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A LIMIT THEOREM FOR THE POSITION OF A TAGGED
PARTICLE IN A SIMPLE EXCLUSION PROCESS

BY ELLEN SAADA
Université Paris VI

We prove that the position of a tagged particle in a stationary simple
exclusion process satisfies a law of large numbers. For this purpose, we show
the extremality of an invariant measure for the process “seen” from the
tagged particle, and we use the ergodicity properties of the initial process.

1. Introduction. On the set of sites S = Z%, we consider the evolution of
infinitely many indistinguishable particles, according to a simple exclusion pro-
cess, which is described as follows: Let p(x, y) be a translation invariant
probability transition function on S; each site has an exponential clock with
parameter one, all the clocks being mutually independent. There is at most one
particle per site. When the clock at site x rings, the particle at x (if there is one)
chooses a site y with probability p(x, y), moves to y if the site y is vacant
and remains at x otherwise. More formally, we can define a Markov process
(m,) on {0,1)5. For every site x, n,(x) equals 1 if x is occupied and 0 other-
wise. For p € [0,1] the Bernoulli product measure », with marginals
v,{n(x) = 1} = p is an invariant measure for this process (see [7], Chapter VIII).

Here, we are interested in the asymptotic behavior of a tagged particle which
is initially at site 0, when the other particles of the underlying process have the
initial distribution »,. Assuming that p(x, y) has a finite first moment, Spitzer
has computed EX, (where X, is the position at time ¢ of the tagged particle) and
proved the existence of an almost sure limit for X, /¢ ([9]—see also [7], Chapter
VIII, Section 4). Following Spitzer, Liggett has conjectured that this limit was
constant, and therefore equal to (1 — p)X,.gxp(0,x) ([7], Chapter VIII,
Section 7).

In dimension one, in the nearest-neighbour asymmetric case, Kipnis has
proved this result ([5]), using the fact that in this particular case, there exists a
correspondence between the simple exclusion process and the zero range process.
In this paper, we prove:

THEOREM 1. Let (n,) be a simple exclusion process on Z°, such that at time
0 there is a particle at the origin (the tagged particle), and, at all sites different
from 0, the particles are placed according to the Bernoulli distribution v,.
Assume that the transition function p(x, y) is translation invariant, has a finite
first moment and moreover is not nearest neighbour in the case of dimension one.
Denote by X, the position at time t of the tagged particle. Then X,/t converges
almost surely to (1 — p)X, < 5 xp(0, x) when t goes to infinity.
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REMARK. A natural interpretation of the preceding formula is that, due to
the interaction, in the mean a fraction p of the jumps is suppressed.

We proceed as follows: To get the limit of X,/t, we introduce two auxiliary
Markov processes, the (X,, n,) process and the exclusion process seen from the
tagged particle (7x, n,). [The shift operator 7, is defined by (7, 7)(2) = 9(x + 2)
for all x and z.] This second process is clearly the image of the first under the
mapping (X.,7n.) = (7x 1) (see [4] and [7], Chapter VIII, Section 4 for more
details on this correspondence and on the construction of these processes). Then,
we show the extremality of an invariant measure exhibited by Spitzer ([9]) for
the (7, m,)-process (Proposition 3). For this, we first prove (in Proposition 2)
that the Bernoulli measures are extremal invariant for the simple exclusion
process in the asymmetric case (Liggett has obtained all the extremal invariant
measures in the symmetric case—[7], Chapter VIII).

The next problem would be to obtain a central limit theorem for X,. This
question has been completely solved in the symmetric case, by Arratia [1] [in
dimension d = 1, when p(0,1) = p(0, —1) = 1, he proved that the correct renor-
malisation was #'/4] and by Kipnis and Varadhan [6] [in dimension d > 2, and
in dimension d = 1, when the support of p(0, -) contains more than two points].
In the asymmetric case, in dimension d =1, there are proofs only when
p(0,1) = 1 (Kesten, see [9]) and when p(0,1) = 1 — p(0, —1)(Kipnis [5]). The
problem remains open in all the other cases.

2. The asymptotic behavior of the tagged particle. We first study the
simple exclusion process.

PROPOSITION 2. The Bernoulli measures v, are extremal invariant for the
simple exclusion process in the asymmetric case.

