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THE INFINITELY-MANY-SITES MODEL AS A
MEASURE-VALUED DIFFUSION!

By S. N. ETHIER AND R. C. GRIFFITHS
University of Utah and Monash University

The infinitely-many-sites model (with no recombination) is reformulated,
with sites labelled by elements of [0, 1] and “type” space E = [0,1]%+. A gene
is of type x = (x¢, *1,...) € E if xy, x,... is the sequence of sites at which
mutations have occurred in the line of descent of that gene. The model is
approximated by a diffusion process taking values in £9(E), the set of purely
atomic Borel probability measures p on E with the property that the
locations of every n > 1 atoms of p form a family tree, and the diffusion is
shown to have a unique stationary distribution fi. The principal object of
investigation is the f(dp)-expectation of the probability that a random
sample from a population with types distributed according to p has a given
tree structure. Ewens’ (1972) sampling formula and Watterson’s (1975) segre-
gating-sites distribution are obtained as corollaries.

1. Introduction. The infinitely-many-sites model (or infinite sites model) in
molecular population genetics was introduced by Kimura (1969, 1971) and has
been studied by Ewens (1974), Watterson (1975), Li (1977), Griffiths (1981, 1982),
Strobeck (1983) and others. Our purpose here is to provide a rigorous mathemati-
cal foundation for a diffusion approximation to the model (with no recombina-
tion) and to investigate its properties. We do this by first reformulating the
model in a more tractable way. To indicate our basic approach and main results,
we begin by describing the infinitely-many-sites model as it might typically be
formulated. It depends on M € N = {1,2,...} and « € [0, 1].

Consider a population consisting of M genes per generation. Each gene has an
infinite number of nucleotide sites, and at each site there are two or more
possible nucleotides, the original one and mutant ones. The “type” of a gene is
given by a sequence of 1’s and 0’s indicating at which sites a mutation has
occurred in the gene or one of its ancestors. The reproductive mechanism
assumes in effect that each of the M genes in generation 7 + 1 selects a parent
gene at random (with replacement) from generation 7. (A truly diploid model
could be formulated, but it would lead to the same results.) The offspring gene is
of the same type as the parent gene with probability 1 — »; mutation occurs
with probability «, in which case a 0 changes to a 1 at a site where no mutation
has occurred in any gene. Which site is chosen for the mutation does not matter,
as sites are unordered.

Perhaps the best-known result for this model is due to Watterson (1975). Let
us say that a site is segregating with respect to a sample of genes if at least one
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1 and at least one 0 occur at that site in members of the sample. Fix 6 > 0.
Watterson showed, assuming stationarity, that if « = (§/2M) A 1and M — oo,
the number of segregating sites in a sample of size n > 2 converges in distribu-
tion to the convolution

n;l . J

(1.1) X geometric (j " 0),

where geometric (p) is the probability measure on Z , = {0,1,...} with mass
(1 — p)*p at k.

We propose the following alternative version of the infinitely-many-sites
model. Let us arbitrarily label the sites by elements of [0,1]. The “type” of a
gene is given by the element x = (x,, x,,...) of E = [0,1]%+ such that x,, x,,...
is the sequence of sites at which mutations have occurred in the line of descent of
the gene in question. (In particular, x, is the site at which the most recent
mutation in that line of descent has occurred.) Again, each of the M genes in
generation 7 + 1 selects a parent gene at random (with replacement) from
generation 7. If the parent gene is of type x € E, then the offspring gene is of
type x with probability 1 — u and of type (Y, x) with probability u, where the
conditional distribution of Y is uniform on [0,1]. At a time when the M genes
are of types Xx,,...,X,, the state of the model is given by the probability
measure

v=M"13Y 3§,

i=1

where 8, denotes the unit mass at x. Thus, our model is a Markov chain {r*),
7=20,1,...} in a subset of #(E), the set of Borel probability measures on E. In
this context, we say that a site z € [0, 1] is segregating with respect to a sample
of n genes of types x,,...,x, if z appears in at least one but not all of the
sequences Xj,...,X,,.

Before proceeding, we attempt to show that our model is essentially equiv-
alent to the standard one. Consider a sample of three genes from the standard
model consisting of types

(...,1,1,0,0,0,0,0,...),

(1.2) (...,1,0,1,1,1,0,0,...),
(...,1,0,1,0,0,1,0,...)

and a sample of three genes from our model consisting of types

(71 xg5 X1, Xg,--.),
(1.3) (245 335 Yas Xy %15 Xa5-- ),
(ys’ Yo X5 X1 Xgseee )’
where V1> Yas+e» Y55 Xgs Xq,... are distinct. In both cases we can infer that the

three genes have a common ancestor, five segregating sites and a (condensed)
family tree of the form shown in Figure 1. Thus, ignoring ordering of columns in
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(..1,0,1,1,1,00,...)
(94,93,92%0'*1»---)

(...1,0,1,0010..)

(..1,0,1,1,000..) (US»UZrXO’xb-“)

(Ys.Yp.KgoKpse-r)

(..1,1,00000..)
(91,X0,X],...)

(..10,1,0000,.)
(Yo, R0, R1see)

(..1,000000..)
(XO’XL-")

(1.2) and labelling of sites in (1.3), we see that (1.2) and (1.3) contain the same
information in different forms. We emphasize that a branch in the tree of Figure
1 corresponds to the number of generations in that line of descent needed to
. produce a mutation, not simply to a single generation.

Now, letting u = (§/2M) A 1, a result of Kurtz (1981) implies that

(1.4) (v, t> 0} = {p,, t = 0}in Dyz,[0, ) as M > oo,

where {p,, ¢ > 0} is a Markov process (in fact, a diffusion) in #(E) correspond-
ing to the generator G defined on functions ¢ € C(#(E)) of the form

(1.5) o(p) = F((frs)sees{frs 1))
by '

i, 1

k
Go(n) =3 X ((fily by = o X by BOF 5 Fro )5 s 1))
(1.6) . ‘

k
+%0 gl«fi’ A X}“) - <fi, l"))F,i«fl’ "")""’<fk’ l“>)’

where k € N, F is a polynomial on R%, f,,..., f, € C(E), {f, 1) denotes [fdp,
F,; and F;; denote first- and second-order partial derivatives, and A denotes
Lebesgue measure on [0,1]. Of course, #(E) has the topology of weak
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convergence. This measure-valued diffusion limit of our reformulation of the
infinitely-many-sites model is the subject of this paper.

It may be helpful to attempt to relate (1.5) and (1.6) to more-familiar
material. We point out later that f,,..., f, may be chosen bounded and Borel
measurable (not necessarily continuous), so let f; = x,, (the indicator function of
A;), where A,,..., A, is a partition of E into Borel measurable subsets; and put
P; = {fi, 1) = u(A;). Then (1.5) and (1.6) become

o(r) = F(py,..., pp)

and
k
Go(p)=3% X Pi(aij—Pj)F,ij(le--,Pk)

i, j=1

k
+ %0 Z (qz _pi)F,i(pl’”-, pk)9

i=1

where g; = (x5, A X p) = (A X p)(A;) (which is not necessarily a function of
P1---» Pp), and this is reminiscent of the generator (or backward operator) for
the usual k-allele diffusion model. It may also help clarify the second sum in (1.6)
to write it as

k
X (Bfy, kYF ({frs 1Y, (Fis 1)),

i=1

where
Bi(x) = 40 [ ((5,%) = f(x))M(dy).

The operator B is the generator of a pure jump Markov process in E that jumps
from x € E to (Y,x) € E with rate /2, where Y is uniformly distributed on
[0,1]. Thus, B describes the mutation process.

In Section 2 we give a more precise statement of the above result, i.e., (1.4),
and show that {u,, ¢ > 0} has a unique stationary distribution j and is ergodic.
Moreover, letting Z,(E) = {p € #(E): p is purely atomic}, we show that
(P(E)) =1and P{p, € P(E)forall t>0} =1.

Section 3 indicates the relationships between {u,, ¢ > 0} and the infinitely-
many-alleles diffusion model, and between {u,, ¢ > 0} and the finitely-many-sites
diffusion model. In particular, it is shown that the #[0,1]-valued process of
zeroth marginals, {u,(- X E), ¢ > 0}, is the measure-valued infinitely-many-
alleles diffusion model, and that {u,, ¢> 0} is the limit in distribution of a
measure-valued m-site diffusion model as m — 0.

