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We are interested in the behavior of Gibbs states at or near the critical
temperature. From the point of view of classical probability theory this is a
problem about the limit distribution of partial sums of strongly dependent
random variables. The problem is very hard in the general case, and almost
no rigorous results are known, so we will discuss a special case, Dyson’s
hierarchical model, in detail. This model can be rigorously investigated, and
it may help us to understand the behavior of the more general models. We
present the most important results with a sketch of their proofs. Vector-val-
ued models are also discussed, since in this case some new interesting
phenomena appear. The last section deals with the translation invariant case.
Some recent results are presented and some conjectures and open problems
are formulated. The last section can be read independently of the previous
sections, but the conjectures formulated there are strongly motivated by the
previous results.
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0. Introduction. One of the most important problems in probability theory
is the investigation of the limit distribution of appropriately normalized sums of
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432 P. M. BLEHER AND P. MAJOR

random variables. The case of independent random variables is fairly well
understood, but much less is known about the dependent case. On the other
hand, such questions arise in a natural way when we investigate equilibrium
states in statistical physics. In the case of dependent random variables it is more
natural to pose the question in a slightly different way. A set of random
variables X,, n € Z9 where Z¢ denotes the lattice in the d-dimensional
Euclidean space R¢, is called a d-dimensional random field. Let us define the
nonintersecting cubes DN c 29, ne€ z2¢, N=1,2,...,

DY ={k=(ky....,kg) €2% Nn;<k;<N(n;+1), j=1,...,d)
and the random fields ZY, n€ 29, N=1,2,..., as

0.1) zN = e > (X,-EX,), nez? N=1,2,...,
N reDVN

where Ay is an appropriate norming constant. The random fields ZY are called
the renormalizations of the original field X,. If the finite-dimensional distribu-
tions of the fields ZY tend to those of a random field Z* as N — o, then the
random field Z} is called the large-scale limit of the random field X,. We are
interested in which random fields have a large-scale limit, which random fields
can appear as a limit, and how the norming constant A, must be chosen. We
restrict ourselves to the case of stationary random fields X, i.e., to the case
when the random vectors (X,,,..., X, ) and (X, n+p> s Xn,+p) have the same
distribution for all 2=1,2,..., and Ry,...,Ry, PE Zd Moreover, we assume
that the random variables have suﬁ'iciently many moments.

If the random field X,, n € Z consists of independent—or in some sense
weakly dependent—random variables, then its large-scale limit exists with
Ay = N?72 and the limit is an independent Gaussian field, i.e., a set of indepen-
dent Gaussian random variables. In statistical mechanics, however, there arise
more sophisticated 51tuat10ns Equilibrium states in statistical physics are prob-
ability measures on RZ“ which depend on a physical parameter, for example the
temperature T. We shall give the definition of equilibrium states in the next
section. Let p(T) be an equilibrium state at temperature T, and let X,, n € Z9,
be a u(T) distributed random field. We are interested in the large-scale limit of
the random field X,,. In the next few paragraphs we will describe a picture which
is believed by physicists to hold for a large class of models but has been
rigorously demonstrated in only a few cases.

There is a special parameter T = T,,, the so-called critical temperature, where
the equilibrium state has a very special behavior. For all T + T, the large-scale
limit of the u(T') distributed fields X,, with the normalization A, = N2 is an
independent Gauss1an field. In the case T = T, however, a normalization
Ay = (N9 a > 1, must be chosen, and the limit field consists of dependent
random variables, whmh are not necessarily Gaussian. The particular behavior of
the equilibrium state at T = T, is closely connected with the dependence
structure of the u(T') distributed random fields X,, n€ Z% For T<T,,
EX, X,., > M= M(T) with some M(T)+ 0 as |n| > 0, and for T > Tcr,



CRITICAL PHENOMENA 433

EX,X,,,— 0 as |n| = . For both T > T, and T < T, the correlation func-
tion tends to zero exponentially fast, ie., E(X, — EX, X X,,,— EX, ) =

" O(exp(—c|n|)) with some ¢ > 0. The only exceptional case is T = T, when

EX,X,,, ~ const.|n| ¢ with some 0 < ¢ < d. It is natural to choose the norm-

ing constant Ay in (0.1) as

A}{,=Var( > Xj).

jeny

Hence the behavior of the correlation function suggests that the right choice of
Ayis Ay=N42for T+ T, and Ay = N“ /% for T = T,. In the latter case
a new type of limit theorem can be expected. We are interested in the behavior
of equilibrium states at or near the critical temperature. Here another interest-
ing phenomenon appears, which is called universality. For T # T, the random
variable N~9/2% ;e p¥(X; — EX}) is asymptotically normal with expectation zero
and variance o(T). For T in the vicinity of T, the asymptotic relation o(T') ~
const|T — T,,| " holds. Moreover, the parameter y depends only on some global
characteristics of the model, like the dimension d, but it does not depend on the
finer structure of the model at all. Constants like the above-defined y are called
universal exponents. Similar universal exponents appear in the normalization at
the critical temperature, where Ay = N or the magnetization EX, ~
const.|T — T, |P for T < T,.

It is widely believed among physicists that such results hold true. But,
unfortunately, most of these results have no rigorous proofs. Hence a simplified
model, where all the above statements can rigorously be proved, and which helps
us to understand the general situation, is very interesting for us. This is the
reason why we shall discuss a special model, Dyson’s hierarchical model, in
. detail. We present the most important results and discuss what kind of results
they suggest in the general case. We shall also consider the vector-valued model,
where limit theorems similar to that at the critical temperature hold for all low
temperatures.

Let us finally remark that the above-discussed critical behavior and universal-
ity is not a peculiarity of models in statistical physics.

There are several infinite systems where similar results are expected. Unfor-
tunately, the investigation of most of these models seems to be extremely hard
and very few rigorous proofs are known:

1. The definition of equilibrium states. In this section we define the
equilibrium states. Let a lattice S and a metric space K be given In this paper
we choose either S = Z¢ or Z = {1,2,...} and either K C R, in which case we
speak of scalar valued or K C R?, p= 2 in which case we speak of vector-val-
ued models. A function o: S — K is called a configuration, and its value o(i),
i €8, the spin at the point i. Equilibrium states are implicitly defined probabil-
ity measures on the space of all configurations K. They depend on the energy of
configurations (or Hamiltonian function), a “free” measure » on K and the
temperature T. We restrict ourselves to the case when the Hamiltonian function
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of a configuration o = {0(i), i € S} can be given by the formal series
(1.1) H(o) = — X U(i, j)o(i)o(j) — h X o(i).
i, jes ies

Here h € R! in the scalar case, h € R? in the vector case, and ho(i), o(i)a(j)
denote scalar products if K € R?, p > 1. We shall impose the restriction
U(i, j) = 0. Models satisfying this condition are called ferromagnetic models.
Let us remark that models where this condition is violated are no less interest-
ing. In such cases some new effects may appear, but the behavior of such models
is much less understood.

The precise meaning of formula (1.1) is the following: The energy of a
configuration o = {0(Z), i € V} in a finite set V.C S is

Hy(o) = — X U(, j)o(i)o(j) — h X (i),
i,jev iev
and its conditional energy under some external configuration o’ = {0(i),
ieS—-V}is
Hy(ole’) =Hy(o) — L X U(i, j)o(i)e’(J).
ieVjeS-V

We shall assume that we are given an even measure » over K, i.e., »(A) = »(—A),
which we call the free measure, and it is invariant with respect to rotations of R”
in the vector-valued case. The measure » will be a probability measure if it is not
stated otherwise. Moreover, we assume that it tends to zero sufficiently fast at
infinity, so that all integrals in the sequel will be convergent. Given a Hamilto-
nian function H, a free measure » and a finite set V C S, we define the Gibbs
distribution at temperature T' by the formulas

1 1 .
(12)  py(do|T, 0", ») = :—(T——)p{— 7Hu(olo")] [T »(dofi),
12)  ET,e’,») = fexp{- %Hv(cﬂo’)} T »(dofi).

A probability measure p = p(T') on K5 is called an equilibrium state with the
above-defined Hamiltonian H at temperature T if the following property holds:
For all finite sets V C S and almost all configurations ¢’ = {0’(j), j €S — V}
(with respect to the measure p), the conditional distribution of the configura-
tions o in V under the condition that the configuration is ¢’ in S — V is given
by formulas (1.2) and (1.2’). The first natural question which arises in connection
with the above definition is whether there exist equilibrium states and if they
exist whether they are unique or not. It has been proved under fairly general
conditions that equilibrium states exist and they are unique for all high tempera-
tures ([33], [35]). On the other hand, in many cases it has been proved that the
equilibrium state is not unique at sufficiently low temperatures. In order to
describe a more detailed picture let us first consider scalar-valued models. For
the sake of simplicity let us restrict ourselves to the case when the free measure »
is such that »({ —1}) = »({1}) = 3. We shall also assume that U(i, j) = U(J, i) =
Ui—-j)=0,U0)=0and 0 <X;cz:U(j) < o0.
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The situation is different for d = 1 and d > 2. For d = 1 the equilibrium state
is unique for all temperatures T > 0 if ©%_, jU(j) < oo (see [34]). On the other
hand, as was proved by Dyson in [19], in the case U(j) =;% 1 < a < 2, there
are two different ergodic equilibrium states p*(T') = p*(do|T) and p (T) =
p~(de|T) for all sufficiently small T > 0 and only one equilibrium state u(T') =
t(do|T) for large T. Frohlich and Spencer [24] proved the same result in the
very delicate border case a = 2. The equilibrium state p*(resp. u~) can be
obtained as the limit limy, _, ;1 (do|T, ¢’, v) with the boundary condition o(i) =
1,i¢& V [resp. o(i) = —1,i & V].

Define the quantity M(T) = E*o(i) = [o(i)p*(do|T), where we write p
instead of p™ if there is only one equilibrium state. [It can be proved that M(T')
does not depend on i€ Z.] The function M(T) is called the spontaneous
magnetization. It is proved that M(T) =0 for large T, and M(T) > 0 for
sufficiently small T if U(j) =j"% 1 < a < 2. In the latter case p* # p~. It is
also proved that M(T') is a monotone decreasing function in 7. Thus there exists
a critical temperature T, such that M(T) =0 for T > T, and M(T) > 0 for
T<T,.

There are several interesting conjectures about the behavior of equilibrium
states near the critical temperature. We consider equilibrium states with the
potential U(j) =j7% 1<a <2. Let us define the random variables oy =
LN (0(i), where o(i) are p*(T) [resp. w(T) for T > T.] distributed random
variables. It is believed that for N > oo

(1.3) Eo? ~ const.(T — T,.) "N, ifT>T,
(1.4) Eo}? ~ const. N¢, itT="1T,,
(1.5) E(oy — Eoy)” ~ const.(T,, — T) "N, itT<T,,
(1.6) Eoy=NM(T), M(T) ~const(T,,—T) *, ifT<T,,

with some positive parameters 8 and vy, which are called critical exponents.
Moreover, we expect that the random variables o(i) are weakly dependent if
T > T, or T < T,, hence they satisfy the central limit theorem, i.e., (1/ VN )oy
for T> T, and (1/VN)(oy — Eoy) for T < T, tend in distribution to the
normal law. On the other hand, for T = T, the o(i) are strongly dependent, and
in that case we expect that N~%/%s,, has a limit in distribution as N — co. It is
conjectured that the limit is Gaussian for 1 < a < 2 and non-Gaussian for
i<a<2
For d > 2 it has been proved that for any potential U,

U(j)=o, Y U(j)<o and U(j)>0

jez? ’

for two linearly independent j, the equilibrium state is not unique for suffi-
tiently low temperatures. Let us restrict ourselves to the case of a finite range
potential, i.e., to the case when there exists some R > 0 such that U(j) = 0 if
|/l = R. It is conjectured that the situation in this case is similar to the
one-dimensional case with the potential U(j) =/ % 1 < a < 2. Namely, if we
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define the volumes Vy = {j = (j;,..., Jy): 1 <j, <N, k=1,...,d} and the
random variables oy = X;cy 0(j), N =1,2,..., then the following relations are
expected to hold: There exists some T, such that

%)) Ec¢} ~ const(T — T,.)"*N¢, ifT>T,
1.8) Eo} ~ const. N9+2-m, itT="1T,,
1.9 E(oy — Eoy)? ~ const(T,, — T) "N¢, ifT<T,

(1.10)  Eoy=NeM(T), M(T) ~ const(T, — T)?, ifT<T,,

where vy, 7, B are critical exponents and a logarithmic multiplier is possible.
[The exponent in (1.8) is written in a strange form, because in such a formu-
lation n = 0 is expected in the so-called classical cases. We are not going to
discuss the details.] It is conjectured that N~%/%¢, in the case T > T, and
N~-%%¢, — Eay) in the case T < T, satisfy the central limit theorem. For
T = T,, it is expected that N~(¢*2-"/%5 has a limit in distribution as N — .
Moreover, it is believed that the critical exponents 8, ¥ and 7 are universal in
the following sense. They do not depend on the finite range potential U( ). Let
us remark that the critical temperature T, is not universal in the above sense.

The behavior of vector-valued models is similar to that of scalar-valued
models, but some new phenomena appear. Here we want to discuss only some of
them. We restrict ourselves to the case when the free measure » is the uniform
distribution on the p-dimensional unit sphere.