ProOOF. Let P, denote the semigroup of the process, and £ its infinitesimal
generator. For every function f on {0,1)° which depends on finitely many
coordinates, Q is given by

2f(n) = X a(x)[1 -] px (@) - f()],

x,y€S

where

n(z) ifz+#xandz+y,
7(z) = {n(x) ifz=y,
n(y) ifz=ux

If P* is the adjoint of P, in L? (v,), it is equivalent to say that the Bernoulli
measure v, is extremal mvanant for the simple exclusion process, or that there

exists no event A, with 0 < »,(A) < 1, such that P;*1, = 1, in L*(»,) ([8]). So let
A be such that P*1, = 1, in L%(»,). We have that

(PP*1,,1,) = (P, P*l,) = (14,1,).
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On the other hand, we have
[(P,P*14,1,)| < Lall2lPP*14llg < (14,14),

because P, and P* are contraction operators. So || P,P*14||, = ||14]|5, and there-
fore P,P*1, = 1, in L%(»,).
We now apply:

THEOREM (Chernoff [2]). Let e’* and e'B be contraction semigroups on a
Banach space X. Suppose C = A + B is the generator of a contraction semi-
group. Then (e'4/me!B/™\" converges to e in the strong operator topology.

Notice that the generator @* of P* is given by

2*f(n) = X n(=)[1 =] p(y, ) F(n*?) = f(n)],

x, yES

where f depends on finitely many coordinates, since we have that for every
bounded function g in L%(,),

[—P*f gdl’p = Et[ffp‘gdvp],;o: ffﬂgdvp = fgﬂ*fdvp.
The operator Q@ + Q* is the generator of a symmetric simple exclusion process,
whose speed rate is

c(x, y,m) =n(x)[1 = n(»)][p(x, y) + p(3,x)].

The semigroup P, can be extended as a Markov semigroup on IL2(up), whose
generator , is the closure of Q. Moreover, the adjoint of @, is the closure of
Q* (see[7], Chapter IV, Proposition 4.1). So, e“?+%*) jg a contractlon semigroup
on L%(y,), and (e*¥"e™*/m)" converges to e“?*%") in the strong operator
topology of L%(»,). The equality P,P*1, =1, in L%(»,) for all ¢ implies that
(P,;,P3,)"4 = 1, in L%(»,), so e‘“’*“*)l = 1, in L*(»,).

Since the measure , is extremal invariant for the symmetnc simple exclusion
process, we necessanly have that »,(A) equals 0 or 1. This proves that the
Bernoulli measures are extremal invariant in the asymmetric case too. O

For (7xm,), the tagged particle process, Spitzer ([9]) has proved that the
measure v( [n(0) = 1) is invariant (see also [7], Chapter VIII, Section 4).
Proposntlon 2 enables us to show

PROPOSITION 3. Assume that p(x, y) is translation invariant, and not
nearest neighbour in dimension one. Then the measure A, = v,(:|n(0) = 1) =
(n(0)/p)w, is extremal invariant for the simple exclusion process seen from the
tagged particle.

ProOF. We already know the invariance of A, and we argue by contradic-
tion to show its extremality. If A is not extremal, there is a set of configurations
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E invariant under the semigroup B, of (7xn,) and such that 0 <A (E) <1
Then, for the set E; = EN {n(O) =1} we have 0 < v(E;) < p, and for 7, as.
configuration n of El, Xt is almost surely in E,. Denote by F the set of all
translates of conﬁguratlons in E,. If 1 belongs to F there is a point @ in Z% such
that ¢{ = 7,n isin E,, therefore 7y, = 7, x;y, is almost surely in E, (where X/
is the position at time ¢ of the partlcle initially on a). It follows that the set F is
closed for the evolution of the (7,)-process. Then as the measure », is extremal
invariant (by Proposition 2), »,(F) equals 0 or 1. But »,(F) =0 implies that
v,(E,) = 0, which contradicts the assumptions. So »,(F) = 1. Similarly, letting
E =E°N{n0)=1}and G =U,s7_,E,, we have » (G)=1.

We now use Lemma 4, the proof of which will be given later.