In Section 4 we examine the family-tree structure of a random sample from a
population with types distributed according to the random measure p having
distribution f and according to i, for each ¢ > 0.If n € N and (x,,...,x,) € E",
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let us say that (x,,...,x,) is a tree if
the coordinates x;;, j =0,1,..., of x; are distinct for fixed

7 jeq,...n),

if i,i’ € {1,...,n}, j,j €Z, and x;; = x,,, then x; ;,,=
(18) X, J”forl—O 1,. ! v !
(1.9)  there exist jl,...,jn€Z+ such that x,; = --+ =x,;.

Informally, (1.7) means that mutations never occur more than once at the same
site; (1.8) means that if two genes have ancestors with the most recent mutations
in their respective lines of descent at the same site, then the ancestors are of the
same type; and (1.9) means that every n genes have a common ancestral type,
hence a common ancestor.

Deﬁning PAE) = {p€ P(E): p(J,) =1 for every n € N}, where 7, =
{xy...,Xx,) € E™ (x4,...,X,) is a tree} and p” denotes the n-fold product
measure g X p X +++ Xpu and is the joint distribution of an ordered random
sample of n types from a population with types distributed according to p, we
show that

(1.10) | i(2XE)) =
and that P{p, € #(E)} = 1 implies
(1.11) P{p, € PXAE)forall t >0} =

To prove (1.10) we show first that

1]@)

for all s€Z, and n €N, where J, , = {(x,...,X )E E™ (x4,...,X,) is a
tree with s segregating sites} and the rlght-hand s1de is the mass at s of the
probability measure (1.1), interpreted as §,, (the Kronecker delta) when n =1,
i.e., Watterson’s result holds exactly.

Moreover, a recursive system of linear equations is obtained for the probabili-
ties

(113) [rH(T)(dp),

where n € N and T c E™ is an equivalence class of trees belonging to a certain
quotient set. Note that (1.13) is the i(dp)-expectation of the probability that an
ordered random sample of size n from a population with types distributed
according to p forms a tree of class T. Here (x,,...,X,) is equivalent to
(¥y5---»Y,) if the latter equals the former after relabelling sites, i.e., if there
exists a bijection {: [0,1] - [0,1] such that y,; = {(x;;) for i=1,...,n and
j=0,1,.... The solution of these equations remains an open problem, but the
relationship to (1.12) can be understood by considering the simple case n = 2.
For i,je€Z, let T,; be the equivalence class of trees of the form

((%gs ooy Xi_yy 205 215w+ )y (Jos v+ s Yj—15 205 215 - --)) Where xo,..., %;

(1.12) f p"(7;, n)i(dp) = [ " geometrw(
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Yos+++s Yj—1» Zg» 215 .- - are distinct, and put
b; ;= f"'2(Ti,j)ﬁ(dp')'

Then it can be shown that

(1.14) 2(1+0)p;, ;=0p; ;_, +0p,_, ; + 28,8,
for all i, j€ Z_, where p, ., = p_; ;= 0, and hence that
+ i, s J
. . i+
1+ 4 1
1.15 .= .
(1.15) P ( i )(2(1+0) 1+6

It follows that the number of segregating sites (= i + j for samples from T; ;) is
geometrically distributed under [u?(-)i(dp) with parameter 1/(1 + #), and
therefore (1.15) generalizes (1.12) when n = 2.

Strobeck (1983) derived a recursive system of linear equations for the prob-
abilities of trees somewhat similar to ours in the case that the number of distinct
types in the sample is at most three. See Remark 4.7.

While the Ewens (1972) sampling formula would follow from the results of
Section 3, we give instead a combinatorial derivation based on the equations for
the tree probabilities (1.13). It is clear, for example, how to do this when n = 2
using (1.14).

In Section 5 we give three probabilistic representations of the probabilities
(1.13). The first involves a dual Markov process that in effect “chops down the
tree.” The second is based on a Markov chain that in effect “grows the tree.”
The third is related to Kingman’s (1982) coalescent process. In lieu of explicit
formulas such as (1.15), these representations may prove useful for purposes of
simulation. Also included in this section is a measure-theoretic representation in
terms of an analogue of what has been referred to as the frequency spectrum.

2. Characterization of the diffusion. Our first theorem sutmmarizes some
known results involving certain measure-valued Markov processes occurring in
population genetics. To state it we need to introduce some notation and defini-
tions.

Let E be a compact metric space, Z(E) the Borel o-algebra of E, B(E) the
space of real, bounded, Borel functions on E, #(E) the set of Borel probability
measures on E with the topology of weak convergence, and #,(E) the set of
purely atomic Borel probability measures on E. For f € B(E) and p € #(E)
denote [fdp by ( f, ). Cg[0, c0) is the set of continuous functions w: [0, 0) = E
and is given the topology of uniform convergence on bounded intervals. Dg[0, o)
is the set of right continuous functions w: [0, c0) — E that have left limits and is
given the Skorohod topology, and = denotes convergence in distribution.

Given a set A € B(E) X B(E), a solution of the Cg[0, o) martingale prob-
lem for A is a process {X(t), ¢ > 0} with sample paths in Cg[0, c0) such that
f(X(t)) — [{g(X(v))dv is a martingale with respect to o(X(v): 0 < v < ¢) for -
every (f, 8) € A. The Cg[0, c0) martingale problem for A is well posed if, for
each v € #(E), there exists a solution of the C[0, co) martingale problem for A
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with initial distribution » and every such solution induces the same distribution
on Cg[0, o). In this case the family of solutions (one for each initial distribution)
satisfies the Markov property.

If {f,} € B(E)and f € B(E), we write bp-lim,, _, .. f,, = f (“bounded point-
wise” limit) if sup,,sup, < g|f.(*¥)| < o0 and lim,, , _ f,.(x) = f(x) for every x € E.
A set A C B(E) X B(E) is bp-closed if whenever {(f,,&.)} €A, (f,8) €
B(E) X B(E), bp-lim,, _, f, = f, and bp-lim,, _, .&,, = & we have (f, g) € A.
The bp-closure of A [denoted by bp-cl(A)] is the smallest bp-closed set contain-
ing A. If A is a subspace of B(E) X B(E), then so is bp-cl(A).

THEOREM 2.1. Let E be a compact metric space, let 6 be a fixed positive
constant, let Q(x, dy) be a Feller transition function on E X #(E), and define
the bounded linear operator B on B(E) by

(2.1) Bf(x) = 30 [(f(3) - f(x))@(x, dy).
[The Feller condition on @ implies that B maps C(E) into C(E).] Let
2= {¢ € C(P(E)): (1) = F({ f1, £)s--+s{ f2r 1Y),
k € N, Fis a polynomialon R*, f,,..., f, € C(E)}

and

2" = (6 € BP(E)): () = (1,4, k€N, [ < B(EH)),
where p* € P(E*) denotes the k-fold product measure p X p X - -+ Xp. For
¢ € D* of the form ¢(p) = (f, p*), define

k
22)  Go(w)= ¥ ((Tf, w0y = (f,u%) + L (BOf, by,

1<i<j<k i=1
where ¥,;: B(E*) - B(E*™") and BY: B(E*) —» B(E*) are given by
(2.3) \I’ijf(xl, x2,..-,xk_1) = f(xl,...,xj_l, xi, xj,...,xk_l)

and
B(i)f(xl""’xk) = B[ f(xl""’xi—l’ ’ z+1’ ’xk)](xz)
= %0_/‘( f(xl"""xi—l’ y’xi+1’~“’xk)
—f(xy,...,2,))Q(x;, dy).
Note that 2 C 9. Let
A={(9,G9):0€2} and A*={(¢,Go): o€ D"}.
Then the following conclusions hold.

(a) The Cygy[0, ) martingale problem for A is well posed.
(b) Let A = {(¢, V) € B(#(E)) X B(?(E)): for each solution {u, t= 0}
of the Cp [0, c0) martingale problem for A, ¢(n,) — W (p,)dvis a o(p,: 0 <
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v < t)-martingale whose sample paths belong to Cgx[0, c0) with probability 1}.
Then A* C bp-cl(A) c A.

(© If {p, t =0} is a solution of the Cp [0, 0) martingale problem for A,
then P{p, € #(E) for all t > 0} = 1, regardless of the initial distribution.