The problem about the existence of different equilibrium states in vector-val-
ued models is only partly solved. One has to impose stronger conditions on the
. potential U in order to guarantee the existence of different equilibrium states at
low temperatures. Some results [17] about the so-called absence of breakdown
of continuous symmetry indicate that for dimension d = 1,2, models with
finite range potential must have only one translation invariant equilibrium
state for all T > 0. On the other hand, it has been proved in certain cases,
e.g., for models with potential U(j) = |j| ™% 1 <a <2, d>1, or U(j)=1if
lJl =1, U(j)=0if |j| > 1, d = 3, that for sufficiently low temperatures and
arbitrary e € R? there exists an ergodic equilibrium state ué(T') = pé(do|T)
such that E‘(i) = [o(i)p*(do|T) = M(T')e with some M(T)> 0 (see [23]
and [22]). It is believed that the correlation function of scalar-valued models
r(i —j) = E*[(o(i) — M(T))o(j) — M(T))] and that of vector-valued models
r(i —j) = E¢{(a(i) — M(T)e)(o(j) — M(T)e)] behave differently. Namely, it
has been proved that the correlation function of scalar-valued models is rapidly
decreasing (in case of finite range potential exponentially fast), and, on the other
hand, it is conjectured that in the vector-valued case r(j) decreases only as a
relatively small power of |j|. Some estimates given for certain models support
this conjecture (see [13] and [38]). The slow decrease of the correlation function
indicates strong dependence between the random variables o(z). Because of this
strong dependence we conjecture that for all low temperatures the partial sums
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of the u®(do|T) distributed random variables satisfy a limit theorem with an
unusual normalization and a possibly non-Gaussian limit. Let us emphasize that
this conjecture indicates an essential difference between scalar- and vector-val-
ued models. In scalar models there appears a nonclassical limit theorem with an
unusual normalization only at a very special parameter, at the critical tempera-
ture. On the other hand, in vector-valued models we expect a nonclassical limit
theorem with some unusual normalization for all low temperatures.

The above-mentioned conjectures seem to be very hard to prove in the general
case. Hence we shall consider a special case, Dyson’s hierarchical model, which
we are able to investigate in detail. The results obtained for this model are in full
accordance with the above-mentioned conjectures. Moreover, our investigations
can give us a better insight about what to expect in the case of general models.

2. An overview of the main results. In this section we briefly describe our
program in this paper and make some comments. In Section 3 we define Dyson’s
hierarchical model and introduce the most important notions. This model is
similar to the one-dimensional models with potential U(j) =j % 1 < a < 2, but
it is not translation invariant. Instead of translation invariance it has another
symmetry which makes it more tractable. In Sections 4 and 5 we discuss the
Gibbs states without boundary conditions. Here the main problem is the investi-
gation of an integral operator S, defined in (4.2). This operator enables
us to calculate the density function of the average of 2" spins from the
density function of the average of 2"~! spins. In the case of independent
random variables one has to apply the convolution operator to solve
the analogous problem. Let us remark that the operator S, is very similar to
the convolution operator. Moreover, just as the convolution does, it turns a
Gaussian density function into a Gaussian density function again. The formal
difference between S, and the convolution operator is the existence of a kernel
function exp{c"~!/T(x? — u?)} in the definition of S,. This kernel is extremely
important for us. Actually, it is this kernel which reflects the dependence
structure in our model and which is responsible for the fact that our model has
much more complex behavior than that of independent random variables.

In the investigation of general statistical physical models some transforma-
tions appear which we expect to have a behavior similar to that of S,. But these
transformations are much more complicated in the general case, and it is the
relative simplicity of S, which makes Dyson’s hierarchical model tractable.

In Section 4 we prove a limit theorem for the sum of spins in a large volume at
the critical temperature (Theorems 4.1 and 4.3). The normalization in these
theorems is unusual, and the limit is in certain cases Gaussian and in certain
cases non-Gaussian. The limit which appears must be the fixed point of a
rescaled version of the operator S,. (This rescaled version does not depend on n.)
This rescaled operator always has a Gaussian fixed point. But only fixed points
with some stability property can appear as a limit, and the Gaussian fixed point
is not always stable. In such cases a stable fixed point must be found, and this is
done in Theorem 4.2 with the help of bifurcation theory. In Section 5 a large
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deviation result is presented and the critical exponents are calculated. The
investigation of critical exponents and large deviation results are closely related.

In Section 6 the equilibrium states are investigated. This investigation is
based on the results of the previous paragraphs and the investigation of the
operator T, defined in Lemma 6.4. The main point is that 7|, is strongly
localized, hence we can give sufficiently accurate and simple asymptotic formulas
(given in Lemma 6.5) for the Radon-Nikodym derivatives we are interested in.

In Section 7 we deal with vector-valued models. The starting formulas in the
investigation of vector-valued models are the natural adaptations of those given
in the scalar-valued case. The methods of proof in these two cases are also very
similar. We need a good asymptotic formula for the distribution of the average
spin for Gibbs states without boundary conditions and the Radon-Nikodym
derivative of the equilibrium state with respect to the Gibbs state without
boundary condition. However, when the starting formulas are approximated by
simpler expressions during the proof, essentially different expressions appear in
the scalar- and vector-valued case. We get some results for vector-valued models
which have no analogues in the scalar case.

The main results of Section 7 are Theorems 7.2 and 7.4 and Lemma 7.3. Here
we get limit theorems with an unusual normalization in the direction orthogonal
to the spontaneous magnetization for all low temperatures. Let us emphasize
that, unlike the scalar-valued case, here we get a nonclassical limit theorem with
an unusual normalization not only at a special critical parameter value but for
all low temperatures. In Theorem 7.4 a non-Gaussian limit distribution appears.
It is given with the help of an integral equation defined in formula (7.1). We
know of no analogous result in the previous literature.

In Section 8 general translation invariant models are discussed. This section
can be read independently of the previous ones. However, the introduction of
several notions and the formulation of several conjectures are strongly influenced
by the results obtained for Dyson’s hierarchical model. In the translation
invariant case very few rigorous results are known. Hence we put emphasis on
the formulation of some important conjectures and try to explain why it is
natural to expect them.

3. Dyson’s hierarchical model. Posing of the problems. Dyson’s
hierarchical model is a special case of the equilibrium states defined in Section 2.
In this case we choose S = Z = {1,2,...}. To define the Hamiltonian function
first we have to define the so-called hierarchical distance on Z. Put Vin=
{(/y JEZ, (k-1)2"<j<k-2"), k=12,...; n=1,2,..., and define
n(i, j) = min{n: thereis a k such that i € V, ,, j € V, ,}. We shall also write
V, instead of V, . The hierarchical distance d(i, j), i, j € Z, is defined by the
formula

o O, if =j’
d(i, j) = {2na,n—1, if i ).

Now we define the Hamiltonian function H(s), ¢ = {0(i), i € Z}, of Dyson’s
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hierarchical model by formula (1.1) with the choice 2 = 0 and U(i, j) = d~°(3, j),
1 < a < 2. The constant «a is an important parameter of the model. It measures
the order of interaction between distant spins. We shall often use the parameter
¢ = 2279 instead of a. First we discuss scalar models. We shall mainly consider
the so-called ¢* model, where the free measure » is defined by the formula

9 .
(3.1) % =po(x) = C(u)exp(— % - Z—x“), 0<u<u,.
Here u, is a sufficiently small fixed constant, and the norming factor C(u) is
chosen in such a way that » is a probability measure. The function py(x) has
two important properties which we need during the proofs. It is sufficiently close
to a Gaussian density and tends to zero at infinity faster than any Gaussian
density function. The parameters a, 8, y mentioned in the introduction can be
defined for these models and do not depend on the parameter u. This fact
indicates universality. Mainly we shall be interested in the following two prob-
lems:

3.1. The behavior of Gibbs states without boundary conditions. Let H, (o)
denote Hy /(o) for ¢ = {0(i), i € V,}, and define the measures

1 1 ,
62 m(dolTy) = ggmyen| - pH(o)] T (dol))
(3.2") = (T, ») = fexp{- -}Hn(a)}ig »(do(i)).

Let p,(x) =p,(x,T) denote the density function of the random variable
27"L; e v,0(i), where the joint distribution of the random variables o(i), i € V,,
is given by formulas (3.2) and (3.2’). (We assume that the measure » has a
density function.) We are interested in the asymptotic behavior of the density
function p,(x, T) for large n. We want to prove that there is some T = T, for
which ¢~ "?p,(c™"/2%x,T,.) has a limit as n - co. This means an unusual
rescaling. Whether the limit is Gaussian or not depends on the parameter ¢ of
the model. For T > T, p,(x,T) is asymptotically Gaussian with variance
const.27", and for T < T, it is asymptotically the mixture of two Gaussian
density functions with variance const.2 " and expectations M(T') and —M(T),
respectively. Moreover, we want to show that the function p,(x,T) has the
universal exponents a, 8,y in the vicinity of T, to be defined later, which are
the natural modifications of those mentioned in the introduction.

3.2. The behavior of equilibrium states. In the above problem we have
investigated the average of p, distributed random variables. This measure u,, is
* a good approximation of thé equilibrium states of Dyson’s hierarchical model.
However, it is more natural to investigate the equilibrium states themselves. The
first problem is to show that the equilibrium states really exist. Then if we know
that the equilibrium states p(T') exist let us consider a u(T') distributed random
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field o(i), i € Z, and its renormalization

Ly (o) - Eoi)), ez

(3.3) Y.(k) =
An L€V,

We want to show that the joint distributions of the random variables Y, (k) tend
with the normalization A, = 2"/2 to those of an independent Gaussian field if
T # T,, and they tend with the normalization A, = 2"c""/2 to the joint
distributions of a not necessarily Gaussian field if 7' = T,,. The equilibrium state
p(T) is unique for T > T,,, and Eo(i) = 0 in this case. For T < T, the equi-
librium state is not unique, and we have to explain which equilibrium state we
consider. We construct an equilibrium state p*(7T) for T < T,, which is the
natural analogue of the measure p* defined for equilibrium states in Z¢. We
consider a random field o(i) with this distribution p*(T') in (3.3). It turns out
that Ea(i) > 0 for T < T,. Finally, we want to prove that the critical exponents
exist and we want to calculate them.

We remark that the values T, agree in the two problems. The proofs of the
theorems about the equilibrium states heavily depend on the results about the
behavior of p,(x,T). This is the reason why we have to investigate the first
problem in detail.

We shall also consider the vector-valued version of Dyson’s hierarchical model
when o(i) € R”. We shall consider the equilibrium states at low temperatures.
We construct an equilibrium state p(7) such that for a p(T) distributed
random field o(k) = (6 ®(k),..., 0 P(k)), k € Z, EcV(k) > 0, EcU)(k) = 0 for
J = 2. We shall show that its renormalizations Y, (k) = (Y,)(k),..., YPX(k)),

1
YOk = o B [o00) - B3],
nieV, ,

(3.4) kez,

. 1 .
YO(k)= 5 T 006,  j=2%..p,

n iEVk,n

have a limit as n > oo, but an unusual normalization is needed for all small 7.

4. Gibbs states without boundary conditions. The Hamiltonian function
H,(0), o = {0(i), i € V,}, satisfies the relation

(41) H(0) =H, ,(0,) + H, y(0,) =277 D )} o(i) X o()),
eV, JEV, =V
where o, = {0(i), i€ V,_,}, 0, = {0(i), i€ V, - V,_,}.
We assume that the free measure » has a density function py(x). We claim
that the density function p,(x, T') of the average of the u,(do|T, ») distributed
spins satisfies the recursive relation

Po(x,T) =8, p,_(x,T)
(4.2)

cn—l

- ) foxp G (3 = ) (5 = Doy 3+ 0, T)
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where the norming constant C,(T') is defined in such a way that p,(x,T) is a
density function. On the other hand,

(12) po(2,T) = plx) = .
In order to prove (4.2) write
1
P T) = €, fo(27" T oli) - x)exp{— ;H,xo)} TT pola(i)) dof),

eV,

where 8(27 "X, cy,0(i) — x) denotes integration on the hyperplane

27" Y o(i)=x

i€V,
with respect to Lebesgue measure. Then formula (4.1) implies that

P(x,T) = C,,ffS(u +0v— 2x)exp(%2(n—l)(2—a)uv)
g -
Xexp(— %Hn—l(ol)) [T po(o(i) )do(i)}

i€V,
x[f&( ~(n=1)

Xexp( ,,1(02)) I po(o(i))do(i)]dudv

~ Yn-1

o) - v)

lEV V-

n—1

T uv)pn—l(u, T)pn—l(D, T) dudv.

= C,{ff8(u +0- 2x)exp(c

This relation implies (4.2). Thus the investigation of the distribution of the
average of the pu,(do|T, v) spins leads to the question about the behavior of the
function p, defined by (4.2) and (4.2’). As it will be seen the cases V2 < ¢ < 2
and 1 < ¢ < V2 are essentially different. First, we formulate the following result
(see [10] and [37]):

THEOREM 4.1. For V2 <c¢ <2 there exists a T, = T, (u), T, (u)=
2/(2 — ¢) + O(u) as u = 0, in Dyson’s hierarchical ¢* model [i.e., in the model
with the free measure defined in (3.1)] such that ¢ "?p.(c™"?x, T, tends to the
Gaussian density function

)
exp| - —— |, asn — oo.

p(x) =p(x,T,) =

2 - o)rT, 2 - )T,
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We remark that in [10] a slightly different result is proved. In that paper such
a model is considered where the spins take the values +1, the Hamiltonian
function satisfies relation (4.1) for n > n, with some n,, the free measure » is
v{+1} =»{—1} = ; and H, is defined in such a way that p,(x,T) is very
close to a Gaussian density. The same proof works in both cases. What we really
need is that the recursive relation (4.2) holds and the starting function is near to
a Gaussian density. The question of what happens in the case of a general
starting function is an open question.

We explain the main idea of the proof. First, we want to get rid of the
dependence on n in the operator S,. To this end we make the rescaling

P(x,T) =pn( ypm zTc"‘/zx, T)
and rewrite (4.2) for the function P,. We get
P(x,T)=C fexp{z — c(_2 —u )}P_l(i - u,T)P_l(i + u,T) du.
clec Ve "\ Ve

The function const exp(—x2/(4 — ¢)) is a fixed point of the above iteration. Let
us introduce the function @, (x, T) = exp(x2/(4 — ¢))P(x, T). We get

(4.3) Q,(x,T) = const. SQ,_,(x,T),
where the operator S is defined by the formula
(4.4) Sf(x) =8,f(x) = f "‘f( )f(f +u) du.

On the other hand, (3.1) and (4.2’) and the definition of the functions P and @
yield

2-c x? u(2-rc\?
= - _Z 2.4
(45) Qy(x,T) exp{(l 5 T)4—c 4(4_0) T?x }, T >0,

and

(4.6) pn(c"‘/zx,T)=exp( (2 xc)T)Q( (2i__—c—c)-fx,T .

