (10) even when p does not have compact support.

3. From (10) we have

v \Z:4

l,p= sup inf [fqdex - f(—g - a_lb)a(— - a_lb)dex
’ g fpg?dr=1 heC?(D) D\ 8 8

(11) g=0o0n dD

+fD(vh —a 'b)a(vh - a_‘b)dex].
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We now prove

THEOREM 1. Let D be open and bounded with a C%boundary dD and let
L, p be as defined above.

(a) If 1, p = supre(spec(L, p)) <O, then u(q, D; x) < oo for all x € D.

(b) If 1, p = supre(spec(L, p)) > 0, then u(q, D; x) = oo for all x € D.

(¢) If ¢ >0 and the coefficients a,;, b,, and also q are in C*(D), then
l, p = supre(spec(L, p)) = 0 implies that u(q, D; x) = oo for all x € D.

Proor. First assume A, , =, ;, < 0. Then we have for x € D,

u(q,D; x) = Exexp('/:"q(x(s)) ds)
= néoEx(exp(/(;mq(x(s)) ds), n<t,<n+ 1)
< e"q"néoEx(exp(‘[)nq(x(s)) ds), n<tm<n+ 1)

[oe]
<eldly” Ex(exp(/(;nq(x(s)) ds)), Ty = N).
n=0
But for each x € D, (4) implies that there exists a constant c, such that

Ex(exp(fnq(x(s)) ds), T > n) <ce™aen/d  p=12....
0

Hence

Z Ex(exp(an(x(S)) ds), Tp = n) <e, Z e(™a.0/2) < o
n=0 0

n=0
and thus u(q, D; x) < co. Now assume A, , =1, , > 0. Then we have for all
x €D,

u(q, D; x) = Exexp(fornq(x(s)) ds) > Ex(exp(LTl)q(x(s)) ds), T > t)

= Ex(Ex(exp(f(:"q(x(S)) dS)

TD> t),TD> t)-

But

B exo{ [ "ale(s)

7D>t)

exp( ['a(a(s)) | exo( [ a(a()) s
exp( [‘g(x(s)) ds ) E.qoexp( [ a(x(5)) ds
= exp(/otq(x(s)) ds)u(q, D; x(t)).

’TD>t)
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So

(g, Ds %) 2 B[ ula, s s(t))esp [‘a(x(s) ds 7 > ¢

> inf u(q, D5 3)Eexp ['a(x(s)) a5 75> ¢.

This inequality holds for all ¢ > 0. By (7)

1

lim inf —log Ex(exp(ftq(x(s)) ds), T > 7) = o0.
t—oo L 0

Thus we will be done with part (b) once we show that inf . zu(q, D; y) > 0. But

since the operator L is strictly elliptic and D is compact, it is clear that there

exists a ¢, > 0 and an ¢ > 0 such that

P(rp<t,) >e, forallxeD.
Since g is bounded, we thus have
u(q, D, x) > e ldlog, forall x € D.

Now we prove part (c). Since a,;, b, and g are in C*D) and 4D is a C?-
boundary, the semigroup T © leaves C%(D) invariant. (For a probabilistic proof
of this in the case ¢ = 0 and D = RY see [7]. A modification of this method
works in the present situation.)

Consider T ? restricted to C%(D). T2 P leaves invariant the cone of positive
functions in C%(D). As L o, p has a compact resolvent, the Krein—Rutman theory
of positive operators [9] provides for the existence of an eigenvalue at A, ,, =
sup re(spec( L, p)) and corresponding nonnegative eigenfunction ¢ which is posi-
tive on D and vanishes on dD. Because we have restricted the semigroup to
C?(D), ¢ is automatically in C*(D). Applying 1td’s formula to ¢ gives

(12) Ex(exp(fOTDMq(x(s)) ds)qb(x('rD A t))) = ¢(x) forx € Dandt>0.