(d) For each M € N, let Py(x,dy) be a transition function on E X Q(E );
define the bounded linear operator B,, on B(E) by

(2.4) By f(x) = M[(#(3) = (%)) Py(=, dy);

define the Markov chain (YY(1), 1=0,1,...} in EM=E X --- XE (M fac-
tors) by requiring that, conditionally on YM(7) = (x,,...,x3,) € EM, the com-
ponents of YM(r + 1) are independent with common dzstrzbutzon

TIEM \Py(x;,-); define py: EM — P(E) by pp(xy,..., %p) = MT'EM S, ;
and define the Markov chain (v, 1=0,1,...} in a subset of P(E) by
v = p, (YM(7)). Suppose that

(2.5) Jm ||By f - BfI =0, f€& C(E).

Then, if {p,, t = 0} is a solution of the Cy [0, c0) martingale problem for A,

and if v§i™) = p in P(E), we have (v}, t = 0} = {p,, ¢ > 0} in Dy z,[0, ).
(e) For eachm € N, let E,, be a closed subset of E, let Q,(x, dy) be a Feller

transition function on E,, X #(E,,), define B,, and A,, in terms of E,, and Q,, in
the same way that B and A were defined in terms of E and @, and suppose that

(2.6) lim sup |B,f(x) — Bf(x)|=0, fe C(E).

m-o yeE,
If {p{™, t = 0} is a solution of the Cpz_)[0, 0) martingale problem for A,, for
eachmeN, if {p,, t=0}isa solution of the Cpg)[0, 0) martingale problem

© for A, andif p§® = p, in P(E), then {(p{™, t = 0} = {p,, t > 0} in Cpg,[0, c0).
[Here we regard #(E,,) as a subset of #(E).]

ProoOF. (a) and (d) are due to Kurtz (1981), though in the case of particular
interest [see (2.7) and (2.9) below], (a) follows from Fleming and Viot (1979). For
(b), (c) and (e), see Ethier and Kurtz (1986b). O

In the sequel (except where the contrary is specifically indicated),
(2.7) E=1[0,1]*

and 0 is a fixed positive constant. The description of {(#*), 7=0,1,...} in
Section 1 indicates that in Theorem 2.1(d),

(2.8) Py(x,A) = (1 — u)8,(A) + u jo '8 (A)A(dy)

for-all x € E, A € #(E), and M €N, where u=(/2M)A 1 and A is
Lebesgue measure on [0, 1]. Consequently, (2.5) holds with

(2.9) Qx, A) = ['8,,5(A)Ndy)
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for all x € E and A € #(E), and it follows that the conclusions of Theorem 2.1
hold in this context. Throughout the remainder of the paper, B, 2, 9%, G, A,
A" and {p,, t >0} are as in Theorem 2.1 [assuming (2.7) and (2.9)]. Notice
that G¢ is given by (1.6) if ¢ € 9.

Let us turn next to the question of stationary distributions. We begin with a
lemma that will prove useful here as well as in Section 5. )

LEMMA 2.2. Let C C bp-cl(A) and D = {¢: (¢,¢¥) € C for some ¢}, and
suppose that to each ¢ € D there corresponds a nonnegative integer, degree(¢),
such that degree(¢) = 0 implies ¢ = constant. Assume that for each m € N and
(¢, ¥) € C with degree(¢p) = m, there exist y> 0 and m € span{{ € D:
degree(§) < m — 1} such that

(2.10) y=—v$+n
If i, 7 € P(P(E)) are stationary distributions for {p,, t > 0}, then
(2.11) lim E[¢(k)] = [odi= [6d5, ¢€D.

Proor. With ¢, ¢, y and 7 as in (2.10),
(212)  E[o(n)] ~ E[6(no)] = [{~7E[6(k.)] + Eln(s,)]} v

for all ¢ > 0, and

(213) 0= [{-vp+n}di= [(-vé+mn)ds.

By (2.12) E[¢(p,)] is continuous in ¢£> 0 for all ¢ € D, and hence (since
1 € span D) continuously differentiable. The second equality in (2.11) follows
- from (2.13) by induction on m. Also, (2.12) and the first equality in (2.13) imply
[cf. Ethier and Kurtz (1981)]

E[o(u)] - [odh| < e {Els(no)] - fodi]

(2.14)

¢
+e‘7‘f e’ dv
0

E[n(n,)] - [ndi
for all ¢ > 0, so the first equality in (2.11) follows by induction on m. O

THEOREM 2.3. {p,, t > 0} has a unique stationary distribution i € P(P(E))
and is ergodic. Moreover, i(#(E)) = 1.

ProoF. Because {p,, t > 0} is a Feller process in a compact state space, the
existence of a stationary distribution is automatic. Given R € N, m,,..., m, € N,
and g;; € C[0,1] for i =1,...,k and j=0,...,m; — 1 with g; ,, _, non-con-
stant, put

k m;—1
o(p) = iUl(fi,H)» where fi(x) = jl:[ogij(xj):
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and define degree(¢) = -+« +m,. Then
Go(k) = —[( ) +30Jo(w) + 3T Chibowy TT Chom)
i#) L l+i,j
‘0Z<f,,?\ X “>Jl:[,<f””>

and the (i, j)th term in the first sum on the right has degree at most m; vV m; +
L} 144, jMy» while the ith term in the second sum has degree m; — 1 + ZJ jeilje
Thus, the class
C={(¢,G9): pasin (2.15)} U {($,0): ¢ constant}

satisfies the conditions of Lemma 2.2, and since the linear span of D is dense in
C(Z2(E)), uniqueness of stationary distributions and ergodicity follow from the
lemma. The assertion that i(#,(E)) = 1 is an immediate consequence of Theo-
rem 2.1(c). O

In what follows, [i denotes the unique stationary distribution of {p,, t > 0}.

3 Relatlonshlp to other models. We observe first that if {»), 7=
..} is the #(E)-valued infinitely-many-sites Markov chain model of Theo-

rem 2 1(d) [assuming (2.7) and (2.9)], then the £[0, 1]-valued process {»*)(- X E),
T =0,1,...} is precisely the measure-valued infinitely-many-alleles Markov chain
model. It is therefore not surprising that the £[0, 1]-valued process {p,(- X E),
t > 0} is precisely the measure-valued infinitely-many-alleles diffusion model
discussed by Ethier and Kurtz (1986a).

Let A, be the operator A of Theorem 2.1 with the roles of E and @Q(x, -)
played by [0,1] and A (Lebesgue measure on [0,1]) for every x € [O 1]. Deﬁne
£ E - [0,1] by £,(%) = x, and £;: P(E) > P[0, 1] by £(n) = pé; "

THEOREM 3.1. {u,&;", ¢ > 0} solves the Cgp 1[0, 0) martingale problem for
A, and has ji§," as a stationary distribution.

ProOF. Let G, and 9, be related to G and 2 in the same way that A, is
related to A. Noting that o £, ) = ( f, o) and (foo, A X p) = (£, A)
for all f € C[0,1] and p € #(E), we find that ¢ £, € 9 and

(3.1) G(d£,) = (Gep)° &
for all ¢ € 9,,. The first conclusion is an immediate consequence of this, and the

second follows from (3.1) and Echeverria’s theorem [Ethier and Kurtz (1986a)].
O

Another way to view the infinitely-many-sites model is as a limit of m-site
mobdels as m — 0. Below we attempt to make this relationship precise. We begin
by describing the m-site model as it might typically be formulated. It depends on
MeN, meN, reN- {1}, u€[0,1], and a one-step transition matrix
(Tedr,1=1,..., rWith @, = O0for k=1,...,r
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Consider a population consisting of M genes per generation. Each gene has m
nucleotide sites, and at each site there are r possible nucleotides (usually, r = 4),
labelled 1,2,..., r. Thus, the “type” of a gene is given by an element of

L,={1,...,r}™

The reproductive mechanism assumes in effect that each of the M genes in
generation 7 + 1 selects a parent gene at random (with replacement) from
generation 7. The offspring gene is of the same type as the parent gene with
probability 1 — u; mutation occurs with probability u, in which case a site is
chosen at random, and given that the nucleotide appearing at that site in the
parent gene is k&, it is replaced at that site in the offspring gene by the nucleotide
! with probability ;. Sites are unordered as in the infinite case, though for the
purpose of analyzing the model it is more convenient to order them, and so we
adopt this convention. Letting p™ (7) denote the vector of (relative) type
frequencies in generation 7, the above description indicates that {p™™(r),
7=0,1,...} is a Markov chain in

Am,M = {p € Am: Mp € Zim},

An={p=(Pecz. € [0.11": T p.=1),

a€L,

whose transition probabilities can easily be written out explicitly.