The constant in (4.3) is chosen in such a way that p,(x) is a density function.
Observe that the function #x) =1 is a fixed point of the operator S, and
Qo(x, T) is close to 1 if T'=2/(2 — c). Now to prove Theorem 4.1 one has to
show that C,Q,(x,T) = C,S"Q,(x, T) tends to 1 with an appropriate choice of
C, for some T = T, = 2/(2 — ¢) + O(u). To prove the above statement we have
to investigate the stability of the operator S around its fixed point #(x) = 1. To
this end we consider the differential DS, D,Sf(x) = (d/3€)S(1 + ef(x))|.—o, at
this fixed point. We get

D,Sf(x) = %fe"“zf(% + u) du.
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This is a Gaussian integral operator (see [2]). It is known that D,S
is a self-adjoint operator in the Hilbert space LR, exp(—[(c — 1)/c]x?)dx),
and the Hermite polynomials A,(x) = h,(x,(c — 1)/¢) with weight function
exp(—[(c — 1)/c]x?) are its eigenvectors with eigenvalues 2¢~#/2. The functions
h, form a complete orthogonal system in this Hilbert space. Since all functions
Q,(x, T') are even functions in their first coordinate we can work in the subspace
L, . (R',exp(—[(c — 1)/c]x?) dx). The eigenvectors hy =1, hy, h,,... have ei-
genvalues 2,2/c,2/c?%,... . It is natural to expect that the operator S behaves
similarly to its linearization D,S in a small neighborhood of the function
t(x) = 1. If Y2 < ¢ < 2, then the operator D,;S has only one eigenvector, the
function h,, whose eigenvalue 2/c is larger than 1. [The function A (x) = 1 with
the eigenvalue 2 is not interesting to us, because, as it turns out from a more
detailed investigation, it influences only the norming constant in (4.3).] Since
D,S has an unstable direction we cannot expect that C,S"Q,(x, T') is convergent
for a general T. But we may expect that there is a parameter T' = T, such that
C,S™"Q(x, T.,) tends to 1, because, roughly speaking, the effects in the unstable
direction A, balance each other for T'= T,,. The proof is actually a justification
of this conjecture. Put

0

(4.7) CQ.(x,T) - 1= kZ ci(T)hyu(x).
=1
Then
© 2
DIS[CnQn(x: T) - 1] = kzl ;Zcin)(T)th(x)
and .
C,Q,+:(x,T) = SC,Q,(x,T) ~ 1+ D,S[C,Q,(x,T) — 1]
© 9
=1+ ) ;chan)(T)hzk(x)~

k=1

Hence
) 2
Coir@uir(%, T) =1+ X " NT)hoy(x), "™ T) ~ —ef(T).

k=1
The above argument can be carried out if the coefficients c{”(T') are sufficiently
small, and the substitution of S by its linearization D,S causes a negligible error.
In this case the coefficients c{™, k # 1, are exponentially decreasing. If u > 0 is
sufficiently small, then (4.7) holds for n =0 in a small interval [TV, T(®],
TO < Ty < TP, Ty=2/2 - ¢) and ¢(T®) <0, .c(T¢®) > 0. Then a se-
quence of decreasing intervals [T, T,®] can be found in such a way that for all
n the relation (4.7) holds if T € [T, T?]. Moreover, it can be guaranteed that
T® - T® - 0, {™(TP) <0, ¢{"™(T,®) > 0 and supr ez, renlc{”(T)| tends
to zero exponentially fast. Then we get, by defining T = T, as the intersection of
the intervals [TV, T,?], that C,S"Q(x, T.,) = 1. The proof of Theorem 4.1 can
be obtained by working out the details of the above argument. In the proof we
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have to overcome some technical difficulties which are connected with the
following two facts: (a) We have introduced the auxiliary Hilbert space
Ly(R' exp(—[(c — 1)/c]x?) dx), and investigated the contraction properties of
the operator S in it. But actually we need some estimates about the operator S
in the supremum norm. (b) In order to carry out the above estimations we need
some control about the behavior of the function @,(x,T) at infinity, which
guarantees that its effect is negligible. These difficulties can be overcome by some
arguments from the elementary analysis, but we omit the details.

In the case ¢ < V2 both the eigenfunctions h, and A, have an eigenvalue
larger than 1; hence the fixed point #x) = 1 of the operator S is unstable, and
we cannot expect that Theorem 1 holds in this case. Hence we need to look for
another fixed point g of the operator S defined in (4.4) and consider the
differential D,S of the operator S at this point g. We have

2 2
(4.8) D,Sf(x) = :/—_W—fe‘“f(% + u)g(% - u) du.
The following result holds true (see [11], [14] and [26]):

THEOREM 4.2. There is some ¢ > 0 such that for V2 —e<c < V2 the
operator S, defined in (4.4) has a fixed point g(x) = g(x, ¢), g(x) > 0, for all
x € RY, which is different from the function t(x) = 1. The operator D,S has only
one eigenvector with an eigenvalue larger than 1 (besides the eigenvector g with
the eigenvalue 2 which is not interesting to us).

Let us introduce the function

x? 2—-c¢
p(x,T)=Kexp( @- c)T)( ETx,c),

where the constant K is chosen in such a way that p is a density function. Now
we formulate:

THEOREM 4.3. If V2 — e < ¢ < V2 and the density of the free measure v is
near to the function p(x, Ty) with some T, > 0, then there exists some critical
temperature T, in the vicinity of T, such that ¢~ "?p, (¢, T,) tends to
p(x,T,) as n — 0.

Theorem 4.3 can be proved with the help of Theorem 4.2 similarly to Theorem
4.1. We omit the details.

In order to prove Theorem 4.2 first we observe that for ¢ = v2 the function
hy(x,1 —1/2) is an eigenvector of the operator D,S with the eigenvalue 1.
Hence the finite-dimensional bifurcation theory suggests that for ¢ = V2 — ¢,
0 < & <¢g, with some small ¢, > 0, the operator S, has a new fixed point
g(%) =1— Cehy(x,1 —1/y2) + O(¢?) in addition to the old one #(x) = 1. We
want to find this new fixed point, and to show that it satisfies Theorem 4.2. Since
we have to work in an infinite-dimensional space, the results of the finite-dimen-
sional theory cannot directly be applied. First, we apply the so-called e-expan-
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sion, i.e., we look for the fixed point g in the form

2(x) = 3 ay(e)hp(x),

k=0

o]
aj(s) = Z aj,kek7 J s 0,27
k=2

o0 o0
ao(e) =1+ Z ao,kek’ 02(3) = Z al,kek’
k=2
where h; denotes the jth Hermite polynomlal w1th weight function
exp(— [(c — 1)/c]x?) and leading coefficient 1. Then the equation S.g = g leads
to the system of equations

1 o0 0
a(9) = T o) = G X X Cums(Dan(a(e),

with

—[(e—1)/clu? 1 —v? u u
Ci, m, p(€) =‘fe [(c—1)/c] h2k(u)7—,,—fe hz"‘(ﬁ + v)th(ﬁ - v) dudv,

where (-;- ) denotes scalar product in the space L,( R, exp(—[(c — 1)/c]x?) dx).
Since the terms C ,, ,(¢) can be calculated explicitly, the above relation makes
it possible to calculate the coefficients a .1 Tecursively. In this way we can
represent the function g(x) in the form of a formal power series. Unfortunately,
this series is divergent. But by preserving only the terms q; ks k < kg, with
some k,, we get an almost fixed point of S, i.e., a function g(x) = 8 (%, ¢) such
that Z(x) — Sg(x) = O(¢*0) for |x| < const. (ln(l/e))l/ %2, The power k, can
be chosen arbitrarily large. Having this almost fixed point g we can find a real
fixed point g by applying a procedure similar to the proof of Theorem 4.1.
First, we need some information about the spectrum of the operator D,S.
Since g ~ 1 for small ¢, the eigenvectors ®, and the eigenvalues A, of D,S are
close to those of D,S, ie., to h,, and 2c % Moreover, by applylng an
e-expansion for the eigenvector ®, and the e1genvalue A, we get that A,
—Ce + O(e?) with some C >0, therefore Ay <L Since the operator DES
has two eigenvectors ®, = g and ®, with eigenvalues larger than 1 in the space
L, . (R exp(—[(c - 1) /c]x?)), we start our iteration from the class of functions
go(x, s, t) = 8(x) + s®y(x) + t®,(x) and consider the iteration g, (x,s,t) =
S"gy(x, s, t). It can be proved by refining the argument of Theorem 4.1 that
there is a pair (3, ) such that the limit g(x) = lim,, _, . g,(%, S, f) exists. More-
over, D,S has beside the function g only one eigenvector with an eigenvalue
larger than 1. The precise proof depends heavily on.some proofs and ideas of
perturbation theory. Some technical difficulties arise because we have to work
also in the spaces C(— o0, 00) and C(— o0, 00) where the results of perturbation
theory, worked out mainly for Hilbert spaces, cannot be applied. We omit the
details.

The proof of Theorem 4.2 works only for small e. On the other hand, some
computer calculations [11] suggest that it must hold for all 0 < ¢ < V2 - 1. No
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rigorous proof is known. It seems very likely that the proof of Theorem 4.2 for all
0 <& < V2 — 1 demands some computer work. First, one looks for an approxi-
mate solution of the equation S.g = g and investigates the spectrum of D,S.
Then an argument similar to that given above may supply the proof.

The case ¢ = V2 deserves special attention. In this case the differential
operator D,S has an eigenvector 4, with the eigenvalue 1. Hence in this case the
linearized operator D,S is not a sufficiently good approximation of the operator
S, and we have to consider also a second-term approximation. It can be decided
only with the help of this second-term approximation whether the Gaussian
solution is stable or not. A refined analysis shows that it is stable, and the
following result holds true (see [4] and [25]):

THEOREM 4.4. For ¢ =2 in Dyson’s hierarchical ¢* model there is a
T, = T(u), To(u) = 2/(2 — ¢) + O() as u > 0, such that ¢~ "/*p,(c""/*x, T,,)
tends to the Gaussian density function p(x, T,,) defined in Theorem 4.1.

In this case the speed of convergence in the relation p, — p is very slow.
Dyson’s hierarchical model with the parameter ¢ = V2 is especially important,
because, as we shall see, it corresponds in some sense to the four-dimensional
translation invariant equilibrium states.

5. Critical exponents, large deviation results. In this section we consider
the critical exponents for Gibbs states without boundary conditions. Let p,(x, T)
denote the density function of the average of the u,(do|T, ») distributed spins.
The critical exponent « is defined as the number for which 27"°%; ., 0(i) has a
nontrivial limit for n — oo if the spins o(i) are p,(do|T,,, ») distributed. In
Section 4 it was shown that such an « exists, and a = 1 — }log,c. The critical
_ exponents B and y are defined in the following way: It can be shown that

277/2p (27"/%, T) is asymptotically Gaussian distributed with some variance
o(T) >0 if T > T,. Moreover, o(T) ~ const.|T — T,|~* where y does not
depend on the parameter u. For T < T, the density function p,(x,T) is
asymptotically the mixture of two Gaussian density functions with some vari-
ance 2 "6(T'), o(T) > 0, and expectations M,(T') and —M,(T'), respectively. We
claim that lim, ,  M(T) = M(T) > 0,and M(T) ~ const.|T — T,|? as T - T,
where B like the exponent y does not depend on the parameter u. Moreover,
o(T) ~ const.|T — T, |~ for small T, — T also in the case T < T,.

First, we consider the case 2 < ¢ < 2. We discuss the ¢* model where the
measure » is defined in (3.1). We formulate an asymptotic formula for the
function p,(x, T) for all x and T. Such a result is called a large deviation result.
We show that the critical exponents can be determined by its help. To formulate
this result we first introduce some notation. The function

-a,

2T

u T
o(x,T) = Zx“ + x2+ R(x,T),

(5.1)
2

2—-c¢

x€R, T>0, a,=
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belongs to the class of functions S, = S,(c) if the function R(x, T) satisfies the
following properties:

(i) R(x,T)is an even function in its first coordinate;
(ii) the derivatives 8*/R/dx* 9T’ exist and are continuous in x € R, T > 0,
ifi+25j<4,j<1; :
(iii) the estimates

PR| s |PB]_ PR | 1
gt | <O (G | SOl oy | = Cuga
3°R PR o] R
axz | =% \axar| < CWlE lax < Culxl,

R(0,T) = 0hold in the half-plane (x, T') € R* X (0, ).

The class S, consists of such functions which are small and smooth perturba-
tions of the function ®y(x, T) = (u/4)x* + [(T — a,)/2T Jx2 Given a function
® € S, we define its critical parameter 7T, as the (unique) solution of the
equation 92®(0, T,)/dx? = 0. This equation has a unique solution, which can be
seen from the relation 33®(0, T')/dx2 4T > 0 for all T > 0. Some more analysis
shows that T, = a, + O(u) as u - 0. For T < T, the spontaneous magnetiza-
tion corresponding to ® € S, is defined as the (unique) positive solution (in x) of
the equation d®(x, T')/dx = 0. This equation has a unique positive solution for
T < T, and has no solution except the trivial one x = 0 for T > T,.. Indeed,
9°®(0,T)/dx*>0 for T>T,, and 9%®(0,T)/dx><0 for T < T,. Since
33®(x, T)/9x® > 0, and it tends to infinity as x — oo for all fixed
T, 0®(x,T)/dx is a strictly convex function tending to infinity as x — oo.
' This relation together with the fact that d®(0,T)/dx = 0 imply that
d®(x, T')/dx = 0 has no positive solution in x if 32®(0, T)/dx? > 0, and it has
exactly one positive solution if 32®(0,T)/dx2 < 0. Some refinement of the
above argument shows that M(T) -0 as T » T,.. Now we formulate the
following:

THEOREM 5.1. For all ¢ > 0 and V2 < ¢ < 2 there is a u, > 0 such that in
Dyson’s hierarchical ¢* model with 0 < u < u, the density function p,(x, T) of
the average spin in the volume V, satisfies the following relation: There is a
function ® € S (c) such that in the domain

U, = {1, a1 > (1 - %(g)””)mm i< T} U {(xT), T=T,),

the relation ]
C plx,T) = C(T)¥(x, T)

n

(5.2)

a,c

2T

Xexp{ —27®(x, T) — ——x? + 0(2n<a—3/2+e>)}
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holds with

» |q 2\ n+j a2q,(x,T) 272
v (x,T)=[I|=2 + (2] =—=—==2| ,
n(x ) }]{:)l: T (C) 9x2

with ay=2/(2 — ¢) and a, = ay + 1. (The parameter a was defined by the
relation 227° = ¢))
Moreover,

c\n/2
(63)  pxT)<(+ 0(5"))p,,(1 -o0(3)" ma), T),
with some 0 < £ < 1if (x,T) € R X (0,0)\ U,.