LEMMA 4. In the setup of Proposition 3, for almost every configuration §,

there exists a subset of sites N = {a,b,c,a,,...,a,, by,...,b,¢,,...,¢c;} such
that:

e 7,£ € E, and 1,§ € Ey;

o £(c)=0=4¢(a) = -+ =¥&a,)

e a,...,a, are all different from ¢, b,,..., b, froma and c,,..., c, fromb;

L4 p(a9 al)p(ah a2) e p(am b) > 0, p(b: bl)p(bl’ b2) e p(bl’ C) > 0,
p(a, c)p(ey, ¢3) -+ p(cp, €) > 0.

This means that there is a path from a to b avoiding ¢ through empty sites,
from a to ¢ avoiding b, and from b to ¢ avoiding a. Therefore, let £ be a fixed
configuration, and N the subset of Z¢ given in the lemma. Let T' be a fixed real
number, and H the subset of the trajectories of the (n,)-process for which, before
time T, no particle can leave or enter N.

Using the basic coupling ([7], Chapter II) based on independent Poisson
processes of rates p(x, y) for all x, y € S, we have that H has a nonvanishing
probability, since the absence of jumps between N and N° is expressed by the
absence of points in [0, T'] for the corresponding Poisson processes, and since the
set N is finite. We also have that the (n,)-process has before time T' the same
law as the product of two independent exclusion processes (n, ,) and (7, )
taking place, respectively, on N and on N°.

Since the set N is finite, we can explicitly construct the evolution of the first
process between times 0 and 7, if the initial configuration is £ = (§,, §,). Using
two different trajectories, we obtain at time T' the configurations &5 = (§, 1 &2, 1)
and £; = (¢ 15 £, 7). We assume for this purpose that each clock of N rings at
most once before T.

CONSTRUCTION OF £, ;. Between times 0 and T, first we get the site b
vacant and the site ¢ occupled The particles go through the intermediate sites
by=0b, by,..., b, b, = cinsuch a way that at time T, except for b and c, the
occupled 51tes are the same as at time 0. More precisely, let i, = 0, and for &2 > 1,
if i,_, <l+1,leti,=inf{i,_; <j<l+1; &¥;) = 0}. The particles go succes-
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sively from b, _, to b,, from b, _, to b, _;,... and from b;  to b; ., forall
O0<i,=<sl+1

Then the particle on site a goes to b through the sites a,, ..., a, (it is possible
to perform the jumps in this order, because we have assumed a,,..., a, vacant).
All the other particles in N do not move.

Initially, 7,£, the configuration seen from a, was an element of E,, which is
closed for the evolution of the semigroup P, The particle being at a at time 0 is
at b at time T, so 7, is an element of E,.

CONSTRUCTION OF £{ ;. Between times 0 and T, we get the site a vacant
and the site ¢ occupied: The particles go through the intermediate sites c,,..., c,
in such a way that at time T, the occupied sites are the same as at time 0 (except
for a and c). The other particles in N do not move before time T.

Since 7,¢ was an element of E,, and since the particle which was on b does
not move during [0, T'], the configuration 7,£/ is still an element of E,.

Finally, the configurations ¢, and £/ are identical, and this gives a contradic-
tion since 7,ér = 1,é; cannot belong at the same time to E, and E,. The
assumption »,(F) = 1 = »,(G) leads to a contradiction, so we have A(F)=0o0r
A(G) =0, thus A(E)=0o0r A (E) = 1. The measure A, is extremal invariant.

O

ProoF oF LEMMA 4. We can assume without loss of generality that p(x, y)
is irreducible.

We first study the case of the dimension one. Since p(x, y) is not nearest
neighbour, there is a path from 0 to 1. So there are two integers £ and q such
that p(0, &) > 0, p(0,q) > 0, k and q relatively prime and (¢ = 1 and 2 > 1) or
(k> 0, g <0and |k > |q]).