Moreover, if u = (6/2M) A 1 and the initial distributions converge as M —
o0, then it is easily shown that p™ (M - ]) = p™(-) in D, [0, ) as M — oo,
where p™(-) is a diffusion process in A,, corresponding to 7, = {(f,¥9,f):
feCA,),

gm = % Z pu(saﬁ _pﬁ) aa aB
a,BeL,

(3:2) m

+ %0 Z —P, t (l/m) Z Z 7rk,o:jpaz(j, k) aw

a€l, Jj=1k=1

and a(j, k) is the element of L, that differs from «a only at the jth coordinate
and equals % there. The C, [0, o) martingale problem for <, is well posed; see
for example Ethier and Kurtz (1981), Proposition 2.3. The diffusion p™(-) has
been studied by Notohara (1984) in the case m,, = (r — 1)"(1 — §,,) and r = 4.
To clarify the relationship between our measure-valued infinitely-many-sites
diffusion model {g, t=> 0} and the limit in some sense of the above m-site
diffusion model as m — oo, one might attempt to reformulate the discrete m-site
model {p™M(7), =0,1,...} in a way that is analogous to our reformulation of
the discrete infinitely-many-sites model described in Section 1. Unfortunately,
this is not possible for the following reason. In the infinitely-many-sites model,
there is no back-mutation to the original nucleotide at a given site, and thus the
sequence of sites at which mutations have occurred in the line of descent of a
given gene is sufficient to determine the gene’s nucleotides (or at least whether
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they are the original or mutant ones). This is not so in the finitely-many-sites
model if r > 3 because of back-mutation. Consequently, we redefine the “type”
of a gene to be the element a = (a©, a®¥,...) of

E,=(L,)"

such that a©@, a®,... is the sequence of types (in the previous terminology) of
the mutants in the line of descent of the gene in question.

With this in mind we let {(p™™), r=0,1,...} be the Markov chain of
Theorem 2.1(d) with the roles of E and P, (x, A) played by E,, and

(33) P, m(a,A) =(1-u)s(A) + u'—JZI kz_: o, 150, by, (D),
where u = (6/2M) A 1. Defining
E} = {a € E,: a® and a®*D differ at one and only one
coordinate foreachi € Z  },
we observe that P{v{™ ™) (E2) = 1} = 1 implies
(3.4) P{ymM(EJ) =1forr=0,1,...} = 1.

Next, we let {u{™, ¢ > 0} be the Markov process of Theorem 2.1(a) with the
roles of E and @(x, A) played by E, and

(3~5) m(“ A) = E E (°>,k8(a‘°>(j, k), u)(A)'

m;_q1g=1

Let B,,, 9;, and G,, be the corresponding B, 2* and G. By Theorem 2.1(d), if
C ™ = u(™ in P(E,) as M - oo, then {p{zA0, t> 0} = (p{™, ¢t >0} in
Dg,(E )[0,0) as M — co. Also, arguing as in the proof of Theorem 2.3, {u{™,
t > 0} has a unique stationary distribution i'™ € #(£2(E,,)). This measure-val-
ued version of the m-site model is closely related to the diffusion p™(-) described

earlier, as we now demonstrate.
Define ¢,: E,, - L, by £y(a)=a® and £, #(E,) - A,, by £(p) =
(1€ '{a}))ge L, (The dependence of ¢, and £, on m is 1mphc1t)

PROPOSITION 3.2. For each m € N {go(u("‘)), t > 0} solves the C, [0, )
martingale problem for &£, and has i"™£5;' as a stationary distribution.

PrOOF. It is enough to show that f< £, € 9] and
(3.6) Go(fo) = (9.f) &

for ,all f e C*4,). If pePE,) and £(p)=p, then fofy(p) =
f(((x&;l(a)’ p’))aGLm)’

Gu(fo&)(m) =% ¥ P8s—Dp)fus(®) + X (BuXesiw BYF.o(P),

o, BeL, aclL,
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where

<BmXe,;'(a), py = éo(l/m) E sz WB}O),k[X(a)(B(O)(j» k)) - X(a)(ﬁ(o))]l‘(dB)
j=1" k=1

= —30p.+ 30(/m) ¥ [ T mp 4x (B, E))n(dB),
=17 k=1

the second term on the right-hand side of which is
%B(I/m) '21 szl g, ksaj,k IZIX{a(j, ,))(,B(O))u(dB)
j= - -

= %0(1/’") E Z f”z,a,X(a(j,l))(B(O))M(dB)

Jj=11=1

m r
=30(1/m) ¥ X T, a;Pa(j, 1)

j=11=1
This proves (3.6). O
We now indicate the relationship between {j1,, ¢ > 0} and the limit in some
sense of {u{™, t>0}. Observe first that the analogue of (3.4) holds: if
P{py™(E2) = 1} = 1, then
(8.7) P{pi™(ES) = 1forall t > 0} = 1;
for if we define ¢ € 2;, by ¢(p) = u(EJ), then G,¢ = 0 since B, x o = 0, so

p{™)(E,) is a martingale with almost all sample paths in Cy, 1[0, o0) by Theorem
2.1(b). Next, define p,,: E,, » E by

Jo )
pm((!)=(”;,”;,...), (!EE,(,:,
where j; € {1,...,m} is the coordinate at which «) and a¢*V differ, and

fn = (0,0,...) on E,, — E2. Also, define §,: #(E,,) - P(E) by p,(n) = po,

THEOREM 3.3. If p™(EQ) =1 for each m € N and p{™p,* = p, in P(E)
as m - oo, then {p{™p.", t > 0} = {u,, t > 0} in Cp [0, 0) as m — oo. Also,
g™p 1 = i on P(E) as m - oo.

PrOOF. Note first that {u{™)p !, ¢ > 0} is the process of Theorem 2.1(a) with
the roles of E and Q(x, A) played by {(m~',2m~,...,1}%+ and

1 m
Qm(x7 A) = ; 8(j/m,x)(A)'
=1

J
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This follows from (3.7) and that fact that

B,(f2pu)(@) = 301/m) 3 % 70 o (/s pn(®)) — (o))

(3.8) j=1k=1

= (Bpf)opu(e) _
for all « € E2, where B,, corresponds to Q,, as in (2.1). By Theorem 2.1(e), it
suffices for the first assertion to show that

(3.9) lim sup |B,f(x) - Bf(x)| =0, feC(E).
m— oo erIn
But the supremum in (3.9) is bounded by
m ) 1
10sup |(1/m) 3 1(ji/m.x) ~ ['f(3,00N(dy) l
xeE Jj=1 0
<16 su%w,(.,x)(m‘l) < 30, (m71),
xXe

where w, is the modulus of continuity of g € C[0,1] and W, is that of f € C(E)
with respect to any metric d on E for which d(x,y) = |x, — | for all x,y € E
with x; =y, for i = 1,2,... . The second assertion follows by a standard argu-
ment using the uniqueness in Theorem 2.3. O

4. Equations for tree probabilities. Given n € N, let
I ={(x1...,%,) € E™ (x,,...,X,) is a tree, i.e., (1.7)-(1.9) hold}.
We define equivalence relations ~ and = on J, as follows. Let us say that
(X X,) ~ (Yo 5 %)

if there exists a bijection {: [0,1] — [0, 1] with y;=8x;)fori=1,...,n and
J=0,1,..., and that

(xl""’xn) = (yl”“’yn)

if there exists a bijection ¢: [0,1] — [0,1] and a permutation ¢ of (1,..., n) such
that y,) ;={(x;;)fori=1,...,nand j=0,1,.... Equivalence classes in the
quotient set 7,/ ~ might be referred to as unlabelled trees, while those in .7,/ =
might be called unlabelled, unordered trees. It is an important open problem to
determine (1.13) forall Te 7, /= .