The proof of Theorem 5.1 is similar to that of Theorem 4.1, but a much more
refined analysis is needed. A local limit theorem can be proved for the function
Pp(x, T) in a small neighborhood of all points (x, T') € U, [i.e., a local expansion
of the function p,(x,T) can be given around (x,T)], and not only in a
neighborhood of (x, T) = (0, T.,) as in Theorem 4.1. Then Theorem 5.1 can be
proved by the help of these formulas, “by sticking these local expansions
together.” The starting function py(x, T') can be written in the form py(x, T') =
exp{—®y(x, T) — (ap/2T)x?%}. Then an appropriate linearization of the oper-
ator S, defined in (4.2) suggests that formula (5.2) holds with some function ®,
which is a small perturbation of ®,, but a pre-exponential term ¥, also appears
in this formula. (The linearization of S, does not change the function ®,, but a
modification of ®; appears when we work with the real operator S, instead of its
linearization.) Then a careful analysis shows that ®, tends to some ® € S, as
n — oo, and the convergence is sufficiently fast to write formula (5.2) with this

“ function ® € S,. In this way Theorem 5.1 can be proved, but we cannot give an
explicit formula for ® € S, in (5.2). The proof of Theorem 5.1 is given in [8], and
Section 3 therein contains the linearization procedure we have mentioned above.

In the domain (x,T) € R X (0,0) \ U, we gave only an upper bound for
p.(x,T) instead of a good asymptotic formula. But even this upper bound is
sufficient for our purposes. Actually formula (5.2) is not valid if (x,T) € R X
(0, 00) \ U,,. The reason for it is the following: We can prove formula (5.2) only in
the domain of such points (x, T') where the following localization property holds:
The integral defining p,(x, T') which is given on the right-hand side of formula
(4.1) is essentially localized in a small neighborhood of the point x. This
localization property holds if (x, T') € U,, but it is violated if (x,T) ¢ U,. An
asymptotic formula for p,(x, T), (x,T) ¢ U,, can also be proved, by determin-
ing which domain gives the main contribution in the integral (4.2). This formula
is completely different from (5.2). We shall not discuss this question here,
although it is an interesting problem. It is closely related to the phase separation
pheriomenon (see [7]).

Theorem 5.1 implies Theorem 4.1, and what is more important for us, the
critical exponents can be calculated with its help. This can be done by making a
local expansion in formula (5.2). In the next section we shall see that Theorem
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5.1 is needed also in the investigation of equilibrium states. Some analysis shows
that the pre-exponential term ¥,(x, T') changes very little in a small neighbor-
hood of a point (x, T'), therefore it can be neglected in the following expansions.
For T = T, we get, by taking a Taylor expansion inside the exponent of formula
(5.2),

a
Pu(x,T.) = 0, T Jexp| = e + 0(¢7)),

cr

for |x| < ¢~ "/2¢~" with some ¢ < 1. This formula together with the fact that the
probability measure with the density function p,(x,T) is essentially con-
centrated in the domain |x| < ¢™"/2(~" imply Theorem 4.1. The latter state-
ment holds since ®(x, T,,) is an even function decreasing for x > 0. This follows
from the relations

39(0,T,) 920(0,T.,)

. a2 %
%®(x, T,,)
ax3

If T > T, _, then we can write

cr?

>0, forx>0.

a
2n(b(x’ T) + ﬁcnx2 = 2"_1(Ax2 + 0(5")),

with A = 3%2®(0,T)/dx% > 0 for |x| < 27"/2¢~ ™" Some calculation shows that
the probability measure with density p,(x, T') is essentially concentrated in the
domain |x| < 27"/2¢(~", Hence the above expansion together with formula (5.2)
imply that the densities 27"/2p (2~ "/%x, T') tend to a Gaussian density function
with expectation zero and variance o(T') = (32®(0,T)/3x2)~! > 0. Moreover,
since o%(T') ~ (33®(0, T,.)/3x%23T) T — T,)" ', 33®(0,T,.)/dx%3T > 0, the
critical exponent y exists, and y = 1. To investigate the case T < T, first we
need some information about the behavior of the function M(T') in the vicinity
of T,. Since M(T) - 0 as T - T, a Taylor expansion yields

d9(M(T),T) 99(0,T.,)

0 = —_
dx dx
4 3

(5.4) — l d (D(O;Tcr) M(T)3 + d (I)(;)’ T::r)

6 dx dx°adT

+o(M(T)®) + o((T - T, )M(T)).
Here we have exploited that besides 92®(0, T.,)/dx2 = 0, the relations

a®(0,T,) 3°®(0,T,) d°®(0,T,)
x  9x*  9xdT
also hold by the evenness of the function ®(x, T') in the variable x. Relation (5.4)

(i;‘— T, )M(T)
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implies that M(T) ~ A(u)T, — T)? with

0 = o525 ) - et oty

Let M,(T) denote the positive place of maximum the function ®(x,T) +
a,/2T(c/2)"x?, i.e, let it be the positive solution (in the variable x) of the
equation d®(x,T)/dx = —(c/2)"ayx/T. Then M, (T) - M(T)as n - co. Now
it can be seen similarly to the case T > T, that p,(x, T') is asymptotically the
mixture of two Gaussian densities with expectations M, (T) and —M(T),
respectively and variance 2~"(32®(M(T), T)/3x2)", i.e., the measure with the
density function p,(x, T') is concentrated in the domain |x :|: M(T)| <2 /%"
and the functions 27 "/?p (27 "/*(x + M,(T), T) tend to 1 X the Gaussian den-
sity with expectation zero and variance [d2®(M(T), T)/axz] !, Now since
M(T) ~ const(T,. — T)"/? the critical exponent 8 exists and = 1. On the
other hand, we get from the Taylor expansion and the relation (5.3)

9*e(M(T),T) 3'@(0,T.) M(T)®  33%0(0,T,)

+ T-T.
dx? ax* 2 x24T ( )
3°0(0, T,,)
~2———(T..—-T).
' 2 x% 9T (T )
Hence o(T') ~ const.|T — T, | ! also in the case T < T,, as we claimed.

Now we turn to the case V2 —e <c<v2. A large dev1at10n result for this
case similar to Theorem 5.1 would enable us to determine the critical exponents
in this case too. Unfortunately, we are unable to prove such a result; we can
describe the behavior of p,(x,T) only in a relatlvely small neighborhood of the
~ point (0, T,,). But even this weaker result is sufficient for us to determine the
~ critical exponents. Before giving the value of the critical exponents we recall that
the operator D,S defined in (4.8) with the function g constructed in Theorem 4.2
has two elgenvalues larger than 1, A, =2, and A\, = V2 + O(¢). Now we for-
mulate the following:

THEOREM 5.2. Under the conditions of Theorem 4.3 for T > T,
27n/%p (2 "/%x,T) is asymptotically Gaussian with some positive variance
o(T). For T<T,, px,T) is asymptotically the mixture of two Gaussian
densities with variance 2~ "(T'), o(T) > 0, and expectations M(T) and —M(T),
respectively. The critical exponents B and vy exist, and B = ‘logx c, Y=
log, (2/c). Here A, denotes the second largest eigenvalue of the operator D,S
deﬁned in (4.8) wzth the function g appearing in Theorem 4.2.

We do not prove Theorem 5.2, but present only a rough heuristic argument,
which may, however, explain whysuch critical exponents 8 and y appear in this
model. The formal proof is given in [11] and [14].

We need a good asymptotic formula for p,(x, T') in the case when T — T, is
small. Let us define the functions P(x,T) and @,(x, T') in the same way as in
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the proof of Theorem 4.1. Then @,(x, T) = const. S"@,(x, T') and
const. @,(x, T,.) — g(x), where the operator S is defined in (4.4), and the
function g appeared in Theorem 4.2. The function p, can be expressed by @,
with the help of relation (4.6). Let ®,, ®,,... denote the eigenvectors of the
operator D, S with the corresponding eigenvalues A, A, ..., where @, is a small
perturbation of the Hermite polynomial H,,(x). For n = 0 and small T — T,, we
can write

ol
Qo(x,T) ° \/E
Qo(x, cr) Qo(x: Tcr)

with some function F(x), and

, T,

cr

~1+(T-T,)F(x),

(55) Qu(x,T) ~ (1+ co(T — T,))@o(x, Tor) — (T - n)ﬁlc@k(x).

In this expression we may achieve by appropriately choosing the coefficient of @,
that the term c,®,(x) is absent in the last sum. Some analysis shows that the
coefficient ¢, of ®,(x) is positive. In this analysis we have to use Q(x, T') ~
g(x) ~ exp(—eH,(x)) and ®,(x) ~ Hy(x).

First, let us consider the case T > T,.. If T — T, is small and » is not too
large, namely (T — T, )N} < 1, then S can be replaced by its linearization, i.e.,
SQn—l(x, T) - Qn(x: cr) + D, S[Qn l(x7 T) Qn—l(x, cr)] Hence we have in
this case

69 Q)= Gl@nT) - (T~ T) ¥ aity(a)|.

Moreover, since A; > 1 and A, < 1 for £ > 2, only the first term is important in
the sum of the right-hand side of (5.6). Relation (5.6) is valid if X}(T — T,,) < 9,
where 8 > 0 is a small but fixed constant independent of T. Let n, = n(T') be
the largest integer such that Njo(T — T,,) < 8. Let us observe that the coefficient
cpN(T - T,,) of <I>1(x) in the expression (5.6) for @,(x,T) is positive. Let
n,=ny+ K where K is a fixed large constant. Then @, (x T) will be such that
Q,(x, T) < exp(—\(n,)x*)Q, (0, T) with some A(n,) and A(n,) > 0 is large.
Hence we make a small error if we omit the multiplicative term exp(—u?) in the
integral defining SQ,(x, T'). This means that for n = n, we can replace the
operator S by convolution. If we do this for all n > n,, then the central limit
theorem suggests that for n > n,,

9= (r=n0)/2e=n0/2p (2= (n=n0)/2c=n0/2y T)

tends to a Gaussian density with zero expectation and const. Njo(T — T,,) =
constant variance. Hence 27"/%p, (27 "%, T) is normal with expectation zero
and variance o(T) ~ const. (2/c)”° Smce (T — T,)N} ~ § = const., therefore
o(T) ~ const(T — T,,)"" with y = log, (2/¢).
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The case T < T, can be similarly discussed. For not too large n, when
NY(T,, — T) < 1, relation (5.6) holds true. Then there is some ny= nyT),
7\"2(T — T) ~ const. such that the function Q,(x, T') has two maxima M, and
— M, which are separated both from zero and 1nﬁn1ty It is natural to expect
such a result, because @, (x,T) ~ g(x) + C®y(x) with some C > 0, g(x) is
monotone decreasing and <I>1(x) ~ H,(x) is monotone increasing for x > 0. Hence
if C is sufficiently large then @, has a nonnegative maximum at a point M. By
the evenness of the function Qn , —M is also a place of maximum. After finitely
many steps these two maxima become localized, and after it they develop
independently. Hence we can expect that for large n, p,(c "*/’x,T) is asymp-
totically the mixture of two Gaussian densities with expectations M and —M
and variance const.2”¥~"2), This means that p,(x,T) is asymptotically the
mixture of the two Gaussian densities with expectations M(T) and
—M(T), M(T) ~ const.c "/ = const.(T,, — T)?, B = jlogyc and o,(T) ~
const.2 (T, — T)™".

6. Equilibrium states. In this section we discuss the existence and unique-
ness properties of equilibrium states of Dyson’s hierarchical model, their large-
scale limit and critical exponents. First, we formulate the following:

THEOREM 6.1. Under the conditions of Theorem 4.1 or 4.3 the equilibrium
states of Dyson’s hierarchical model exist for all T >0. For T > T, the
equilibrium state p. = p(T') is unique. For T < T, there is an equilibrium state

* = u*(T) so that the p* distributed random field o(i), i € Z, satisfies the
inequality Ea(i) > 0, the distribution p~ = p~(T) of the random field —o(i) is
also an equilibrium state, and any equilibrium state is a convex linear combina-
tion of p* and p~.

Let us emphasize that the critical temperature T, in Theorem 6.1 agrees with
that in Theorems 4.1 or 4.3. In the next theorem we consider the large-scale limit
of u(T) resp. p*(T') distributed random fields.

THEOREM 6.2. Let us consider the random fields

Yk - T lo) - Ee(@), keZ,

for all n = 1,2,..., where the random field o(i), i € Z, is p(T') distributed for
T > T, is p*(T) distributed for T < T, and A, is an appropriate norming
constant PutA,=2"? for T+ T, andA = 27%c~"/2 for T = T,,. Then under
the conditions of Theorem 4.1 or 4. 3 the ﬁmte-dzmenszonal dzstnbutzons of the
random fields Y,(k), k € Z, tend to those of a random field Y*(k), k € Z, as
n — . For T # T,, Y;*, k € Z, are independent Gaussian random variables.
For T = T, their joint distribution is the (unique) equilibrium state with the
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Hamiltonian function of Dyson’s hierarchical model at T = T, with the free
measure v(dx) = p(x, T,.) dx, where p is the same as in Theorem 4.1 or 4.3.

