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THE CONTRIBUTIONS OF MARK KAC TO
MATHEMATICAL PHYSICS

By CoLIN J. THOMPSON

University of Melbourne

By his own admission Mark Kac was a mathematician with a strong interest
in physics. He bemoaned the fact that mathematics and physics had entered a
period of alienation in the early part of this century and he often expressed the
view and hope that the “two great disciplines,” as he called them, would come
together again. His writings and lectures in mathematical physics have contrib-
uted much to the fulfillment of this hope.

Mark’s papers in mathematical physics are noted for their unique lucid and
informal style, with an emphasis on intuitive and heuristic arguments, rather
than on tedious mathematical detail. He was fond of saying that a demonstra-
tion is often more valuable than a mathematical proof since, as he put it, a
“demonstration is to convince a reasonable man whereas a proof is designed to
convince a stubborn one.” This belief is reflected in his many articles on topics in
mathematical physics and was always apparent in his lectures.

Mark’s main contributions to mathematical physics were in the field of
statistical mechanics, both classical and quantum, equilibrium and nonequi-
librium, but were primarily concerned with model systems in classical equi-
librium statistical mechanics which exhibit phase transitions.

The physical phenomenon of phase transitions has been known for a long time
and has been extensively studied, both theoretically and experimentally, over the
years. Perhaps the simplest example of a phase transition is the condensation of
a gas to a liquid under compression at constant pressure for sufficiently low
temperatures 7. As the temperature is raised one reaches a critical point T,
beyond which there is no abrupt condensation no matter how much it is
compressed. In the neighbourhood of such a critical point interesting things
happen, such as the phenomenon of critical opalescence caused by large fluctua-
tions in the density. Also, certain physical quantities such as the specific heat
and compressibility, become singular as T approaches T,. Similar phenomena
occur in magnetic systems where T, is now the temperature beyond which the
residual or spontaneous magnetization, vanishes. For such systems the zero-field
specific heat and isothermal susceptibility typically diverge as T approaches T,.

The theoretical basis for the study of phase transitions lies in the formulation
of equilibrium statistical mechanics due to Gibbs [9]. In this formulation the
occurrence of a phase transition becomes a precise mathematical problem. Thus,
if we have a system described by a Hamiltonian 5#{u}, the Gibbs canonical
distribution p{u} for the system in configuration or state p is given by

(1) p{r} = Z 'exp(—#{n}/kT),
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where k is Boltzmann’s constant, T is the absolute temperature, and Z, the
canonical partition function, is given by

(2) Z = [exp(=#{u}/kT) du,

where the integration is taken over the entire configuration space I'. Quantities
of physical interest are then given as averages with respect to the distribution p.
For example, the average energy is given by

E= () = [#(n)p(n) dn,

the specific heat by

oE

aT’

and so forth, and a phase transition will occur if a derived thermodynamic
quantity such as C is singular at some critical temperature 7.

A problem immediately arises with this definition of a phase transition if the
system is finite, as of course it is in reality. This is simply because for finite
systems, p{u}, Z and averages with respect to p{u}, are analytic functions of T
(for T # 0). In order to give a precise mathematical definition of a phase
transition we then need to consider infinite systems which is a reasonable thing
to do since in practice there are approximately 102 particles per cubic centi-
metre.

A standard way of proceeding is to consider a finite system of N particles in a
box with volume V and to take the so-called thermodynamic limit; N — co and
V — oo with the specific volume v = V/N fixed. In this limit, when it exists (for
some suitably chosen constant cy ), the free energy per particle is defined by

Y(v,T) = —lim kTN 'log(cnZ).

Comparison with the above formulas shows after a moment’s reflection that in
the thermodynamic limit the specific heat (per particle) is given by

c=—T(3%/aT?).

The compressibility mentioned previously is similarly given in terms of the free
energy ¢ by

K = v(3%,/3v?).

There is now, of course, no mathematical reason why ¢ and K need not be
singular for some real, positive v and/or T. That is, for the system to have a
phase transition. We then define a phase transition point to be any point of
nonanalyticity of the free energy y(v, T') occurring for real positive v and /or T.