Given T € J,/~ , let [T] denote the equivalence class in 7,/ = containing T,
and let ¢(T') denote the number of equivalence classes T’ € 7,/ ~ with T’ c [T].
Then ’

(4.1) p"([T]) = (T )p™(T)
for each p € #(E) since p” is invariant under permutation of coordinates of E™.
Consequently, it will suffice to consider (1.13) for T € 7,/ ~ , and in fact we can

restrict our attention to those 7€ J,/~ with the property that repeated
coordinates of (x,,...,x,) € T are adjacent.
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Fix d € N until further notice. For n € N¢ and n=n, + -+ +ng, define
®.: E?> E" by
D (X, Xg) = (Xpsee s X, Xgyeo s Xgyeoy Xgyenns Xg),

where x, appears n, times for k£ = 1,..., d, and note that @, induces a map
from 7/~ into J,/~ . Define the shift operator #: E — E by

Px =S (%9, %1,-..) = (%1, X5,...),
and for k = 1,..., d define &,: E¢ - E? by
Lo(Xpy e s Xg) = (Xpyev s Xpo 1, LXKy X yg)s

and note that %, induces a map from 9/~ into I/~ .
For Te J/~,ne€N%and n=n, + -+ +n,, define the function ¢, , on
P(E) by

o7 a(n) = w(2(T)),
and define -

— 1
Yra=13 L n(ng—1ér, o + 30 Y bu7m
k:n,=2 k: n,=1,
x40 distinct

—in(n—1+0)¢r

where e, = (8;,...,8,4) and “x,, distinct” means x,, # x;; for all
(Xy,...,X4) € T and (i, j) # (k,0). Note that ¢1 ,(p) is the probability that in
an ordered random sample of size n from a population with types distributed
according to p, the sample forms a tree of class @, (7).

It will be convenient to define

(T ~)e={T €T/~ :x,,...,%4 are distinct for all (x,,...,x,) € T}.
THEOREM 4.1. For each (T,n) € (J/ ~)o X N, (¢, ¥735) EA™.

PROOF. Let n=n, + --- +n, Note that if f € B(E") and if ¢ € 9" is
given by ¢(p) = (f, p"), then

G¢(I‘) = Z <‘I'ijf,#n_1> + 30 Z (Aif,p"™)
(4.2) 1<i<jsn i=1

—sn(n—1+ 0){f,n"),
where ¥, ; is as in (2.3) and

1
A f(xy,...X,) =fof(xl,...,xi_l,(y,xi),xiﬂ,...,xn))\(dy).

Let f = Xo,r) Then ¢ = é7,,,

\I’;jf = {

Xo, . (T) ifn + - +n,_+1<i<j<n +---+ny,

0, otherwise,
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and
A f {x@,(ym, ifi=n,+ --- +n,, n, = 1and x,, is distinct,
' 0, otherwise,

the latter because, under the three stated conditions, for each (x,,...,x,) € E"
X(D,,(T)(xl’ v X, (3%, X4, ’xn) = xfbn(.S",,T)(xlr 0 Xy) ‘
for all but countably many y € [0, 1], hence for A-a.e. y € [0,1]. Consequently,
Gérn =¥, O
If d > 2, define #,: E? > E¢ ! for k=1,...,d by
Ro(Xp, .oy Xy) = (Xyee s Xpo 15X pr1re o3 Xg)

and note that %, induces a map from J,/~ into J,_,/~ . Define %,:
N9 - N9-! similarly.

So far, d € N has been fixed. We now allow d to vary with the understanding
that the dependence of e;, %, etc., on d is implicit. Let

(4.3) 7*= U [(9/~) x N7,

d=1
and regard d and n =n, + --- +n, as functions of n = (n,,...,ny ). J* can
be regarded as the set of all unlabelled ordered trees (with multiplicities) of the

sort considered in Theorem 4.1.

COROLLARY 4.2. The system of linear equations
n(n—-1+0)p(T,n) = Y nun,—1)p(T,n—e,)

king=2
+6 Y p(#T,n)
(4.4) xps dibinct
SxyEx;, V)
+0 ) > P(@kT’ Rp(n + ej)),

kin,=1 j:¥x,=x;
Xy distinct
where (T,n) € I * and (x,,...,X ) denotes an arbitrary element of T, has a
unique solution satisfying p(J;, (1)) = 1. It is given by

(4.5) p(T,n) = [, dii.

PROOF. Let us define the degree of the quantity p(T,n) to be s + n, where
for every (x,,...,X,) € T, s is the number of elements of [0,1] appearing in at
least one but not all of the sequences x,,...,x,. Then each of the terms on the
right-hand side of (4.4) has degree s + n — 1 and uniqueness follows by induc-
tion. As for existence, Theorem 4.1 implies that [y , dfi = 0 for all (T,n) € T *.
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Therefore, to show that (4.5) satisfies (4.4), it is enough to observe that if
(T,n) e 7*, d=>2,and j and & are as in the third term on the right-hand side
of (4.4), then ¢, 1 o(1) = da,r, R+ (M) for each p € #(E) by the invariance of
1" under permutation of coordinates of E™.

It remains only to show that (4.5) satisfies the condition p(.73,(1)) = 1.
Given A € #(E), define ¢ € 2* by ¢(p) = p(A) and observe that Go(p) =
30{(A X p)(A) — p(A)} for all p € P(E), hence

(46) [B(W)(dr) = [0 x w)(A)(dp).

If A=TyX - XI,_{XE, where reN and T,,...,I,_;, € #[0,1], then
repeated application of (4.6) gives

Ju(B)i(dn) = NT,) [u(8)ii(dn)

(4.7) = M(To) - ML) [w("A)i(d)
= A(I‘o) A(rr-—l)

where A is the product measure A X A X - - - . [Note that the product o-algebra
[134[0,1] coincides with Z(E).] It follows that the left-hand side of (4.7) equals
the right-hand side for all A € %4(E), in particular, for A = 7;, and the proof is
complete. O

'We note that (1.14) is a special case of (4.4).

COROLLARY 4.3. The linear system of differential equations
d
2?tp(T,n; t)y= Y ny(n, — 1)p(T,n — e,; t)
k:n,>2

+0 Z p(‘skayn; t)
k:n,=1

X0 distinct
(4'8) S X, #X;,V j

+6 Z Z P(ngr Z(n + ej); t)
kin,=1 j:x,=x;
Xy distinct
—n(n—-1+8)p(T,n;t), ’
where (T,n) € I * and t > 0, is satisfied by
(4.9) p(T,n; t) = E[ér,(1,)]-

[Clearly, (4.8) has a unique solution for a given set of initial conditions.]
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Proor. Let (T,n) € 7 *. By Theorems 4.1 and 2.1(b),
(4.10) E[or,u(10)] = Elora(mo)] = [E[¥r,aln.)] do

for all ¢ > 0. Using the observation about ¢, 1 ,, in the proof of Corollary 4.2, we
conclude (as in the proof of Lemma 2.2) that E[¢1 ,(1,)] is continuously
differentiable in ¢ > 0. The result follows by differentiating (4.10). O

Let P, denote the set of permutations of (1,...,d). Given T€ I/~ ,
n € N9 and o € P,, define

T, = {(xo(l),...,xo(d)): (x4,...,%X4) € T}

and

n, = (Reqy- s Nocay)-
For each (T,n) € 7 * let

a(T,n) = #{c€P;:T,=T,n,=n}
and
a(n) = #{o € P;:n,=n}.

Then a(T,n) divides a(n), and
(4.11) a(n) = a,la,! -+ a,!,

where a; = #{k: n, =i} fori=1,.

As we pomted out earlier in this sectlon it is actually /cpT » dji and IE[¢T 2(e)]
that are of primary interest, where 4’7‘ , is defined on #(E) for each (T,n) e T *
by

$r,a(1) = p"([2a(T)]);
recalling (4.1),
n!

(4'12) $T,n = ¢T,n’

n!-- nyla(T,n)
because :
c(®,(T)) = #{T' € T,/~ : T' c [®,(T)]}
= #{®,(T),: 0 €P,}
=n!/#{o € P,: ®,(T), = 0,T))
n!
nt--- ngla(T,n)’

REMARK 44. Clearly, Theorem 4.1 and Corollaries 4.2 and 4.3 can be
restated in terms of 4’7‘ ,» using (4.12). Indeed, it follows directly from Theorem
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4.1 that for each (T,n) € I *, ($T,n, J)T,n) € A", where

a a(T’n - ek) ~
Yron= 3n Z (n ‘1)——_4) n-e
T ? k:ng=>2 * a(T7n) T *
a(%,T,n) .
+10 ——
2 k;§=1 a(T,n) ¢9’,,T,n
x40 distinct
S xp#x;,V j
a( 2T, Z,(n + e;)) .
+30 X Y (nj+1) T b, T, 2yt o,
2 bimm j Fremx, J a(T,n) 2T, Rp(n+e))
X0 distinct

—in(n— 1+ 60)ér,,

Also of interest in a (ordered or unordered) random sample of size n € N are
the number of segregating sites and the sample configuration. Recall that a site
z € [0,1] is segregating with respect to a sample of types x,,...,x, if z appears
in at least one but not all of the sequences x,,...,x,. Two trees that are
equivalent under ~ have the same number of segregating sites, so we can refer
to the number of segregating sites of an unlabelled tree T € 7,/ ~ . In fact it will
be convenient to define for (s,n) € Z_, X N,

T, »={(xy,...,x,) € Z,: (x,,...,X,) has s segregating sites}
(implying
T, o/ ~={T €7,/~ : T has s segregating sites})

and N

(T, 0/ ~)o={T€E€T, ,/~:%,,...,%, aredistinct for all (x,,...,x,) € T}.