We say that the critical exponents 8 and y of the equilibrium states exist if
the p(T) resp. p*(T) distributed random fields o(k), k € Z, satisfy the relation

2
lim E(27"/2 ) o(i) — Eo(i)| ~ const.|T — T,|~, if |T—T,| =0
n—o i€V,

and Eo(k) ~ const.|T - T, |Pif T<T,and T - T,.

THEOREM 6.3. Under the conditions of Theorem 4.1 or 4.3 the critical
exponents B and vy of the equzlzbnum states of Dyson’s hierarchical model exist.
Fory2<c<?2 theyare,B— L y=1andfory2 — e < c <2 the exponents B
and vy are the same as in Theorem 5.2.

The proof of the above results can be found in [3], [11] and [14]. We briefly
discuss their main ideas. We concentrate mainly on the case V2 < ¢ < 2. The
proofs we are sketching are considerably simpler than the ongmal ones.

For all positive integers n let us fix some conﬁgurations o’ =0, = {0)(]),
JE€Z—-V,}such that h(s;) =%;c5_ Vd(l J) % (J) = 0. Let us conSIder the
Gibbs states p,(do|T,¢’) = py(do|T,0’,») on R, where py(do|T,o’,7) is
defined by formulas (2.2) and (2.2’) with the choice ¢’ = ¢/ and the Hamiltonian
Hy, and the free measure » defined in Dyson’s hierarchical model. It is known
from the general theory of phase transitions that any measure p. on RZ, which
can be obtained as p = hmn,,—»ool’«n,,(d°|T 0,,) with some sequence n, — oo and
boundary condition o, , A(o, )~ 0, is an equlhbnum state. Here the lim is
meant as the convergence of the finite-dimensional distributions, i.e., we demand
that for all finite sets V, V C Z, the projection of the measures to RY is
convergent. Moreover, all equilibrium states can be obtained as the convex linear
combination of such measures p which are constructed in the above way.

It follows from the definition of Dysons’ hierarchical model that

o(do|T, 0") = ie(do|T) with hy = T;cq-yd(l, j)~*’(j) where i(do|T, )
is also defined by (2.2) and (2.2’ ), but Hy(o|o’) is substituted by HV(o) =
Hy(o) — hZ,EVo(z) in it. Let us fix some integers n, N, N > n > 0, and define
the measure u,, N(dolT) as the projection of the measure p”%(do|T) to R In
order to prove our results we need a good asymptotic formula for the measures
p,ﬁ’ ~(do|T). It can be obtained with the help of the following lemma in which
we express the Radon-Nikodym derivative du,, ~N/ap,;. Introduce the notation
§m=2""L;cy,0(i) and let vy, denote the distribution of £, if the vector
(o(),..., 0(2”‘)) is p,(do|T) distributed.

LEMMA 6.4.

dMZ,N(olT) = Lfn’,'N(gn) dI“n(olT)7



454 P. M. BLEHER AND P. MAJOR

where the function f,,’f ~(%) is defined by the recursive relations
2Nn

fN n(x) = exp( Tx)

(6.1)

m

c x+y .
A3 = T, (@) = foun{ oo | n 5 (),
form =N —1,...,1, and L is an appropriate norming constant.

Lemma 6.4 together with its proof can be found in [6] under the name “main
formula.” The proof is relatively simple, but we omit it. Let us remark that the
Radon-Nikodym derivative d;d',’ N/, in a point (o(1),..., 6(2")) depends only
on the average 27 "%, . y o(i).

In the case V2 < ¢ < 2 Theorem 5.1 yields a good asymptotic formula for the
density function p,(x, T') of the probability measure y,(dx). Hence we can get a
sufficiently good asymptotic formula for fn’j ~(x) with the help of formula (6.1).
Although we have to estimate rather complicated integrals, we are able to do
this because the integrands we have to work with are strongly localized around
their maximum. In the next lemma we give a good asymptotic formula for
fr *n(x). Actually we need a good estimate only in a so-called typical region
where the average 2~ "22_10( J) of the p” distributed spins is concentrated. This
average has the density functlon D%, T)f,l N(x) Hence, what we really need, is
a good estimate of this product around its maximum.

Before formulating Lemma 6.5 we make some comments about its content and
introduce some notations. Given some numbers A >0, T> 0 and N > 1, let
M = M(N, h,T) be the place of minimum (in the variable x) of the function
®(x,T) + (c/2)"agx?/2T — hx/T, where the function ® and the number a, are
the same as in Theorem 5.1. The number M is the solution of the equation

N
(6.2) 99(=T) + (f) Qo ﬁ.
dx 2/ T T

If T>T, or h >0, then M is the unique nonnegative solution of (6.2). If
h=0and T < T,,, then (6.2) has two nonnegative solutions x = 0 and x > 0. In
this case we define M as the latter solution of (6.2). We also introduce the
notation m, = m2(T h)=24 2<I>(x, T)/ 3x?|,_ p- In Lemma 6.5 we actually make
a Taylor expansion of log f,,’ ~n(x) in the typical region. We want to make this
expansion with such an accuracy that the error term tends to zero exponentially
fast in n, i.e., it is O(¢") with some §,0 < £ < 1. Thecases T > T, T = T,, and
T<T, are dlfferent If T> T, then the typical region is around the pomt
M(N, h), where the function pn(x T fn ~(x) takes its maximum, and its size is
a bit larger than 2-"/2 If T = T, then the typlcal reg10n is again around
MGN, h), but if A is small then the typical region is of size ¢~"/2. [This is
connected with the fact that the second derivative of p,(x, T,) is almost zero for
small x.] As a consequence, in this larger region we have to make the Taylor
expansion up to the second term. Hence the formulas become more complicated.
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For T < T,, we have two different cases. If 4 is large [this is case (c1)], then the
situation is similar to the case T > T,. If A is small [case (c2)], then the
magnetic field cannot select out a single pure state. In this case the average spin
is essentially concentrated in two disjoint intervals around the points M and M
(the latter will be defined in Lemma 6.5), and we need a good formula in both
intervals. We remark that M ~ M(T) and M ~ —M(T), where M(T), the
spontaneous magnetization, is defined in Theorem 5.1. Now we formulate:

LEMMA 6.5. Under the conditions of Theorem 4.1:
(@ ForT>T,
W n(x) = Lexp{g,(x — M) + O(¢")}, if |x — M| <277/%"",

1 N-n
2"h M- (5")

. =gt (T) = + 2¢"—
(63) gn gn,N( ) T 4 T 2 _ ¢

with

(b) ForT=T,
hy(x) = Lexp{g,(x — M) + A, (x — M)" + O(¢")},

if |x — M| < (c" + 2"my,)" /%" where g, is defined in (6.3) and A, = A% \(T)
by the recursive relations

Anir Ani c” 2¢"+ A, T
+ 2n+1

64) Ay=0, A,= + — ,
(6:4) Ay "4 4 2T my + 2a,c” — A, \T

forn=N-1,...,1.
(c) ForT<T,:
(cl) If h > 2=NE=N, then

Jn(x) = Lexp{g,(x — M) + O(£™)}, for|x — M| <27 /%",

where g, is defined in (6.3).
(c2) If 0 < h <27 N¢™N then

n):N(x) = (1 _p)L exp{gn(x - M) + O(gn)}, for |x — MI < 2—n/2§—n

and

fn’,!N(x) = (p + O(gn))Lnexp{_gn(x - M) + O(én)}’
© for|x — M| < 27"/,

Here M is the unique solution of the equation (6.2) in the vicinity of —M(T),
where M(T)) is defined before Theorem 5.1. [ This equation has a unique solution
in the interval —M(T) < x < —M(T) + ((c¢/2)N + h)¢~N.] The constants g,
and g, are defined by formula (6.3), but in the latter case M must be replaced by
M, and p = 1/[1 + exp(2V "' Mh)].
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In the above formulas L = L(n, N, h) is an appropriate norming constant,
0 < ¢ < 1 (which is chosen sufficiently close to 1) is independent of N, h and x,
and O(+) is uniform in these variables.

There is a flaw in the formulation and proof of Lemma 6.5. In the applications
(and also in the proof) we need some bound on fn’} ~(x) for all x and not only in
the typical region. This bound must guarantee that the main contribution to the
integrals appearing in applications of Lemma 6.5 (and also in its proof) is in the
typical region. A rather rough estimate would suffice for this aim. We could give
such an estimate, but we have omitted it deliberately. It would make the results
and proofs even more complicated. On the other hand, we did not find it
instructive enough; hence we preferred an incomplete proof.

ProoF oF LEMMA 6.5. Part (a). The relation holds for n = N; hence it is
enough to prove it by induction from n + 1 to n. Introduce the function

c” x+y a,c”

Hn(x, y)= ?xy+gn+1(——2_ —M) _2nq)(y’T)_ 2T 2

It follows from Theorem 5.1, Lemma 6.4 and the induction hypothesis for n + 1

that
(6.5) A (%) = L [exp{H,(x, y) + O(£")} dy.

We estimate the above integral by first determining the place of maximum
¥, = ¥(x) of H,(x, y) and taking an expansion of H,(x, y) around this point.
We have to solve the equation

JH, (x’ y) gn+1 2n3q)(y,T) aocn

c
n

. — 0t s T - - =0.

(6.6) dy Tx 2 ax Ty 0

A simple calculation shows that
dd(M,T) N a ™!
dx T

[This identity has the followmg deeper content: The place of the maximum of
the function p,(x,T) fn N(x)is M, ie, 1t does not depend on n. Moreover, M is
asymptotically the expectation of the yn n distributed spins E27"Y; .y 0(Z) =
Eo(i), which is independent of n.] By using the expansion

a0(y,T) ao(M,T)

dx - dx

we get by expressing d®(M, T')/dx with the help of (6.7) and then using the
identity

(6.7) gn+1 M-g,.,=0.

+my(y — M) + O((y - M)?),

Lomar s 20 M=0
T¢ or T T T
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that
OH, S g M) - 2 4 oy - M)
1 c" 9
= 7¢"(x = M) = ag (y = M) = 2'my(y — M) + o(2(y - M)?).
Hence we choose y as
cn
y-M (x — M).

© 2°Tm, + ayc”

Now we calculate H,(x, y) with an error of the order O(£¢"). In this calculation
we exploit ¥y — M = O((c/2)"(x — m)) and x — M = O2~"/2¢(~"). By taking
the Taylor expansion of the function ®(x, T') around x = M and using (6.7) we
get

_ c® x+y ,
Hn(x, y) = ?xy+gn+1(_—2_ _M) - 2nq)(M,T)
(s B ) 5 ) = 2 ense s o(2n(5 - MY
2 oT Y 2T¢” Y
c" ct
= K(N) + ?M(x - M)+ ZM(3- M) + g,,2+1 (x — M)

cn+l

ac” n
o M(y -M) + O(¢").

+
T

M(y—-M) -

Hence
H,(x,5) = K(N) + g,(x - M) + O(¢"). ~
On the other hand,

oH,(x, ¥)

—2 7 0@y -M

aZHn(x, 5’) aocn -
" —2"my = = + 0(2"(5 - M).

Now we apply (6.5) for calculating fn’f ~(x), but it is enough to integrate in the
domain |y — y| < 27"/2£7"/2 because the contribution of the remaining domain
is negligible. [We also have to observe that |(x + y)/2 — M| < 2~ (**D/2¢=(n+1/2
in this domain; hence the induction hypothesis for n + 1 holds in this domain.]
This fact is needed in the proof of (6.5). In the domain |y — y| < 27"/2¢7"/2 the
error terms in the expressions for H,(x, y), dH,/dy(y — ), *H,/dy*(y — ¥)*
and 9°H (x, y)/3y3(y — y)® = O(2~"/%£73"/%) are negligible; hence the Taylor
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expansion of H, (x, y) around y yields

(@) = 1 fesp{ g x = M) = (27 my 4 S (= 90"+ O(E) )

= Lexp{g,(x — M) + O(¢")}

as we claimed.

Part (b). In the proof we need the estimate 0 < A, < [(2 — ¢)/cT]c" for the
sequence A, defined in (6.4). In order to prove it we introduce the sequences A,
and A,, n=N,...,1, defined by the relations A, = c “"TA, and Ay = 0
A = (0/4)An+1 + ((0/4)An+1 + )2+ CAn+1)/(2a0 n+l) ’I‘hen we have
0<A, A (We have A A if m, = 0.) Let us consider the equation z =
(c/4)z + (2 + c2)?/(8a, — 4cz) ’I‘lus equation has two solutions z, = (2 — c)/c
and z, =1/(2 - ¢), 2, < z,. Some elementary analysis shows that 0 < A, < z
for all n=N,...,1. Hence 0 < A, < z,¢"T as we have claimed.

The remaining part of the proof is very similar to part (a), the only difference
is that we have to use expansions up to second order. Relation (6.5) remains valid
if we substitute H,(x,y) by Hy(x,y)=H(x, y)+ A, (x +)/2—-M)>
Some calculation shows that the place of maximum of H, (x, y) is asymptotically
given by the formula

5-M= 2¢"+ A, T

2" 'm,T + 2a,c” — A, ., T

(x — M).
Some further calculation shows that

Hn(x’ 5’) = K(n) + gn(x - M) + An(x - M)2 + O(2nm3(5' _M)a)’

0H (x, ¥) o o
a0y 0(2 my(y —M)°), ~
0°H,(x, ) _ L% A
- n — + n y—M
dy? (2 T 2 ) O(2"ms( ¥ ),

with some m, = 33®(n, T)/3x3, n € [M, y]. We claim that in the interval
ly = ¥ < @"my + )"V,

H(x,y)=K(n)+g,(x—M)+A, (x— M)

aocn An+1
2T

(6.8)

(2 m, + (7= )+ 0(&").

This relation follows from the estimates given for H, dH, /3y, d*H,/dy*
together with the inequalities |33®(y, T')/dx? < const.|y| and m, > const. M?
which enable us to bound the error terms. These inequalities follow from the
properties of the functions ® € S,. All error terms can be bounded similarly to
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the following one: If n € [y, ¥], then
9°H,(x,7) _ _
—yr (77| S 2l my £ )

< 2"(M + (2"my + c")_l/2)(2”m2 +cn) VP
< const.[2"\/n72(2”m2)_l/zc‘” + 2"0‘2”15‘2” = 0(¢).