The above is now universally accepted as the proper mathematical definition
of a phase transition. Pre-1940’s, however, doubts were commonly expressed as to
whether the Gibbs canonical distribution, or ensemble, alone could explain the
occurrence of a phase transition. A commonly expressed view was: “How are the
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molecules to know when they should condense?” Such doubts were finally laid to
rest when Onsager [6] “solved” the two-dimensional Ising model in the early
1940’s. From an exact evaluation of the partition function for this model,
Onsager was able to show, in particular, that the specific heat has a logarithmic
divergence at a finite critical temperature. Onsager’s 1944 paper on the Ising
model remains a real tour de force in mathematical physics and was probably
one of the main contributing factors to Mark’s subsequent involvement in the
subject.

As Mark relates in his “personal reminiscence” article [K95] (Reference
citations preceded by K refer to references listed in Publications of Mark Kac,
which appears in this issue, pages 1149-1154.) on the work of his friend and
colleague Ted Berlin, he was first exposed to the Ising model in the spring of
1947 by his long-time friend and colleague George Uhlenbeck. The exposure may
have been along the following lines:

Consider a set of N spins p; = +1,i=1,2,..., N, located on say the vertices
of a regular lattice and allow the spins to interact pairwise with coupling
constants oJ;; and individually with an external magnetic field H so that in a
given configuration of spins {p} = {p,, pg, ..., py} the Hamiltonian or interac-
tion energy is given by

N
H{py=—- L Jypp—HYp,

1<i<j<N =1
Now in the Gibbs prescription the canonical partition function is defined by
Z =) exp(—pA#{p}/kT),
{n}
and in the thermodynamic limit the free energy per spin is given by

Y(H,T) = - lim kTN log Z.

Onsager’s great achievement was to obtain en explicit expression for (0, T')
for the special case where the spins occupy the vertices of a regular two-dimen-
sional square lattice and only nearest-neighbor spins are allowed to interact. His
expression is

1 a 2' .
=log2 + W/-[) log[cosh 2K — sinh 2K (cos 8, + cos 02)] dé, dé,,

where K = J/kT and o is the nearest-neighbour coupling constant. It will be
noted that this expression is singular at K = K, = J/kT, given by

sinh2K =1,

and, after some calculation, that the specific heat has a symmetric logarithmic
divergence as T approaches T,.

In terms of numbers of papers published on the problem, the Ising model
ranks as probably the most celebrated model in mathematical physics. In spite of
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the amount of effort devoted to the problem however, exact solutions have not
been found to even simple-looking extensions of Onsager’s case, such as with
nonzero field, with next-nearest-neighbor interactions as well as nearest-neighbor
interactions, and of course the three-dimensional model. Many other interesting
two-dimensional lattice problems have been solved exactly by Lieb, Baxter, and
others, however [1].

As mentioned above, Mark’s involvement with the Ising problem began in
1947. In his own words [K95]:

“It soon became obvious that it was not a problem one solves on the spur of
the moment, and, in the best mathematical tradition, not being able to solve
the original problem, I looked around for a similar problem which I could
solve. I then proceeded to replace the discrete spins by continuous ones
distributed according to the Gaussian distribution. In no time I had the free
energy per spin calculated, and to my amazement and pleasure the answer
looked remarkably like Onsager’s.”

This was the birth of the so-called Gaussian model. Apart from trivial numerical
factors, the free energy has the same form as Onsager’s expression but with the
argument of the logarithm replaced by [1 — 2K(cos 8, + cos 6,)] which is very
intriguing and to this day still somewhat of a mystery.

The Gaussian model, as noted by Mark, suffers from what he referred to as a
“low temperature catastrophe.” That is, the free energy is not defined when
K> 1.

In searching for a potentially soluble model which was not catastrophic and
was still Ising-like, Mark quickly hit upon the idea of replacing the statistical
weight of the Ising spins, which can be thought of as concentrated at the vertices
(£1, +1,..., +1) of the hypercube inscribed in the sphere

pi+pg+ - k=N,

by the uniform distribution on the sphere. That is, the partition function is
obtained by integrating the Boltzmann factor exp(— B5#{n}/kT) over the sphere
rather than summing over discrete Ising configurations.

This is the so-called spherical model which also has an extensive literature and
ranks alongside the Ising example as one of the most studied models in statistical
mechanics.

The usual method of “solving” the spherical model, which was originally
devised by Ted Berlin in 1947, utilizes the method of steepest descents (in the
thermodynamic limit). The results were “announced” in 1949 and the joint paper
“The spherical model of a ferromagnet” [K58] appeared in print in 1952. This
was essentially Mark’s first published contribution in mathematical physics.