Now exp( [q? " ‘g(x(s)) ds)p(x(1p A t)) converges pointwise to zero as ¢ — o
and since ¢ > 0, it is dominated by | ¢|lexp([q?q(x(s)) ds). Thus if
E_ exp( [jPq(x(s)) ds) were finite, the left-hand side of (12) would converge to
zero as ¢t — oo by the dominated convergence theorem. This would give ¢(x) = 0,
which is a contradiction. This proves part (c). The problem with proving this for
general ¢ is that we cannot dominate exp( [j» " ‘g(x(s)) ds). It is not uniformly
integrable, for in fact we can show that if u(q, D; x) < oo, then

u(q, D; x) < ligglexexp(/OTDMq(x(s)) ds) O

4; Let D satisfy D¢ compact. As mentioned in Section 2, Equations (4) and
(8) (and (9)) do not hold in general in this case. The reason that (4) does not hold
is that the upper bound (2) is only valid in general for compact sets C, not all
closed sets. In fact it is easy to provide examples in which inf, ¢ 5 ge,I(p) > 0. In
this case if we let C = R9 it is clear that (2) cannot hold. To provide a
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counterexample to part (a) of Theorem 1 (thatis, I, ;, < 01implies u(q, D; x) <
for all x € D), we consider L = 1d?/dx® + b(d/dx) for b > 0 a constant. In this
case, the I function reduces to I(p) = 1[® (g)*dx + b%*/2 if dp/dx = g*
and g’ € L¥(R). So inf, ¢ p(g,I(1) = b°/2. Let D = (0, 0) and pick g = ¢ for
0 <c<b®2 Then I, ,=c—b/2<0 and u(q, D; x) = Ebec, where 7, =
inf{¢ > 0: x(¢) = 0} and E_ is the expectation with respect to the process. This
is obviously infinite; indeed P’(7p, = ) > 0. Note that in fact if we make b
larger, then I, ;, becomes smaller, but 7, for the new process is even bigger than
it was for the original one, in the sense that P% (7, > a) > P% 1, > a)for b, > b
and a > 0. This turns the relationship in Theorem 1 between [, ,, and the size of
u(q, D; x) upside down. The reason is that.in the present case, inf, c yg)I(1) =
b?/2 is not giving the asymptotic rate of decay of the probability that the
process stays away from zero, but rather, the asymptotic rate of decay of the
probability that the process stays away from infinity; it is essentially the rate of
escape to infinity of the process. Thus, the larger b is, the larger is the rate of
escape to infinity and the bigger is 7,. Donsker and Varadhan show that the
upper bound (2) does hold under a certain condition which requires that the
process be positive recurrent in a strong sense [4].

CoNDITION A. There exists a function V(x) such that {x € R%: V(x) > a} is
compact for each a > — oo and there exists a sequence u, € 2, the domain of
the generator L, such that

() u, > 1for all n,x € R%
(ii) for each compact W C RY, sup, ¢ ySUp,U(x) < 00;
(iii) for each x € RY lim, _, (Lu,/u,)x) = V(x);
(iv) for some N < oo, sup, (Lu,/u,)(x) < N.
Part (b) of Theorem 1 will still hold for unbounded D. We cannot show part
(c) because the Krein-Rutman theory no longer applies; there is no compact
resolvent. We now prove

THEOREM 2. (a) If I, , < 0 and Condition A holds, then
u(q, D; x) < oo forallx € D;
(b) If 1, p > 0, then u(q, D; x) = oo, for allx € D.

Proor. If Condition A holds, then the upper bound (2) holds for all closed
sets and thus (4) holds. Now part (a) can be proved just as its counterpart in
" Section 3 was proved. Now consider part (b). Let D, = {x € D: |x| < n}. Since
I, p> 0, one can show that in fact [, , > 0 for sufficiently large n. Consider

any x € D. Pick n so that |x| <n and [, ;, > 0. The calculation in Section 3
gave us

u(q, D;x) > E | u(q, D; x(t))exp(fotq(x(s)) ds), T > t).

At this point, in Section 3 we took u(q, D; x(t)) out of the expectation. Here we
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add an additional step and write

. (g, Di x(0)esp( [a(x(5)) ds), 75 > 1

v

. u(a, Ds s(e))ex [‘a(x(s)) ds ), 75, >

\%

inf u(q, D; y)E, (exp(ftq(x(s)) ds), T, > t).

lyl<

The argument in Section 3 shows that inf|,,  ,u(g, D; ¥) > 0, and since [,, p, >0,
equation (7) applied to D, shows that

11m1nf—logE (exp('[)tq(t(s).) ds), T, > t) =

t— o0

Hence u(q, D; x) = oo for all x € D. O
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