In addition, x,,...,x, have sample configuration n € N¢ if (x,,...,x,) has d
distinct components with respective multiplicities n,,..., n,. (Here the order of
ny,..., ng is irrelevant.)

For s € Z,.,neN, deN and n € N? define the functions ¢, ,, &, n, Pn Pn
and ¢, , on #(E) by

g, u() = p(V{Ou(T): T € (7, o/ ~)o}),
$o,a(p) = p(V{[®(T)]: T € (F, o/ ~)o}),
¢a(p) = p(U{@u(T): T € (T/ ~)o})s
$a(p) = p (U {[®a(T)]: T € (T/~)o}),
&5, 4(1) = 1", ),
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and define

% E nk(nk - 1)¢s,n—e,, + %0#{k: n,= ]‘}¢3—1,n

k:n,>2
‘Ps,n = +%0 Z z ¢s—l,Q,,(n+ej) - %n(n -1+ 0)¢s,n’ ifn a (1)’
k:n,=1j: j+k
0, ifn= (1),
"Pn = % Z nk(nk - 1)¢n—e,, + éo# {k n,= 1}¢n
k:n,>2

+ %0 Z Z ¢Q,,(n+ej) - %n(n -1+ 0)¢n’
k:n,=1j: j#k
v, = { in(n—1)¢, ,_, + 30n¢,_, ,— sn(n—1+0)¢, ,, ifn=>2,
=" o, ifn=1,
where ¢_, , = ¢_, , = 0. Clearly, 4;3 a() is the joint probability of s segregat-
ing sites and sample configuration n in a random sample from a population with

types distributed according to p, and 4),,(;1) and ¢, ,(p) are the marginal
probabilities. Given d € N and (s,n) eZ,xN9 observe that (4.12) implies

. [ a(n) n! .
4 ([q)n(T)]) - a(T,n) nl! nd!a(T,n)“ ( U q)n(To))

c€Py:n,=n

for all T € (7, 4/~ )y, and hence

A n!
4.13 =
( ) ¢s,n n1' nd!a(n) ‘bs,n
and
R n!
(4.14) bp = bp-
n!--- njla(n)

The next result is the analogue of Theorem 4.1 with ¢, ,,, ¢, and ¢, , in place
of ¢, It can be proved analogously, but instead we derive it by appealing to
Theorem 4.1.

THEOREM 4.5. (a) For eachd € N and (s,n) € Z, X N, (¢, n, ¥, ,) EA™.
(b) For eachd € N and n € N?, (¢,,¥,) € A™.
(c) For each (s,n)€Z, XN, (¢, ,,¥,,) EA™.

PrROOF. (a) Fix d € N and (s,n) € Z, X N¢ with n > 2. Since

(415) ‘bs,n = Z ¢T,n’
Te(Z,,a/~)o

it will suffice by Theorem 4.1 to show that

(4'16) \Ps,n = Z \PT,n'

Te(,, a4/~
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By (4.15), the right-hand side of (4.16) is

% Z nk(nk - 1)¢s,n—ek + 12L0 3; Z ¢.9’,¢T,n
: T ~ k: n,=
(4.17) k:ing>2 €(F,,d/~)o o c;ligtinlct

—in(n—1+0)¢, ,,
and the double sum in (4.17) equals

)y )y Y% T\n

k:ng=1TE&(T, 4/ ~)o}

x40 distinct
(4.18) = X )y $r.nt+ )y > ST, By(n+e))
k:ng=1| T€(J;_1,a/~)o Jij#tk T€(To1,a-1/~ o
= Z ¢s—-1,n + Z ¢s—1,Q,,(n+ej) ’
k:n,=1 JiJj*k

proving (4.16). If n = 1, (4.18) fails, but ¢; ) = ¢5, ) and ¢, 4, =0if s > 1, so
Theorem 4.1 applies.

(b) It suffices to sum the result of (a) over s € Z ,.

(¢c) In this proof only, we temporarily drop the convention that n =
n,+ -+ +n,wheneverd € Nandn € N% Fix s € Z, and n > 2. Using (4.13),

¢s,n = Z Z ‘I’;s,n

deN neN?:Tn;=n
nz - 2ng

4.1
(4.19) . 1 )
) _—_—q’s,ny
deN neN?:Tn,;=n d! nl! o e nd!
so it will suffice by Theorem 4.1 to show that
n!
bor= Y Y ————y
deN neN?:Tn;=n d! n)! - ny!
or that
1 n!
n(n=D¢p1= L L T
(420) deN neN?:Tn=n ¢* 1 !
X ¥ ny(ng-1)¢ 0
k:n,>2
and
1 n!
n¢s_1,n = Z Z -CF'—__'_
' deN neN“:En;=n " n,: ng:
(4.21)

X|#{k:ny=1)0,_1a+ X X iamee|

k:n,=1j: j#k
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Denoting (d!n,! - -+ ny!)~'n!e, , by &, ,, (4.20) and (4.21) become

n(n - 1) E E (Ss,n

deN neN*:Tn;=n—1

(4.22) -
=n Z Z Z (nk - 1)¢s,n—ek
deN neN?: Tn;=n ki n,22
and
n Z Z és—l,n
deN neN?: Tn;=n
=y Y  #{kin,=1}¢,_
(4.23) doN neNd:Tnmn b

1 -
+ E Z > Z Z (nj+ 1)¢s—1,9?,,(n+ej)'

deN neN%:Ln,=n =~ kin,=1j: j+*k
To prove (4.22), fix d € N and n € N? with £n; = n — 1, and compare coeffi-
cients of ¢, ,. The coefficient on the left is n(n — 1) and on the right is
nXn, = n(n —1). To prove (4.23), fix d € N and n € N? with In; = n, and
compare coefficients of ¢,_, ,. The coefficient on the left is n and on the right is

d+1
#{k:n,=1} + X X nj=n,
because Z,(n* + e;)) =n implies n* = (n,,...,n,_;,1,n,,...,n,) — e; pro-

vided j,k € {1,...,d + 1} and nfx>1.
The case n = 1 follows from part (a). O

We turn to the analogue of Corollary 4.2.

COROLLARY 4.6. (a) The system of linear equations

n(n—1+06)p(s,n) = k.): 2nk(nk —=1)p(s,n —e,)

(4.24) +0#{k: n,=1}p(s — 1,n)
+0 Y Y p(s—1,%n+e)),

king=1j: j=k
where d € N, (s,n) € Z, X N% n > 2, p(-1,n) = 0 and p(s,(1)) = 8,,, has a
unique solution. It is given by
(4.25) p(s,n) = (4, ,di.
(b) The system of linear equations
n(n—1+0)pm)= ¥ nying— pln—ey)

k:n,>2

(4.26)

+0#{k: n,=1}p(n) + 0k > E kp(g?h(n +¢)),
inp=1j:j#*
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where d € N and n € N% has a unique solution satisfying p((1)) = 1. It is
given by

(4.27) p(n) = [¢,di.

Consequently, Ewens’ (1972) sampling formula holds: For each d € N and
n € N¢,

n! 691
n,---ngan) (1+0)---(n—-1+40)’

(4.28) [éadii =
where a(n) is as in (4.11).

(c) The system of linear equations
(4.29) (n—1+8)p(s,n)=(n-1)p(s,n—1) +0p(s—1,n),

wheres € Z ,, n > 2, p(—1,n) =0 and p(s,1) = §,,, has a unique solution. It
is given by

(4.30) p(s,n) = [4, ,df.