The nice thing about the spherical model is that it can be solved exactly in
any dimension and, in principle, for any reasonable interaction potential. For
nearest-neighbor interactions the model has no phase transition in one and two
dimensions but in three dimensions the model does have a phase transition, from
a disordered paramagnetic state to a ferromagnetic state with long-range order.
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Mark was particularly intrigued by the fact that the occurrence of a phase
transition in the spherical model is due to the “sticking” of the saddle point (in
the steepest descents calculation) for low temperatures (T' < T,). The more
general question of mathematical mechanisms underlying phase transitions was
to occupy Mark’s thoughts off and on for the remainder of his life. The
mechanism for the spherical model turns out to be rather special and in fact the
low temperature behaviour of the model is rather unphysical.

Mark published three further papers on the spherical model. The first of these
[K118], showed how to evaluate the partition function without using steepest
descents, and also provided the first proof of an observation by Gene Stanley [8]
that the spherical model could be obtained as a limit of a sequence of so-called
n-vector models in which the Ising spins are replaced by n-dimensional unit
vectors. Paper [K143] considered certain modifications of the spherical model
which are more “Ising-like,” and his final paper on the subject [K149], was
concerned with computation of correlation functions and their relationship with
corresponding quantities for the so-called mean spherical model in which the
spherical constraint is satisfied “on average.”

The year 1952 saw Mark’s second paper in statistical mechanics: the joint
paper [K59] with John Ward on “A combinatorial solution of the two-dimen-
sional Ising model.” This paper was based on an earlier observation by van der
Waerden in 1941 [10] which reduced the problem of evaluating the partition
function of the two-dimensional Ising model to the problem of counting closed
polygons on the underlying lattice. In this formulation the partition function
becomes, essentially, the generating function for the associated combinatorial
problem. The idea Mark and John Ward had during their coincidental visit to
the Institute for Advanced Study in Princeton during the 1951-52 year was to
“do the counting” with the aid of a matrix whose determinant yielded the
generating function. There is no problem in associating cycles in the expansion of
a determinant with closed oriented polygons but one needs to count unoriented
polygons. Mark and John cleverly overcame this difficulty by essentially consid-
ering the lattice together with its mirror image. There still remained, however,
the problem of “cancelling” the unwanted minus signs in the expansion of the
determinant.

The actual process used to construct the appropriate matrix was in fact a
shrewd piece of experimental mathematics. I recall Mark telling me that they
tried so many matrices that they lost count of the number and merely noted the
weight of the paper wasted. As Mark recounted the story he finally got the
correct matrix on New Year’s Eve 1951. John Ward was apparently out playing
tennis and the only person Mark could find to break the good news to was Bram
Pais who was all dressed up in a dinner suit and obviously on his way to a party.
The paper concluded, in typical Kac fashion, with an acknowledgement to
“many of our friends for the healthy pessimism they showed during the early
stages of this work.”

The “combinatorial approach” is now a standard method of dealing with
problems in lattice statistics [9], but these days the Pfaffian of the matrix (which
is roughly speaking “half of a determinant”), rather than the determinant, is
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used in the counting. Mark always found it amusing to recall that in “doubling
the lattice,” he and John Ward had inadvertently discovered Pfaffians.

In the alternative and more common algebraic approach to the Ising model [9]
the partition function is expressed as the trace of a matrix, specifically,

Z = Tr(T")

where T is the so-called transfer matrix. In one dimension 7 is the number of
spins in the chain and T is a 2 X 2 matrix. In two dimensions T is 2™ X 2™ where
m is the number of rows and n in this case is the number of columns in the
lattice.

To obtain this form for Z one writes the Boltzmann factor as a product over
contributions from columns and interactions with their nearest-neighbour col-
umns. Summing over column configurations then becomes equivalent to matrix
multiplication and if the last column is connected to the first, one obtains the
above expression where T is the column-to-column transfer matrix. The size of
the matrix is determined by the number of spin configurations in each column
which is 2™ when there are m rows.

In the thermodynamic limit one has

—y/kT= lim (mn) 'logZ

m,n— oo
= lim m'logA,,
m— oo
where A, is the maximum eigenvalue of T. Since the entries of T are positive and
of the form exp(a/kT) one has, from the Perron-Frobenius theorem, that A, is
simple and an analytic function of T (nonzero). In other words, for finite m or
equivalently, for a finite-by-infinite strip, there is no phase transition.