Let £ be a fixed configuration. Since »,(F) = »,(G) = 1, there exist two points
u and v in Z¢ such that 7,6 € E, 1,¢ € E2 and u < v. Among the intermediate
sites on the path from u to v, there are necessanly n + 2 consecutive sites
a,a,...,a,, bsuchthat {§(a,)= -+ =§(a,) =0, 1,6 € E, and 1,£{ € E,. Let
¢ belong to the infiniteset C, = {(x € Z; x > b, x > a, x > a,,...,x > a, and if
x — a = ak + Bq with a, B € N, then a > 0} such that {(c) = 0. We can write
the numbers ¢ — a, b — a, ¢ — b as linear combinations of £ and q, since k£ and
q are relatively prime. To go through a path from b to ¢ which avoids a, a
particle performs the transitions of step %, and then those of step q. To move
from a to ¢ avoiding b, a particle performs first the transitions of step £ if b — a
is a multiple of g, and otherwise those of step q first.

We now turn to the case of the dimension d > 2. Because of the irreducibility
of p(x, y), we can assume without loss of generality that p(0,(1,...,0)) >
0, p(0,(0,1,0,...,0)) > 0,..., p(0,(0,...,0,1)) > 0. On Z*¢, we define the partial
order relation: x < y if it is true coordinatewise. Then, if x < y, there is a path
from x to y.

From now on, the proof follows verbatim the case d = 1, except that it can
happen that neither u < v nor v < u. We then pick an element w of the infinite
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set C = {x € Z% x > u and x > v} such that £(w) = 1. Suppose that 7,{ € E,.
We just replace # and v by u and w. Later on, the point c¢ belongs to
C,={x€Z%x2bzaand a,b,x not on a “horizontal” line}. It is clear that
there exists a path from b to ¢ avoiding a since a < b < ¢, and that there exists
a path from a to ¢ avoiding b since a, b, ¢ are not on a “horizontal” line (so the
path can possibly move around b). O

We can now proceed to the

ProoF OF THEOREM 1. For every z belonging to S, denote by N7 the
number of jumps of size z of the tagged particle before time f; notice that
e, X,=X,cge; - 2N7, where (e;, 1 < i < d) is a basis of Z% Since (1x7,) is a
Markov process, the quantities

2 t
Cf =Ny - fop(O, 2)1((ry n)2)=0) @S

are mean zero martingales without common jumps, so they are orthogonal. (All
the properties of pure jump martingales that we use in this paper are reviewed in
[3], pages 242—245). Moreover, the condition ¥, . ¢||2|| p(0, 2) < co implies that

13
Z el . thz = el . Xt - E el . zp(O, z)_/(;l(("xs"ls)(z)=0} dg

zeS zeS

and X, _gle; - 2|C} are also mean zero martingales. Hence we have

1
E(el . Xl) = E( Z el . Zp(O, 2)/(; 1((7Xsns)(2)=0) ds)

(1) zeS
=(1-p) X e-2p(0,2)
zeS
and
@ € sup le,- X)) SB[ T les- 2V ) = (1= p)t T Jei- 2Ip(0, 2):
O<sx<t zeS zeS

[Remember the initial distribution of the (7xn,) process is the invariant distribu-
tion A .]

Novfr, to obtain the limit of e; - X,/t, we write for every s 20, ¢, X, =
e, X, + (e; - X))o 0, [where the shift operator 6, is defined on the trajectories
by 6,((X.,n.)) = (X, n,.)] and then

ft(ei’Xl)oosds=ft(ei'Xs+1_ei'Xs)ds
0 0
=e¢- X, + fl(ei’Xs)°0td9—flei'Xsds,
0 0
because for t < u, e;- X, =¢e;- X, + (e;- X,_,)°0,.

First, since sup, ., .,|e; - X,| is almost surely finite by (2), (1/¢)/e; - X, ds
converges a.s. to zero when ¢ goes to infinity.
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Then, we write

(where [¢] is the integer part of ¢), and we use (2), the stationarity of the (x1,)
process, and a Borel-Cantelli argument to conclude that (1/¢)/j(e; - X,)° 0 ds
converges a.s. to zero when ¢ goes to infinity.

Finally, the ergodicity of A, (this measure is extremal invariant by Proposi-
tion 3, and therefore ergodic—see [8]) implies the almost sure convergence of
(1/8)fs(e; - X1)°6,ds to E(e; - X;) = (1 — p)X,cse; - 2p(0, 2).

So, for every 1 <i < d, (e;- X,)/t converges as. to (1 — p)X,cse; - 2p(0, 2)
when ¢ goes to infinity. O

[t] (f Y le; - 2| N2 ds) 04

z€eS
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