Observe that because of the inequality A,., <[(2 — ¢)/cT]c"*!, we have
2" Im, + ayc”/2T — A, ,1/2 = K(2"m, + ¢") with some K > 0. Hence in this
case the essential contribution to the integral (6.5) is given by the domain
ly — ¥ < (2"my + ¢™)~/2¢7"/2, and formula (6.8) yields

(@) = L fexp{ g, = B0) + A (s~ 1)

n
aoc Ansy

+(2"“m2+ T o )(y—y)2+0(s")}dy

= Lexp{g,(x — M) + A(x - M)" + O(¢")},

as we claimed.

Part (c). We have to calculate f,l ~(x) in an appropriate neighborhood of
equation (6.2), but in the case (c2) we have to consider also the solution M. [It
can be seen that M belongs to the domain where Theorem 5.1 yields a good
asymptotic formula for p,(x, T').] We calculate fn" ~(x) by induction with the
help of Lemma 6.4. Since the main contribution of the integral (6.1) for an
x ~ M (or x ~ M) is given by a neighborhood of M (or M) almost the same
calculations supply the proof as in part (a). We omit the details. O

A simple calculation similar to that given at the beginning of the proof of part
(b) shows that if Ay — 0 then for all n > 0 there exists some N, = Ny(n) such
that for N > N,, ghwy, = ge" + 02™"), Ak =ATc" + O2™™), M=
M(N, h,T) = M(T) + O2™") with g = (ao/T)M(T), A= (2 —c)/cT, M(T)
is defined in Section 5 for T < T, and M(T) =0 for T > T,.. The above
relations imply that

(69 M (x) =fu(x)(1 + O(¢")), if hy-0and N> N(n),

in the domain |x| <27/ " if T> T, |x| <c "% ™if T=T,, |x — M(T)|
<2772 " if T<T,, where f(x)= L exp(gc™(x — M(T)) + Ac"x?) (with
A=0if T+ T,). Formula (6.9) enables us to investigate hmp, N as hy—0
with N — o0, and thus to prove Theorem 6.1. We must be careful when carrying
out the limiting procedure, because formula (6.9) i 1s useful only for large n when
O(¢™) is small, and we want to prove that lim yk ~(A) exists for an arbitrary
measurable set A C RV where £ is fixed. To overcome this difficulty we consider
the cyhndncal set A=A(n)=A X R" %, n> k, and exploit the identity
ph n(A) = y,, N(A) Then it can be proved by tending first with N then with n
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to infinity that for fixed & the measures p;Vy are convergent in variational norm
as k — oo. We omit the details of the proof. Let us remark that a very similar
limiting procedure is worked out in detail in [9].

Besides the proof of Theorem 6.1 formula (6.9) yields the following corollary.
Let &, = i,(T) denote the projection of the equilibrium state p [for T < T, of
L (T)]to V. :

COROLLARY 6.6. The Radon—Nikodym derivative dp.,./dp.,, satisfies the rela-
tion

dii(0|T) = Lf,(n,) dp,(a|T),
with ¢ = (6(1),...,02")), 1, = 27"L;c v 0(i), where

exp(0(¢")), if |x] < 277/%" for T > T,
f.(x) = exp(Ac"x® + O(§)), if x| < e %" for T =T,,
" exp(ge™(x — M(T))) + O(¢"), if |x — M(T)| < 27"/2%"
forT<T,,

withg = 2/(2 — ¢), A = (2 — ¢)/c. Here L is an appropriate norming constant,
0 < ¢ < 1, it is chosen independently of x and n, and O(-) is uniform in these
variables.

We remark that in Corollary 6.6 we defined di,/dp, in the typical region
where the measure p1, is concentrated.

Now we explain the proof of Theorem 6.2. Let us define the renormalization
transformation %, = #,(k, c¢) which maps the probability measures on RV to
the probability measures on R": in the following way: Given a probability
measure p on RV let o = (a(1),...,0(2"**)) be a p distributed random vector.
Then 2, is the distribution of the vector

‘/Z n
R0 =(5(1),...,0(2%)), a(j)= (’é_) Y o(l), j=1,...,2~%

lev,,

A simple algebraic calculation proves the following:

LEMMA 6.7. R,p,(do|T, v) = py(do|T, ), where p, is the Gibbs state of
Dyson’s hierarchical model without boundary conditions defined in (3.2) and
(3.2") and ¥ is the distribution of the normalized sum (Ve /2)"L;cv0(i) of the
p,(do|T, v) distributed vector (a(1),..., s(2")).

Lemma 6.7 agrees with Theorem 1 of [6]. We omit. the proof.
If p® and p® are two probability measures on R'»+* such that the
Radon-Nikodym derivative du®/du® has the form

‘ pO(do) = f(Z;ev,0(i))n®(do),

i.e., it depends at a point o = (a(1),...,0(2"**)) only on X,.y  o(i), then
R,pV(do) = f(Z; v o) R,pP(do).
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Since the above-mentioned property holds with the choice u® = g,,, p® =
p1(do|T, v) and Theorem 5.1 gives a good asymptotic formula for the density
function of the measure ¥ defined in Lemma 6.7 [we need an expansion of
Pu(x, T) around x = M(T)] hence Theorem 6.2 can be deduced from Corollary
6.6 and Lemma 6.7 with the help of a simple calculation. Theorem 6.3 also
follows from these calculations.

The proof in the case y2 — ¢ <c¢ < V2 is similar but technically more
difficult. The most difficult case is when T = T, (see [6]). In this case the
Radon-Nikodym derivative du’,‘,, ~N/dp, has an essentially different form. We
shall not discuss the problem here.

7. Vector-valued models. In this section we consider Dyson’s vector-val-
ued hierarchical ¢* model. Its Hamiltonian function is defined by (2.1) with
h = 0 and the same function U(i, j) as in the scalar case, its free measure by
(3.1), only in the present case 6(x) € R?, x € R?, p > 2, o(i)a(j) denotes scalar
product and x% resp. x* denotes |x|?> and |x|*. The results formulated for
scalar-valued models remain valid, with some natural modifications, also in this
case, although their proof is more difficult. We shall not consider this question.
We only discuss the renormalization of vector-valued models at low tempera-
tures, since here some new phenomena appear. The cases 1 < ¢ < V2 and
V2 < ¢ < 2 are essentially different. (In the scalar case such a difference appears
only at the critical temperature.)

First, we discuss the case V2 < ¢ < 2. We have to construct the pure phase we
want to renormalize. We do it by first considering an equilibrium state with a
small external field & and then by letting A go to zero. Let p% = u/(T) denote
the Gibbs measure in V with the Hamiltonian function given in (2.1) with
h = he, e = (1,0,...,0), h > 0, at the temperature T. We have:

THEOREM 7.1. The relations
lim h limp?=p,,
Ain p‘N lim p® = g,

hold true, where lim means the convergence of the finite-dimensional distribu-
tions in the variational metric.

After establishing the above relations it is not difficult to see that p* = p”(T)
is an equilibrium state with external field 2 and p, = p(T') is an equilibrium
state without external field. The double limiting procedure enables us to con-
struct a pure state, i.e., an equilibrium state which cannot be represented as the
mixture of other equilibrium states. Now we formulate:

THEOREM 7.2. Let o(k) = (6O(k),...,0 P k), k€ Z, be a p,=p(T)
distributed random field where p, is defined in Theorem 7.1. For T < T, the
finite-dimensional distributions of the random fields Y (k), k € Z, n = 1,2,.
defined by formula (3.4) with A, =2"%, B,=2"c""/%, tend to those of a
Gaussian random field Y(k) = (Y(l)(k) Y(")(k)), k € Z. The random fields
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(YUXR), k € Z}, j=1,..., p, are independent for different j, YO(k), k € Z, is
a sequence of independent Gaussian random variables with zero mean, and for
2 < j < p the density of the random vector (YY)(1),..., YY(2*)) is given by the
formula

const. exp{ T[(Z;Ti)c( Y xj) - i 2 %’2 + § jild(j,l)_axjxl]}-

j=1 j2-c

We remark that the last formula actually defines the finite-dimensional
distributions of the equilibrium state of the scalar-valued hierarchical model at
temperature T with the free measure 1/[(2 — ¢)7T ] %exp(—x2%/(2 — ¢)T). The-
orem 7.2 means that for T' < T, vector-valued models behave in the direction of
the magnetization like scalar models at T' < T, but in the orthogonal direction
they behave like scalar models for T' = T.,,. An interesting feature of this result is
that such behavior appears for a whole interval of parameters.

The proof of Theorems 7.1 and 7.2 is given in [9]. It is very similar to the
arguments of Section 6. One has to prove the multidimensional version of
Theorem 5.1, to calculate the Radon—Nikodym derivative dp” y/dp, and to
carry out the limiting procedures N — oo and & — 0. We omit the details of the
proof; we only explain why the normalization B, = 2"c¢~"/2 must be chosen in
the direction orthogonal to the magnetization. For the sake of simplicity we
consider the case p =2 and the limit of the one-dimensional distributions
Ar: lzi € Vno (l)(i)’ Bn_ lz:i € Vno(2)(i)'

By carrying out the calculations mentioned above we find that the density of
the average 27"%, ., 0(i) of the p, distributed spins in the volume V,, is of the
form f,(x)p,(|xl, T) With p,(|xl, T) = exp{ —aoc"/T(x? + x) — 2°®(jx|, T) +
O(£{™)} with some @ € S, and

(o) = exp| o + o+ 0(E)], 1= (rm),

where M = M(T') is the (unique) positive solution of the equation d®/dx = 0,
a,=2/(2 — c). Here p, is the density function of the average of the p,
distributed spins in V,, and f,(27"X ;¢ y,0(/)) is the Radon-Nikodym derivative
of the projection of the equlhbnum state p, with respect to p,. The above
relations for f,(x)p,(|x|, T) hold in the domain |x, — M| < 27 "/2(~" and x2 <
¢~ "¢~ ", but some upper-bound estimates show that the random variable we are
interested in falls into this domain with probability almost 1. Hence the
distribution of the average spin we are investigating is const. exp{ — H,(x,, x,) +
O(5™)) with

s T oagct a,.c"M (2--c)c
H,(x,,%x,) = 2nq>( x+ x%,T) + 57 (2 +x2) - — i Tx%

We make the Taylor expansion of the function H, up to the second order around
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the point (M, 0). We have
dd(M,0) 0 dd(M,0) 3

dx, ax,

o’o(M,0) _ - 2'e(M,0)
dx,dx, an ax:

with some m > 0. It is very important for us that d®(M,0)/dx; = 0 together
with the rotation invariance of the function ® imply that 32®(M,0)/dx2 =
Hence

cn
H,(x,,x,) = H,(M,0) + (2" Im + T )(xl —M)2
—c2+5c—4
4+ n.,.2 n ,
@07 c"x2+ O(¢™)

i.e., the density of the average spin in V, is asymptotically
const.exp{ —2"A(x, — M)? — Be"x2 + 0(5")}

with some A >0 and B > 0. This means that 27"/2%, V(o(‘)(z) — M) and
27 "cn/2y, e, 0@(i) are asymptotically independent Gaussian variables with
positive variances as we claimed.

Now we present the result corresponding to Theorem 7.2 in the case 1 < ¢ <
V2, together with a heuristic explanation for its validity. In the detailed proofs,
one has to overcome several serious technical difficulties and we shall do so in a
subsequent paper. For the sake of simpler notations we restrict ourselves to the
case p = 2. First, we need an asymptotic formula for the density function
P(x) = p(x,T) of the average 2~ "):,Evo(t) of p,(do|T) distributed spins if
T > 0 is sufficiently small. [Here again p, is defined by (3.2) and (3.2").] The
probability measure with density function p,(x, T) is concentrated around some

|x] = M = M(T) > 0, but, and this is the essential difference between the cases
¢ < V2 and ¢ > V2, it is concentrated in the domain | |x| — M| < ¢™", and not
in the domain | |x| — M| < 27"/2 as in the case ¢ > y2 . More precisely, we have:

LEMMA 7.3. For 1 < ¢ < V2 and sufficiently small T> 0 in Dyson’s vector-
valued hierarchical ¢* model the density function p,(x) = p,(x,T) of the aver-
age 27"%; c v, 0(i) of the p(do|T) distributed spins has the form

pu(x,T) = constexp{ - 2T o) (e~ 1), 7)1+ 06,

for ||x|-— M| <c ™™™ with some 0<¢<1, where M = M(T) + O(u),
M(T) = (a, — T/uT)/? [M\T) is the place of maximum of the function
Do(x) = (u/Nx* + [(T — ay)/2T1x*), ay,=2/(2—c) and f is the unique
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solution of the equation

2 2 2
R L e < TN a RV P

For | |x| — M| > ¢~ ™" the function p, is negligibly small.

a, =a,+ 1.

Lemma 7.3 means that for small T > 0, ¢~ "p, (¢ (x| — M),0,T) = p*(x, T)
with some function p* as n — oo, i.e.,, an unusual normalization must be used.
We remark that only vector-valued models have such an exceptional behavior,
and it is closely related to the rotational invariance of the function p,. We
explain the main ideas of the proof.

We have to investigate the functions p,(x) = p,(x,T) defined by formula
(4.3), or after the substitution p,(x) = const. exp(—(a,c"/2T)x?%)q,(x) the func-
tions g,(x) defined by the relations

a,c* !
qn(x) = /exp(_ 1T uz)qn—l(x - u)qn(x + u) du, n= 1’2""’

and
u a,— T

al) = exp| ~ ' = 2o

We show the rotational invariance of the function q,. By introducing v = (u, v),
q,(%,0) = Q,(x), x, u, v € R, we can rewrite the relation defining g, as

2

(7.2) Q,(x) = f/Fn(u, v,x) dudv,
with
712 F(u,v,x)= exp(— IT (u? + 0v?) Qn_l(\/(x +u)+ 02)

xQn_I(\/(x —u)’+ 02).