In order to see how the nonanalyticity or phase transition develops in the
limit m — oo it is usual to consider the pair correlation function (p,pu;) for two
spins located at positions i and j on the lattice. If the spins lie in the same row
and are separated by a distance |i — j| = r, it is not difficult to show that [9]

<l"'il"‘j> -~ a(}‘z/}n)r asr — oo,

where a is some constant and A, is the second largest eigenvalue of T. For finite
m, A,/A; < 1 and the correlations decay exponentially for all temperatures. In
the limit m — oo however, long-range order sets in for T < T, due to the
asymptotic degeneracy of A, that is,

Ay/A ~1— O(e‘b”‘)' asm — oo for T < T,.

This result was obtained by Onsager [6] and forms a mathematical mechanism
for the phase transition of the two-dimensional Ising model.

Mark was always intrigued by this result and many of his publications
centred on the “mathematical mechanism” theme [K102], [K103], [K104], [K114]
and on the role of model systems in understanding phase transitions [K117],
[K115], [K127], [K153].

In 1959 Mark invented his own model [K80] consisting of a one-dimensional
gas of hard rods attracting one another with an exponentially decaying potential
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of the form
o(x) = ye 7l

between two rods separated by a distance x. Noting that v(x) is the covariance
of an Ornstein—Uhlenbeck process, Mark was able to express the partition
function for his model in terms of the spectrum of an integral operator, in much
the same way as one expresses the partition function for the Ising model in terms
of the spectrum of the transfer matrix. Again, the free energy in the thermody-
namic limit is simply expressed in terms of the maximum eigenvalue A, of the
integral operator.

Although an explicit expression for A, . could not be found, Mark noted that
in the limit y — 0 +, corresponding to ‘a weak long-ranged potential, one
recovers the classical van der Waals theory of gas-liquid condensation. This
limit was examined in great depth and detail in three classic papers [K91], [K92],
[K93] published jointly in 1963-64 with George Uhlenbeck and Per Hemmer
where, among other things, the role of asymptotic degeneracy of the spectrum is
analysed as a mechanism for the phase transitions. Similar models consisting of
Ising spins interacting with combinations of nearest-neighbour and weak long-
ranged exponentially decaying interactions were formulated by Mark [K88] and,
with various collaborators, studied in the limit y - 0 + [K90], [K110] where one
recovers the classical Curie-Weiss theory of magnetism. Correction terms to the
classical theories were studied for small y, particularly in the neighbourhood of
the phase transition point; the focus of these studies again aimed at elucidating
the underlying mathematical mechanism of the phase transition.

Mark’s models instigated renewed interest in the classical theories and their
range of validity. Lebowitz and Penrose [4], for example, showed that in general,
potentials of the form

K(x) = y%f(yx)
for d-dimensional systems, yield the classical van der Waals theory in the limit
¥ = 0 + . Such potentials are now known as Kac-potentials in recognition of
Mark’s original contribution to this aspect of the study of phase transitions.

Mark’s other main interest in statistical mechanics was in nonequilibrium
phenomena and, more particularly, with the “problem of Boltzmann” of how to
reconcile reversibility on the microscopic level with apparent irreversibility on
the macroscopic level.

Boltzmann’s equation in its simplest form is a nonlinear evolution equation
for the probability density f(v, ¢) of finding a molecule with velocity v at time ¢
[9]. A striking consequence of Boltzmann’s equation is that the function

H(t) = Laf(v, t)log f(v,¢t)d®

is a nonincreasing function of ¢. As was pointed out at the time, this result,
called “the H-theorem,” presents a paradox since on the one hand, the micro-
scopic laws of motion on which Boltzmann’s equation is based are invariant
under time reversal, whereas on the other hand, Boltzmann’s H-theorem singles
out a preferred direction in time.
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Boltzmann realized that there was not really a paradox since the derivation of
his equation was based on a statistical assumption, the Stosszahlansatz or
assumption of molecular chaos, as well as the mechanical assumption that only
binary collisions occur.

Stated simply, the assumption of molecular chaos asserts that the probability
density for simultaneously finding a molecule with velocity v, and another with
velocity v, at time ¢ is the product f(v,, £)f(v,, t) of the corresponding single
particle densities.