Consequently, Watterson’s (1975) result holds: For each (s,n) € Z _ X N,
di n—1 . J ’

(431) Jorndi= | % geometric =25 ) ls)),

where the right-hand side is interpreted as 8,, when n = 1.

Proor. With the degrees of p(s,n), p(n) and p(s, n) defined to be s + n,
d + n and s + n, respectively, uniqueness follows as in the proof of Corollary
4.2, As for existence, Theorem 4.5 implies that (4.25), (4.27) and (4.30) satisfy
(4.24), (4.26) and (4.29), respectively. The boundary conditions for n = 1 follow
from Corollary 4.2. It remains only to verify (4.28) and (4.31).

For (4.28), it is enough by (4.14) to show that

. g1
p(n)E(nl—l)!“'(nd—l)!(l_'_a).“(n_1+0)

satisfies (4.26), and this follows by direct substitution. As for (4.31), consider the
probability generating function

g(£n) = ip(s,n)gs,

where n € N. By (4.29),
(n—1+0)g(§,n) =(n—-1)g(§,n— 1) + 05g(§,n)
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for each n > 2, hence

n—1 J
g(¢,n)= 11 mg(ﬁ,l)
n_1 J/(j+0)

T M1- -G+ e)E -0

REMARK 4.7. By (4.13) and Corollary 4.6(a), p(s,n) = ]qas,ndﬂ uniquely
solves the system

n(n—1+ 60)p(s,n)

a(n —ey)
=n Y (n,—-1)———p(s,n—e

. n,,gz( k ) a(n) ( k)
4.32
(4.32) +0# (k: n,=1}p(s — 1,n)

alZ,(n + e;
+6 Y Y (nj + 1)(—k(——-ll)—ﬁ(s -1, Zy(n + ej)),
ki ng=1j: j*k a(n)

where d € N, (s,n) € Z, X N% n > 2, p(—1,n) = 0 and p(s,(1)) = §,,. When
d = 2, (4.32) is precisely Equation (2) of Strobeck (1983); it is possible to obtain
an explicit solution in this case, but we do not do so here.

It is straightforward to formulate and prove the analogue of Corollary 4.3 in
the context of Theorem 4.5. See Griffiths (1979, 1981) for time-dependent
versions of (4.28) and (4.31).

Recall that

PUAE) = {peP,(E): p*(J,) = 1foreach n € N}.

THEOREM 4.8. [i(2X(E)) = 1. Moreover, if P{p,€ PAE)} =1, then
(4.33) P{p, € PXNE) forallt >0} =1.
PROOF. For each n € N, define 7, = £3_¢, , and note that n,(p) = p™(7,)

for all p € Z(E). Consequently, the first assertion follows from Theorem 2.1(c)
and (4.31) [Corollary 4.6(c)]. As for the second, Theorem 4.5(c) implies that

(nn’ %n’(n - 1)(";1—1 - nn)) EA”
for each n € N, where 5, = 0. Thus, by Theorem 2.1(b),

M) = 1= [$n(n = D(tp-s(i,) = (1)) do

is a zero-mean martingale with almost all sample paths in Cg[0, c0) for each
n € N. Taking expectations, we find that E[n,(¢,)]=1foralln€Nand £ >0
by induction on n. Thus, with probability 1, n,(u,) = 1 for each n € N and all
rational ¢ > 0, hence all £ > 0 by continuity. By Theorem 2.1(c), the proof is
complete. O
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We note that the assumption P{p, € LI(E)} =1 is needed for (4.33), in
contrast to the situation in Theorem 2.1(c).

5. Representations for tree probabilities. We begin this section with a
representation of the probabilities (4.5) in terms of what has been referred to in
other contexts [Ewens (1972) and Watterson (197 6)] as the frequency spectrum.
For d € N put

| d
A% = {z =(21,...,24) € (0,1]% Y 2z, < 1}.
i=1
Given T € (Jy/~), and H € #(A%), define the function v (H,-): #(E) -
Z,U{oo} by

(5.1) ve(Hyp) = X xa(p({x.}),..., 0({x4}))-

We claim that »,(H, -) is Borel measurable. [This is not obvious because the
countable set of nonzero terms in the sum in (5.1) depends on p.] For each
p € P(E)and i € N, define s,(p) and 1,(p) to be the size and location of the ith
largest atom of p. To avoid ambiguities, we require that 1,(p) <1, ,(u) if

s;(m) = s;,1(p), where by definition x <y if for some j€Z,, x,=y,,..
=¥, and x; <y, We leave it to the reader to check that s, s,,.. and

1
111,12, . are Borel measurable The claim follows by observing that
(62) vp(H,p)= X xulsi(w).orsi(w)xr(li(n),. .., 1, (1))
(O iy)eN?

for all p € #(E).
For T € (J,/ ~),, define the positive Borel measure v, on A% by

(5.3) vo(H) = [vr(H, 1)i(dp).

Because the sum in (5.1) has only countably many nonzero terms for each
p € P(E), it is easy to check that v, is indeed a measure [(5.2) is not needed for
this]. Note that v, (H) is the fi(dp)-expected number of trees (x,,...,x ) in the
equivalence class T for which the vector of frequencies (u({x,}),..., p({x4}))
belongs to H.

THEOREM 5.1. For each (T,n) € T *,

(5.4) Jormdi= [ 2t 2iovn(da).
. .

. ProOF. For each fe& B(A%), define f€ B(R?) by f=f on A%, f=0
elsewhere. Then

G5) [ fdvr= f T ez}, n({xa}))i(dp)

Xjyeeey xd)ET
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for simple functions f € B(A%) by (5.3) and (5.1), hence for all nonnegative
f € B(A%) by the monotone convergence theorem [the justification of which is
similar to the proof that (5.1) defines a measure]. Since

(5.6) draw)= X w({x)™ - p({x ™

for all p € Z(E), (54) follows from (5.5) with f(z) =2y« --- z3¢ and from
Theorem 2.3. O

It is easy to verify the well-known result that
(5.7) vy (d2) =02"'(1-2)"""dz, 0<z<1,

but the situation is much more complicated when d > 2.

The remaining three representations we consider involve certain stochastic
processes that are considerably simpler than {u,, ¢ > 0}. In the first we show
how to represent the probabilities in Corollaries 4.2 and 4.3 in terms of a certain
dual Markov process in the countable set .7 *. Define {(T(¢),n(t)), ¢t > 0} to be a
pure jump Markov process in J * with transitions

(T,n —e,), rateiny(n,—1),k n,>2,
(T,n) - { (#T,n), rate 30, k: n;, = 1, x,, distinct, ¥x,, # x;,V J,
(2T, R,(n + €;)), rate 30, k: nj, =1, x,, distinet, j: #x, = x;,
and note that the process in effect “chops down the tree” (7(0),n(0)). Also,
define ¢: I * — (— 0,0] by
co(T,n) =1 Y nun,—1)+ 10#{k: n, = 1, x,, distinct}

kin,>2

—-in(n-1+29).
THEOREM 5.2. Forallp € #(E),(T,n) eI * andt >0,

68)  Eubra()] = Ecm| o me(w)exp{ [e(T(0), (o) do) |,

where the subscripts on E, and E 1, denote the starting points of the Markov
processes.

Proor. {(T(t),n(t)), t > 0} has generator £ on B(Z *) defined by
°?h(T’n) = % Z nk(nk - 1)(h(T7n - ek). - h(T’n))

king>2
+ %0 ‘ Z (h(ykT:n) - h(T,l’l))
k: np=1, xp, distinct, ¥x, #x;,V j
+10 ¥ Y (h(®T, 24(n + e;)) — h(T,n)),

kinp=1 j: ¥x,=x;
X0 distinct
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and clearly

(5.9) ¥r.u(#) = 2[4, (W(T,n) + (T, n)¢7, (1)

for all p € #(F) and (T,n) € I *, where ¥r,n is as in Theorem 4.1. The result
follows from Dawson and Kurtz (1982). O

COROLLARY 5.3. For all (T,n) € T *,
(5.10) Jér.008 = Bt exp{ [ “e(T(0),(0)) do} |

PrOOF. Starting at (T,n) € 7 *, the Markov process absorbs at (J,Q)
after s + n — 1 jumps, s being the number of segregating sites of 7. For each
b€ PUE), ¢5 1(n) =1, so the right-hand side of (5.8) converges to the
right-hand side of (5.10) as £ — oo by the dominated convergence theorem. On
the other hand, Lemma 2.2 implies that the left-hand side of (5.8) converges to
the left-hand side of (5.10) as ¢ — oo. [This does not follow directly from the
ergodicity proved in Theorem 2.3 because $7,a is not continuous on #(E).] O

We turn next to a representation of the stationary tree probabilities in terms
of a (discrete time) Markov chain. This was motivated in part by Watterson
(1985) and Hoppe (1984). We define {T,, 7 = 0,1,...} to be a Markov chain in

o0
U (7/=)
n=2
with starting point T, = ®,(.7;) and transitions
[(xl"“’xm—l’(y’xm)’xm+l’°“’xn)]’
b. 4 -1+60),m=1,...,n,
(C prob. f/n{n =140, m=1,...,n
[(xl’XZ""’xn’xm)],

prob.(n—1)/n(n-1+6),m=1,...,n,

where [(x;,...,X,)] denotes the equivalence class in J,/=~ containing
(Xp,...,%,) and y €[0,1] is distinct from each x;;. We note that the Markov
chain in effect “grows the tree” T, in 7 steps starting from Tj,.