We want to get a good asymptotic formula for @ ,(x) only for x ~ M, where M is
the place of maximum of the function @,. The function @,_, and hence the
integral (7.2) are strongly localized, and in the proof we must know the right size
of localization. In the case ¢ > V2, @,(x) is negligibly small if |x — M| >
2-"/2¢(~n  the integral in (7.2) is concentrated in the domain D, =
{(u, v), |u| <27 /27" |o| < ¢~ "/2¢4"} and we make.only a negligible error by
substituting the integrand F(u, v, x) by @,_,(x + ©)Q,_(x — u) in (7.2). But
for ¢ < V2, i.e., in the case we are now investigating, the typical domain D, must
be chosen otherwise. Indeed, let us consider the case x = M. A point (u, v) must
be in D, if F,(u,v, M) > const. F,(0,0, M) = const. @Z_,(M). Hence, since we
expect that @,_,(M — a,) > const. @,_,(M) if and only if @, (M + a,) >
const. @,,_ (M), the relation (0, c"/%) € D, implies that (¢~ ",0) € D,. Since in
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our case ¢~" > 27"/2(~" this means that D, must be chosen otherwise, and
hence @,(x) is also negligible in a different domaln Some consideration would
suggest that in the case ¢ < V2 the typical domain is D, = {(u,v), |lul <c "¢ ™,
|o] < ¢™"/2¢"} and the function @,(x) is negligibly small if |x — M| >c "
Finally, the detailed proof of Lemma 7.3 shows that this conjecture is correct. It
suggests a rescaling of the function @,, i.e., the introduction of the function
Q,(x) = ¢~ 3"*V/2Q (M + ¢~ "x). Then formulas (7.2) and (7.2’) together with
the relations
2 —

v a,c"!
Vxtu)+0? ~xtu+ — -

oM’ 7 ¢ <1
for |x — M| < ¢~ """ and (&, v) € D,, imply that
(7°3) én+1(x) = Rén(x) + en(x)’

with
2 2
(7.4) Rf(x) = ffexp(—a—qfoz)f +u+ 20—1‘4)f(f —u+ 2O_M) dudy,

where ¢,(x) is a small error term which we can control during the proof. Because
of formula (7.3) it is natural to expect that @, tends to the fixed point of the
operator R, i.e., to the solution of the integral equation (7.1). Now we solve this
equation. Let us introduce the Fourier transform f(s) = fe'**f(x) dx. Then we

get from (7.1) with the substitution x/c + u + v*/2M =2, x/c —u +
v¥/2M = w,

(s) fexp(isx— “f)f

e[ )i (z)esp{is

AL Y . D
u2Mf —-u oM u dv

M T

v? a,v?
z2+w-— —| - dw dz dv

fexp(igsz)f(z) dzfexp(igsw)f(w) dw fcexp(—o (a—,—’: + l;—;l)) dv
(¢ \2 o/TMx
-(3°) FMa, + el
Let us introduce the function ¢ defined by the relation f(s) = exp(—¢(s)). Then
we have
(7.5) o(s) — 2¢(£s) - llogM

2 2 cnTM

If ¢(s) = Xa,s*, then the left-hand side of (7.5) is X(1 — 2(¢/2)*)a,s*. The
coefficients a, can be calculated by expanding the right-hand side of (7.5) into
Taylor series. Then because of the special form of equation (7.5) we can continue
this solution to the whole real line and determine the function f. A more careful
analysis proves the contraction properties of the operator R which together with
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(7.3) enables us to establish the convergence Q. (x) = f(x). Since p,(x) =
const. exp( (a,c”/2T )x2)@,(c™(jx| — M)) this relation implies Lemma 7.3.

Let p%(do|T) denote the Gibbs distribution in Vy with the Hamiltonian of
Dyson s hierarchical model with the external field ke, e = (1,0), and let
,un ~(do|T) denote its projection to V,. In order to investigate the equilibrium
states we need an asymptotic formula for the Radon-Nikodym derivative
dp,,,, ~/dp - By the multidimensional version of Lemma 6.4 (see [6])

I"‘?z, N(dolT) = Lfn'fN(gn)""n(dolT)’

with
Np
G=2 Lol fha(e) e ) = ()
ieV,
m +
76) @) = fesp T ik 57 Jou(n) @

%, ¥ € R?, where p,, is the density function appearing in Lemma 7.3. We claim
that

(7.7) i n(x) = Cfexpg(x, — M) + A,x3 + O(¢7)},

with some constants g, = g,(h, N,T), A, = A,(h, N, T) which we shall define
explicitly. Actually we claim this relation only for x ~ M = (M, 0) where M =
M(h, T) is the place of maximum of the function exp( hx/ T)pn(X). For other
values of x it is enough to prove a rough estimate on fn” ~(x) which guarantees
that the average of the p* y(do|T) distributed spins is concentrated around the
point M. We prove (7.7) with the help of Lemma 7.3 and relation (7.6) by
induction from n + 1 to n. Write x = (x; + M, x,) and y = (y, + M, y,). We
shall use that for x ~ M the integral in (7.6) is concentrated in the domain
y ~ M. Hence we can write xy ~ const.+ M(x, + y,) + Xy, |x| — M ~ x; +
x2/2M, |y| — M ~ y, + yi/2M and we get from (7.6) by omitting some error
terms (which, as a more detailed analysis shows, is legitimate)

Xty
nItN(x) = C,{fexp{ —M(x, + 3) + xzyz + 841 —2_1

Xy + Y. a,c” y2
+A,,+1( 22 2) - ;, (2My1+y2'“)}f(y1 2M)dyldy2,

where the function f is the solution of equation (7.1). With the help of the
substitution y, + (y2/2M) = 2z, ¥, = v, the last formula can be rewritten as

a,c"M g
h _ ’ _ 0 n+1 il
S n(x) = Cnff(z)exp{ T 2t g ¢ + TMz} dz
v? c" x v?
% X /exp xl 2M TxZO + gn+1 2 m

Xy +v)\2
+An+l(—é_—) dv.
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Here the first integral is some constant not depending on x, the second integral
can be calculated explicitly, and it yields relation (7.7) for n with

n

gn+1 4
==+ M
gn 2 T
and
c_n + An+1 2
An+1 T 2
A, = 4 & .
n+1
27 + M - An+1

Let us choose a sequence iy — 0 as N — oo and investigate the sequences
8, =8(hn,N,T)and A, = A, (hy, N,T)as N - oo. Introduce the quantities
&,=(8,/c")T and A,=(A,/c")T. Some analysis shows that g, > g =
2M/(2 — c) where M = M(T) is the same as in Lemma 7.3 and A, - A=
(2 — ¢)/c. [The quantity g, can be calculated explicitly and it implies g, — &;
the quantity A appears as the smaller root of the equation

(54
1+~A)
— C _
A-Sxe 27
‘ 9+ Z cA
M

The convergence relations g, — g and Zn — A enable us to prove that the
measures p’,’,”VN(dolT) tend to some measure g, as N — oo, and these measures
i, are the finite-dimensional distributions of an equilibrium state p, = p (T') of
Dyson’s vector-valued hierarchical ¢* model. Moreover, we get the following
formula for the Radon-Nikodym derivative dj,/dp ,:

BdolT) = (27" T o(i)|un(dol),

i€V,

with
f(x) = Lnexp{ %g(xlt— M) + %Kx% + O(é")}.

This relation together with the multidimensional version of Lemma 6.7 enables
us to prove the following:

THEOREM 7.4. Let o(k) = (c®(k),6®(k)) € R?, k€ Z, be a p,=p(T)
distributed equilibrium state in Dyson’s vector-valued hierarchical ¢* model
with 1 < ¢ < V2. Let us consider the random fields Y, (k) = (Y®(k), YP(k)) €
R’ ke Z,n=1,2,..., defined by formula (3.4) with the normalizing constants
A, = (2/c)" and B, = (2/ Vc)" and the p, distributed random field o(k). Then
the finite-dimensional distributions of the fields Y,(k) tend to those of a random
field Y(k) = (YO(k),Y®(R)), k € Z, as n > oo. The probability density of the
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random vector (Y(1),..., Y(2*)) is given by the formula

2—-c¢ 2* 2 2k y2
k _ J
'22kc (ngyj) Z 2—-c¢c

Jj=1

%
const. l—[f(x + m)exp{

v Y Y d(j,l)“’y,-y,]},

Jj=11=1

where the function f is the solution of equation (7.1), and the constant M = M(T)
is the same as in Lemma 7.3.

Here the random field Y®(k), k € Z, is Gaussian, and similar random fields
have appeared in Theorem 6.2 for ¢ > v2 and T = T, and in Theorem 7.1 in the
direction orthogonal to the magnetization. The random field Y®(k) +
Y®(k)2/2M is independent of the random field Y(k), and it consists of
independent random variables with the probability density const. f(x).

8. On translation invariant equilibrium states. In this section we deal
with the renormalization of translation invariant states. We present some
results, formulate some conjectures and give heuristic arguments which may
justify them. We are mainly interested in the following problem: Let us consider
a translation invariant Hamiltonian H on the integer lattice Z¢ in the Euclidean
space RY, a free measure » and the equilibrium states p(T') corresponding to this
H and ». Prove that there exists a critical temperature T' = T, such that a p(T,,)
distributed random field X,, n € Z¢, has a large-scale limit with an unusual
normalization, i.e., the random fields defined by formula (0.1) with this field X,
have a limit as N — oo, and lim Ay N~%2 = co. How must the norming con-
stants A, be chosen, and which fields appear as a large-scale limit? The
description of the possible fields leads to the following:

DEFINITION 8. The translation invariant random field X,, n € Z¢, is self
similar with self-similarity parameter a if the random fields defined in terms of
this field by formula (0.1) with the choice A, = N*? have the same distribution
as the original field X,, n € Z°

Heuristically it is clear that only self-similar fields can appear as a large-scale
limit. Hence the description of self-similar fields is an important problem, but it
is only partially solved. The Gaussian self-similar fields are known and we
describe them in the next theorem. Given a homogeneous function g(p) on R?¢
introduce the function

(8.1) g°(p) = ¥ q(p+2k7)|%o(p + 2k7)[",
kezd
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where

d eiPr — 1

(8.2) Xo(p)=Tl—, p=(pY,..., p®)
k=1 Dy

is the Fourier transform of the uniform distribution on the unit cube [0, 1]%.

THEOREM 8.1 (see, e.g., [16], [36]). Let q(p) be a homogeneous function of
homogeneity order d — a, i.e., let q(Ap) = A" %(p) for all A\ > 0 and p € R?,
such that the function qP(p) defined in (8.1) is positive and integrable on the
torus T®= (-7 <p® <@, k=1,...,d)}. Then the stationary Gaussian ran-
dom field o(j), j € 2% with Eo(j) =0 and spectral density q°(p) is self-
similar with self-similarity parameter « = a/2d.

Moreover, we have the following:

THEOREM 8.2. If the series

X u), U()=emn" e —5— dp

jez? f[-m"]" q°(p)

is absolutely convergent then the distribution of the Gaussian field defined in
Theorem 8.1 is the (unique) Gibbs field with the Hamiltonian

Hy(o) = 3 U(i - j)o(i)a(})

and the Lebesgue measure as free measure at temperature T = 1.

The Gibbs measure with Lebesgue measure as free measure can be defined in
the usual way. In this section we choose the Lebesgue measure for free measure
if it is not otherwise stated. Moreover, we consider more general Hamiltonians
H(o) = L,XU(J15---5 Jp)0(J1)-.-06(J,).- The modification of the definitions to
this more general case causes no problem. -

After the description of Gaussian self-similar fields our aim is to study their
stability with respect to the transformation (0.1) with A, = N*¢. The two most
important Gaussian self-similar fields are those with g(p) = 1 for which « = 3,
and q(p) = 1/|p|? for which a = 1 + 1/d. The first field consists of indepen-
dent identically distributed random variables and it is called the white noise.
The second one is called the massless free field. Its correlation function decreases
at infinity asymptotically as const|n| ~?*2, n € Z % The white noise is a Gibbsian
field with the Hamiltonian function H = H® = CZ ;. ;26%(j), and the massless
free field is a Gibbsian field with a Hamiltonian :

H=H'=C Y U(-j)o(i)e(})
i,jez?
such that U(j) decreases exponentially fast as j — oo. The last statement can be
seen by observing that U( ) can be calculated with the help of Theorem 8.2, and
it yields in the present case that U(/) is the Fourier transform of an analytic
function.
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Let us introduce the space # of Hamiltonians
0

1 . .
(83) H(o)= Y 77 X Udljs--s si)o() - o(G),
k=1"7° 5 ..., A
where the potentials U(j,,..., J,) are translation invariant, i.e.,
(8.4) Uji+a,...,jo+a)=Ulji,..., Jp), YaeZ?

permutation invariant, i.e., Uy(J,ay-- - Jrry)) = Up(Jrs -+, Jp) for all permuta-
tions 7 = (7(1),..., 7(k)) and exponentially decreasing at infinity, i.e.,
(8°5) 'Uk(jla'“ajk)l = Ckexp{_a max I _jrl}’
l<p<r<k
with some C, > 0 and a, > 0.

A Hamiltonian ¢ is called even if U, = 0 whenever & is odd. We denote by
,, the space of even Hamiltonians /(o) € 5. Clearly, H°, H' € .