Unfortunately, Boltzmann was unable to convince his critics that probabilistic
concepts were an integral part of his arguments and that objections to his
equation and H-theorem should not be based solely on mechanical consider-
ations. This apparent failure on Boltzmann’s part undoubtedly contributed to
his untimely death by his own hand.

The importance of probabilistic arguments in understanding the approach to
equilibrium was stressed again by P. and T. Ehrenfest in their celebrated 1912
article [2], and perhaps again at the instigation of George Uhlenbeck, Mark took
up the challenge in the mid-1950’s.

In typical fashion Mark introduced a model in his 1956 paper “Foundations of
kinetic theory” [K64], which in fact was a kind of spherical model, and had the
advantage that it could be analysed exactly. What he did essentially, was to
show that the model had the “propagation of chaos” property as he called it.
That is, he was able to show that if the assumption of molecular chaos held at
t = 0 then it also held at later times and, moreover, the single particle distribu-
tion function for his model satisfied a Boltzmann-like equation.

In another paper published in 1956 [K68], Mark considered a simple one-
dimensional version of Ehrenfest’s “wind-tree model” consisting of black and
white balls moving through randomly distributed “impurities” on a ring such
that whenever a ball moved through an impurity it changed colour. The model is
invariant under time reversal but Mark was able to show that by performing a
suitable statistical average over the impurities, the model irreversibly ap-
proached the equilibrium state of equal numbers of black and white balls for
almost all initial distributions of black and white colours.

Mark published several more papers on the “Boltzmann problem” theme
[K72], [K77], [K124], [K125], [K147] and in fact his last published paper [K170],
written jointly with Eugene Gutkin, was on “Propagation of chaos and the
Burgers equation.”

Apart from the interesting joint work [K97] with Ford and Mazur on
“Statistical mechanics of assemblies of coupled oscillators,” Mark’s contributions
to quantum statistical mechanics ([K120], [K126], [K129], [K135], and [K152])
were mainly concerned with the noninteracting or ideal Bose gas. Mark was
never happy with the foundations of quantum statistical mechanics but was
always intrigued by the mathematical similarities between the ideal Bose gas
and his spherical model of a ferromagnet. This was particularly apparent in his
joint paper with Bob Ziff and George Uhlenbeck [K152] in which careful
consideration was given to fluctuations and surface effects in the ideal Bose gas.
Mark also made a number of significant contributions to areas related to
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quantum mechanics ([K146], [K154], [K155], [K162], and the so-called inverse
scattering method ([K123], [K132], [K145]). His joint work with Pierre van
Moerbeke ([K131], [K137], [K138], [K140]) on nonlinear evolution equations
related to the Toda lattice is also particularly noteworthy.

A number of Mark’s publications were on the border between mathematics
and physics. Perhaps the most noteworthy of these is [K47] which contains the
first of many rigorous derivations of the celebrated “Feynman—Kac formula” in
which the solution to the (imaginary time) Schrodinger equation is expressed as
a Wiener integral, or path integral in Feynman’s formulation of quantum
mechanics, which was the motivating force behind Mark’s derivation of “the
formula.”

It is impossible to do complete justice to the enormous influence Mark’s work
had on the development of statistical mechanics and mathematical physics in
general. I have made no attempt to compile a comprehensive list of the many
published articles that were based on or influenced by Mark’s original work. I
have instead listed a few key references which may help the reader delve further
into these subjects.

In addition to his published work, Mark made substantial contributions
through his lectures and informal discussions with colleagues and scientific
associates. A notable example of this is described by Mark in a comment section
published in the collected works of George Pélya [7]. There Mark describes
discussions he had with T. D. Lee and C. N. Yang, again in Princeton during the
1951-52 year, concerning what was later to become the celebrated Lee—Yang
circle theorem [5]. Mark managed to construct a proof for a special case, after
which it was only a matter of weeks before Lee and Yang had the proof in the
general case.

I saw Mark a few months before he died and his mind was as active as ever
although his body was obviously failing him. We talked about many things
including some new ideas he had about a possible relationship between the
equation for the spherical model saddle point and correction terms in y-expan-
sions for models with “Kac potentials,” and also about some unexpected results
obtained by his last Ph.D. student, T. M. Katz, on spherical models with certain
Kac-type potentials [3].

Mark Kac will be missed but his legacy will remain strong. His style and
contributions to the scientific literature will serve as a model for generations of
future aspiring mathematical physicists.
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