THEOREM 5.4. For each (T,n) € I * except (J;,(1)),
(5-11) f‘i;T,n djp = P{Ts+n—2 = [(I)n(T)], Tosn-1 €Tt/ = },
where s is the number of segregating sites of T.

ProoF. For (T,n) € T * with s + n > 2, let g(T,n) denote the right-hand
side of (5.11). Clearly,
n—1

(5.12) 9(T,n) = P(T,sny = [0u(T)]} —77
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for all (T,n) € 7 * with s + n > 2, and one can check that

P{T,1n-2=[2(T)]} .
) ) (ne=1)(n-2) a(T,n-e,)
SR A Gl LS ) i oy e ey

k:ng,=2
0 a(%,T,n)
+ P{T. = |9, (%T
k:§=1 {Torn-a = [2a(5% )]}n(n—1+0) a(T,n)
(513) X3 distinct
Lx,* X,V

+ X )y P{Tjs+n—3 = [q)@k(n+ej)(‘%kT)]}

kin,=1 j:¥x,=x;
X0 distinct

y (n;+1)0 a( 2, T, Z(n + ¢;))
n(n—1+80) a(T,n)
for all (T,n) € 7 * with s + n > 3. Substituting (5.12) in (5.13) gives
n(n—-1+0)q(T,n)

a(T,n—e;)
=n n,—1)—————q(T,n —e,)
k:§z2( * a(T,n) ( k
a(%.T,n
I R UL Py
k:n,=1 a(T’n)
(514) Xpo distinct
.S’x,,*xj,\'/j
a(B?kT, Ry(n + ej))
+6 41
Z Z (n] ) a(T,n)

k:n,=1 j:¥x,=x;
Xy distinct

Xq(.%kT, R,(n + ej))

for all (T, n) € 7 * except (73, (1)) and (3,(2)). By (6.12) ¢(73,(2)) = 1/(1 + 0),

so if we define q(77,(1)) = 1, Corollary 4.2 and Remark 4.4 imply that
g(T,n) = [br,.di

for all (T,n) € J *, and hence (5.11) holds for all (T,n) €  * except (;,(1)). O

REMARK 5.5. It would be possible to obtain a numerical estimate of the
left-hand side of (5.8) by simulating the Markov process {(T(¢),n(?)), t>0} a
number of times, evaluating the integrand on the right-hand side of (5.8) for each
realization, and taking the average over the simulations as an estimate of the

E 1,5 expectation.
» Similarly, [¢r ,dfi could be estimated using (5.10).
Noting that (5.11) can be written as

(5-15) fé;T,n dj = P{Tr(nﬂ)—l = [(I)n(T)]}’
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where 7(n + 1) is the hitting time of the set J,,,/=, we see that the
Jp*(+)ii(dp)-distribution of unlabelled, unordered trees in J,/= can be ap-
proximated by simulating {T,, 7 = 0,1,...} up to time 7(n + 1) and observing

Tf(n+1)—1-

The final representation of the stationary tree probabilities that we consider
is in terms of Kingman’s (1982) coalescent process. Fix n € N and let &, denote
the set of partitions of {1,2,...,n}. For &/, #€ &, write <« if # is
obtained from 7 by replacing two sets in o/ by their union, and note that
#(#) = #(HL) —1if # <. The n-coalescent is a pure jump Markov process
{, t=0} in &, with starting point {{1},{2},...,{n}}, each of the
3 # (L) # (L) — 1] transitions & > # (% < &) having rate 1, and absorbing
point {{1,2,...,n}}. Let %,,..., #,, #, be the sequence of partitions through
which the process passes, labelled in reverse order so that #(%,)= m for
m=n,...,2,1 and denote the sets in %#,, by B,,,..., B, for m=n,...,2,1.
Let (Y, m=n,...,2,1; j=1,...,m; k=1,2,...} be independent uniform
[0,1] random variables, and let (K,,,,..., K,,,,), m = n,...,2, be independent
random vectors with

P{(K,,,l,..., Kmm) = (kl,...,km)}
(5.16) B k! (A% m-1
'kl!---km!( ) (m—1+0)

where (k,,..., k,,) €EZ7 and k =k, + --- +k,. Assume further that the se-
quences {%,,}, {Y,,;z} and {(K,,,,..., K,,,,)} are independent.

Informally, given a random sample of n genes, K, ..., K,,,, are the numbers
of mutations occurring to ancestors of the sample while there are m ancestors
(m = n,...,2). The length of time ¢* during which there are m ancestors is
exponentially distributed with parameter ;m(m — 1), and mutations occur inde-
pendently in each ancestral line according to a Poisson process with rate 6/2.
Conditioning on t*, we should have

’
m k+1

m ot* /2 k;
P{(Kpis-oos Kpp) = (Byyeo i )} = E[H {('Zf/')e—ot;‘./z}
Jj=1 J*

This motivates the definition (5.16) as well as the following construction.
Let

Y,

mijJ

Z,=(Y,

mj mjlyc s

Z, = (Ylua Y112,---)a

where the vector Z,, ; is empty if K,;j=0.Form=n,...,2,1and i=1,...,n
define j(m,i) =l if i € B, and let

X; = (Zn, jon, iy Znr, jin-1,iy> -+ 21, ja,1y) € E-

By properties of the n-coalescent, (X,,...,X,) €7, with probability 1, so we
define U to be the (random) equivalence class in J,/~ containing (X;,...,X,).

), m=n,...,2; j=1,...,m,
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THEOREM 5.6. For each (T,n) € T *,
(5.17) [ér,ndi = P{U = 0,(T)}.

PrOOF. Let Wp,, = {w: U(w) = ®,T')} and denote (K,,..., K,,) by K,.
Then :

IP(WT,n) = P{Kn = O}P(WT,nl{Kn = 0})

(5.18) + ¥ PK,=KP(Wl{K,=k}),
keZ- (0}
and the first term on the right-hand side is
n-1 n(n;—1)
P(WT,n—e,-)'

n_1+0i:n,~22 n(n—1)
As for the sum, define a: {1,...,n} — {1,...,d} by setting a(j) =i if

n+-+n_ +l<j<n + - +n,. If ie(l,...,d} and n;=1, define
BGi) =a '@)=n,+ - +n,;€{1,...,n}). Now

(5.19) P(Wr, (K, =k}) = P(W, 7.{K,=k-e})

forallk € Z%} and j € (1,..., n} with k; > 1, provided n,;, =1 and x,;, o is

distinct; if either of the latter two conditions is not satisfied, the left-hand side

of (5.19) is zero. Also,

ki+ - +k,
k.

J

P{K, =k} = P{K,=k-e¢}

n(n—-1+86) J
for all k € Z%} and j € {(1,..., n} with k; > 1. Consequently, the sum on the
right-hand side of (5.18) becomes

k.
) Y, ——P{K,=Kk}P(W;,|{K,=k})
keZ?~(0} j: k;>1 ki + - +k, { T {

0
-l S S e&,mk-g
n(n—1+0) ez (o) jikot " !
Po(jy=1
Xq(j),0 distinct

P(Wir.0l (K = K — ¢))

0
= h_110) Z Z P(Werm N Kn=k_ei}
n(n—1+0) iin=1 keZ}: kg; =1 ( AT { B())
x;o distinct
0

-y (W)
n(n -1+ 0) it n;=1, x;, distinet ( V,T,n)

Thus, (5.17) follows from Corollary 4.2. O
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