We begin the study of the stability of Gaussian self-similar fields with the
investigation of the spectrum of the linearized renormalization transformation
2. This transformation acts in the space of Hamiltonians H, and it is defined
in the following way:

(8.6) 2°H(o) = Jlim E(HV(E)|R(,;’)6 =o0),

where V is the cube {0,1,..., Ln — 1}" Ry = {n_"‘dzlebno(z) J€1Z2%, Hyo)
is _]ust as H(a) in (8.3) w1th the difference that now the summation is taken only
for j,,..., j, € V, and the conditional expectation is taken with respect to the
Gaussian self-similar field whose stability is investigated. The convergence in
(8.6) is meant in the following sense: We can write

E(HV(6)|R<,,”6=0)=;——. X Uvliees o) 0(j)

and we want U, y(Jy,..., Jp) = Uy(Jp, ..., Ji)- The motivation behind the defi-
nition of the linearized renormalization group can be explained by the following
heuristic argument: Consider a Gibbs state py(do) = E"'exp(—H, y(0) —
eH (o)), .y da(i) in a cube with edges of length nL, where Hy(o) is the
Hamiltonian of the underlying Gaussian field. Let us write the renormal-
ization R{u of this measure in the form of a Gibbs state

[~2]
“lexp| = X e*H, v 4(0) | I do(i)
k=0 eV’
over a cube V’ with edges of length L. Then we expect that the first two
coefficients in the last series satisfy the relations lim,_,  H, . , = H, and
lim, ,  H, v ,=2.H. Thus, glven a Gibbs state with. the Hamiltonian H, +
eH, its renormahzatlon defined in (0.1) with A, = n*? is a new Hamlltoman
H, + H(e, n) (although even this statement is not proved), and 2, is the
linearization of the transformation ¢H — H(e, n).

The semigroup of the linear operators {22, n =1,2,...} is called the lin-
earized renormalization group. The following theorem describes the eigen-Ham-
iltonians and eigenvalues of the operators 2 (see [36] and [5]). Let p, be a
Gaussian self-similar field with self-similarity parameter a. Let ¢?( p) denote its

—
!
—
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spectral density. In the most important applications p,, is either white noise or
the massless free field.

THEOREM 8.3. Let h(p,,..., P,), P, € R%...,p. € R% be an analytic
homogeneous function with homogeneity order y = 0,2,4, ..., which is isotropic,
i.e., h(tp,,..., tpy) = t'R(Py,-.., D), t > 0. Then

H(c) = H(é) = [ 3((pi+ -+ +pn)mod2n)

XhD(pl"'-’pm)za(pl) a(pM):@l dpm

is an eigen-Hamiltonian of the linearized renormalization transformation 9,
with the eigenvalue n,

(8.8) A=—-y+m(a—-1)d+d.
Here T™? is the md-dimensional torus {|p; )| <=, i=1,...,m, k=1,...d},
8(-) is the é-function

RP(p1seees Pn) = > h(p, + 27k, ..., Dy + 27k,,)

p+2wky+ - +p,+2nk,=0

X a(p, + 27k,) -+ a(p, + 27k,,),

(8.7)

. 1
a(p) = xo(p)q(p)qp(p),

where q(p) and qP(p) are the same as in Theorem 82, &(p) =
L, zeexp(yp)o(j) and :6(p,) -+ 6(p,): denotes the Wick polynomial with
respect to the underlying Gaussian self-similar field with the distribution p.
Formula (8.7) gives all eigen-Hamiltonians H(o) € 5.

(The definition of Wick polynomials, which are a multidimensional generaliza-
tion of Hermite polynomials, can be found, e.g., in [31].)

The eigen-Hamiltonian with the eigenvalue n is called -stable if A <0,
unstable if A > 0 and neutral if A = 0. In physics literature they are called
irrelevant, relevant and marginal, respectively. The existence of unstable eigen-
Hamiltonians leads to the unstability of the self-similar random field when the
large-scale limit is taken. We list now the unstable and neutral eigen-Hamiltoni-
ans of the white noise and massless field. We are only interested in eigen-Ham-
iltonians even in g, i.e., H(o) € 5,,.

(1) White noise g¢(p)=1,a =3
m=2, h=1, y=0, A=0;

(2) Massless free field g(p) = |p| %, a =13 +1/d
m=2, h=1, y=0, A=2,
m =4, h=1, y=0, A=4-d,
m =6, h=1, y=0, A=6-2

.....................................................
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Due to this list we get the following picture about the stability of Gaussian
self-similar random fields. Note that the Hamiltonian H, of the Gaussian
self-similar field is always a neutral eigen-Hamiltonian. Indeed, {(1 + &)~'/%0( ),
J € Z9} is a Gaussian self-similar field with the Hamiltonian (1 + &)H,, hence
the renormalization transformation maps eH, to ¢H,, and H, is a neutral
eigen-Hamiltonian. We shall call H the trivial neutral eigen-Hamiltonian. Now
we consider the stability properties of the white noise and massless free field.

8.1. White noise, or independent Gaussian random variables, There is no
unstable eigen-Hamiltonian and only one trivial neutral eigen-Hamiltonian. One
can expect that this fixed point is stable with respect to small perturbations in
the large-scale limit. This can be proved, and this fact is called in the physical
literature the stability of the high-temperature fixed point. In the classical
probability theory this expresses the central limit theorem for a small perturba-
tion of the field of independent Gaussian random variables. We formulate a
theorem which expresses the above-mentioned stability.

THEOREM 84. Let H® =¥, 40%(j), and
Hl(o) Z Z Uk(.]l: 7jk)o(jl)’“o(jk)

be a translation invariant Hamiltonian, even in o, and such that the coefficients
Uy(J1s---» Jp) decrease exponentially as diam{j,,..., j,} = o and H’(¢) > 0.
Then there exists some €, > 0 such that for 0 < e < ¢, the Gibbs state p with the
Hamiltonian H = H® + eH'’ exists, it is unique and its large-scale limit consists
of independent Gaussian random variables.

In other words, Theorem 8.4 states that if the free measure is Gaussian then
the large-scale limit of a field with Hamiltonian H’ at high temperature is a field
of independent Gaussian random variables.

The proof of Theorem 8.4 is based on the so-called cluster expansion estimates
of the semi-invariants of Gibbs states. The conditions both on H(o) and H’(o)
can be weakened.

8.2. The massless free field. Let us first consider the case d > 4. There is one
unstable and one trivial neutral eigen-Hamiltonian. The following result is
expected to hold (see a discussion in [27]):

CONJECTURE 1. Let H! be the Hamiltonian of the massless free random
field, H® = ¥ ;06%(j) and let H' be the same as in Theorem 8.4. Then there exists
an g, > 0 such that for any 0 < & < &,, a parameter p, = p (¢, H') exists such
that there is a unique translation invariant Gibbs state wzth the Hamiltonian
H=H'+ p H®+ eH'. Its large-scale limit with the renormalizing constant
Ay = N@*D/2 i5 the massless free field. For p. > ., there exists a unique Gibbs
state, and its large-scale limit is white noise. For u < p, there are two extremal
Gibbs states, and both have white noise as the large-scale limit.
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In connection with the above conjecture we mention a result of [1] and [20]
(see also [21]). It states, in accordance with the above conjecture, that if in the
so-called ®* or Ising model for dimension d > 4, the large-scale limit of the
correlation function exists, then the large-scale limit is a Gaussian random field.
(For d = 4 some additional conditions are needed.)

Recently in a series of papers [27]-[29] Gawedzki and Kupiainen made
substantial progress toward the proof of Conjecture 1 (see below).

For d < 4 the linearized renormalization of the massless free field has at least
two unstable eigen-Hamiltonians. Hence we cannot expect that in the general
case a one-parameter family of Hamiltonians contains a critical parameter where
the large-scale limit is the massless free field. We remark that if H, has m
unstable eigen-Hamiltonians H,,..., H,, we may expect the existence of a
critical point u{(e),..., nS,(¢) such that the equilibrium state with the Hamilto-
nian H = H, + p{(e)H, + -+ +p(e)H,, + eH’ has the large-scale limit with
the Hamiltonian H,,.

CONJECTURE 2. For d = 2,3 there exists a (unique up to a factor) rota-
tionally invariant self-similar random field with an exponent a > %, which is an
equilibrium state with a Hamiltonian H? € 5#,, such that the corresponding
linearized renormalization transformation has exactly one unstable eigen-Ham-
iltonian. For the Hamiltonian H = H, + pH, + eH’ all statements of Conjec-
ture 1 are valid.

This self-similar random field cannot be Gaussian. Conjecture 2 states that for
d = 2,3 a non-Gaussian self-similar random field exists, which plays the same
role as the massless free field for d > 4. An exact formula for the correlation
function of the two-dimensional Ising model at the critical temperature suggests
that for d = 2, a = 1. There is a conjecture about what the two-dimensional
self-similar field appearing in Conjecture 2 should look like.

CONJECTURE 3. For d = 2 the non-Gaussian self-similar random field in
Conjecture 2 is the discretization

. 1n . ",
o(])=j(;j(;£(x+.])dxldx2’ x=(xl’x2)ER2’ 1622,

of the generalized random field £(x), x € R?, with the correlations

E&(x,)...&(xy) = \/Zexp(—% 2 nym,njx; — xj|) J
n

i>j
E¢(x,) ... £(x3441) = 0,
where the summation is taken for such n = (ny,...,ny;) for which n;= +1 and
‘L m=0. ’

This conjecture has a long history, and it is connected with several rigorous
and nonrigorous papers devoted to the exact solution of the two-dimensional
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Ising model. The formula presented above was obtained in a nonrigorous way in
physics (see [41] and others). Actually it has not even been proved that the field
defined in Conjecture 3 really exists.

In the case d = 4 the massless free field has one unstable and two neutral
eigen-Hamiltonians. It is expected that Conjecture 1 holds again for d = 4
(compare with the case ¢ = V2 in the hierarchical model), only the rate of
convergence is slow.

In the above conjectures the cases d > 4, d < 4 and d = 4 are similar to those
¢>V2, ¢< V2, ¢=V2 in Dyson’s hierarchical model. The spectrum of the
linearized renormalization transformation in the translation invariant case has a
behavior similar to the differential operator DS. The conjectures actually state
that this similarity is preserved for the original renormalization operators.

As in the case ¢ = V2 in Dyson’s hierarchical model a bifurcation of non-
Gaussian random fields is expected for “dimension” d = 4 — ¢ starting from the
four-dimensional massless free field. Wilson ([39], [40]) investigated the e-expan-
sion for these fields. It is a rather tricky thing to define “random fields” for
noninteger dimensions, but for rotationally invariant random fields it can be
done with the help of analytic continuation in dimensionality. This is similar to
the analytic continuation of I'(n + 1) = n! to noninteger n, and it uses an
integral representation of correlation functions. Wilson and later other authors
investigated the first terms of the e-expansion of the correlation functions and
other characteristics of these self-similar fields.

There are some interesting models where the convergence of the large-scale
limit to the massless free field is proved. Such models are considered in [32] and
[28] (see also [27]). They proved that the large-scale limit of the Gibbs states
with the Hamiltonian H = H' + e¢H’ is the massless free field for all small ¢ > 0
if H’ has a special structure. Namely H' is the Hamiltonian of the massless free
field, H' = ¥,0'(T,0), ®(0) = $(v %) in [32] ®(0) = ¢(Vo) in [28], where ¢ is
a sufficiently smooth function,

vo={ve,i=1,...,d}, Vi = {Vyo,i,k=1,...,d}

and |
vio(j) =o(j+e)—o(j), €=(0,...,0,1,0,...,0),
Vao(J) =o(j+ e +e,) —o(j+e)—o(j+e,) +o(J).

In the proof the cluster-expansion technique was used. The applicability
of this technique is connected with the convergence of the series
Y, ec2¢E|V;,06(0)V,,0(p)|, where E denotes expectation with respect to the
massless free field with Hamiltonian H'. Since the series ¥, ¢ 74/ EV,06(0)V,0( p)|
is logarithmically divergent, in [28] the cluster-expansion technique could not be
applied directly, it must be refined. This refinement uses a combination of the
cluster-expansion technique with a renormalization procedure and some estima-
tions of the analytic continuation of the random field to the complex space. Let
us emphasize that in all models of [32] and [28] the large-scale limit of the
equilibrium states is the massless free field. This is in contrast to Conjecture 1,
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where we expect that only one element of a one-parameter family of equilibrium
states has the massless free field as the large-scale limit. The reason for this
difference is the very special form of the Hamiltonian H’ in [32] and [28].
Recently with the help of their technique Gawedzki and Kupiainen [29] proved
the existence of the critical point p, for the one-parameter family of four-dimen-
sional Gibbs states with the Hamiltonian H = H' + uH® + ¢H’, where H® =
X,0%(j), H =X;0%j), 0 <e < 1, ie, they proved that for p = p, = p(e) the
large-scale limit of the Gibbs state with Hamiltonian H is the massless free field.

It is known that the large-scale limit of some infinite particle systems like the
voter model, the critical branching diffusion etc. is again the massless free field
(see [12], [30] and [15]). It is a surprising fact that in these models an unstable
fixed point of the renormalization group appears as the large-scale limit. This
may be connected with some hidden symmetries of these models, but the real
reason is not completely understood.

Very little is rigorously known about the large-scale limit of vector-valued
translation invariant Gibbs states at critical and low temperatures.

As a first step we would like to describe the decrease of the correlation
function at infinity. In certain cases this problem has been solved for two-compo-
nent systems (see [13]).

Let us consider pure states at low temperature and decompose the spin
variables o(n), n € Z% as o(n)=0o"*(n)+ o'(n), where o+ (n) denotes
the component of o(n) orthogonal and o'(n) the component parallel to the
spontaneous magnetization Eo(n) = M. It is known that Eo*(0)o*(n) is
of order |n|~*2 ([13] and [38]). On the other hand, |Ec'(0)o'(n) — |M|? >
(Eo*(0)o *(n))? also holds (see [18]). These results together with the results
obtained for Dyson’s hierarchical vector model suggest the following picture:

For all d > 2 and all low temperatures in the direction orthogonal to the
spontaneous magnetization one has to divide by A, = N@*?/2 in (0.1), and the
large-scale limit is the massless free field. (For d = 2 there is no phase transition.)
For d > 4 one has to divide by Ay = N?? in the direction of the spontaneous
magnetization, and the limit is a field of independent Gaussian variables, which
are also independent of the large-scale limit of the component orthogonal to the
spontaneous magnetization. The case d = 4 is similar, only some logarithmic
term appears in the renormalizing constant A,. For d = 3 the large-scale limit
in the direction of the spontaneous magnetization is a non-Gaussian self-similar
random field, and A, = N2. We expect that the large-scale limit in this case has
a structure similar to the limit field appearing in Theorem 7.4, but this question
demands further investigation.
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