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DONSKER CLASSES AND RANDOM GEOMETRY

BY MicHEL TALAGRAND
University of Paris VI and The Ohio State University

Let # be a class of square integrable functions. We give necessary and
sufficient random geometric conditions for the empirical process indexed by &
to satisfy the CLT. These conditions roughly mean that the trace of # on a
random sample is a small (for the I! norm) perturbation of a set which is nice
for the /2 norm.

1. Introduction. The remarkable recent paper of Giné and Zinn (1984) has
given a new impetus to the study of the central limit theorem (CLT) for
empirical processes indexed by families of functions. The present paper will
present a refinement of the results of Giné and Zinn (1984), Section 5.a,
concerning the CLT under random entropy conditions. We shall give an example
showing that the sharpest necessary random entropy conditions obtained by
Giné and Zinn are not sufficient. We shall give necessary and sufficient random
conditions. In the general case, we will make use of the methods of Giné and
Zinn, as well as of the description of pregaussian sets recently obtained by the
author (1985). This description allows easy manipulation of these sets. It could
actually provide significant simplications to the proofs of some of the results of
Giné and Zinn. When the class % of functions satisfies the metric entropy
condition, our main result becomes stronger and can be proved entirely by the
methods of Giné and Zinn. We will, however, in that case use a device that we
introduced in our work (1985). It allows us to get rid of the usual chaining
argument. The results presented here seem to be sharp for classes of functions.
' For classes of sets, a further and more precise description is possible. It, however,
uses very different methods and will appear elsewhere [Talagrand (1987d)].

2. Notation and results. For convenience, Giné and Zinn (1984) will be
referred to as GZ. We will use notation close to that of GZ. Let (S, &, P) be a
probability space. Denoting Lebesgue’s measure by @, let

(2,2,Pr) = ([0,1] xSV, 20 ¥N,Q ® PV).

We denote P by Py. Integration with respect to Pr (resp. Q; Py) is denoted by E
(resp. Eq, Ex). On Q = [0,1] X SN, we consider the coordinate functions X; on
S. We use the factor [0,1] to define on © an i.i.d. Bernoulli sequence (¢;) and an
iid. N(0,1) sequence (g;), both independent of all (X;), so integration with
respect to @ applies to those variables. The empirical measures P, on S are the
random measures P, = (1/n)L;_ ,8x. For f in L*(P), let || f|| = (Ef*)"? the
L? norm of f. .
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1328 M. TALAGRAND

Let # be a class of square integrable functions on S. We denote
Fs={f-8& f.6F,|f-8l<3}
F =F, fora=en"VA

& n a?

For each A > 0, let N()A) be the A-covering number of %, that is, the smallest
number of balls of radius A that covers &%, i.e,,

N(A) =min{n; 3 ,,..., f, € F,V g € F, infllg - fI| < A}.

Let H(A) = log N(A). We say that % satisfies the (metric) entropy condition if
JEH(A)Y2dA < oo or, equivalently, if ¥,,,2 *H(2 *%)"/2 < co. Consider the
random norms

M,.(f) = T~ 1K,

i<n

1 ) 1/2
M) = [ £ 2l0r)
i<n

We denote by B, , (resp. B, ,) the unit ball for M, , (resp. M, ,) in the space
of all functions on Q. For a set of functions G, we denote by N, (A, G) and
N, (A, G) the A-covering numbers for G corresponding to M, , and M, ,,
respectively.

We refer to GZ for the meaning of “# pregaussian” and “% is a Donsker
class.” Given a class of functions ¢, we write |X;_, f(X;)|l¢ for the quantity
sup; ¢ ¢|Z; < , f(X;)| and expressions of the like. The study of empirical processes
runs into bothersome measurability problems. It is sometimes possible, at the
expense of some complication, to work without any measurability assumption
[Talagrand (1987a) and (1987b)], but our theorems here do require some mea-
surability. One approach to measurability problems has been proposed by
Dudley (1984). The methods of Giné and Zinn require use of Fubini’s theorem at
crucial steps; they require measurability of expressions of the type
IIZ; < »&; f(X;)|| %, These conditions are carefully spelled out in GZ. We do not feel
it is appropriate here to raise any measurability question, so we shall assume %
to be countable. [A less restrictive hypothesis, with identical proofs, would be the
separability of the processes (P,(f)); < # for each n.] However, the use of outer
probability at the obvious places and assumption of joint measurability when a
Fubini type argument is used are enough for the proofs to carry over to a much
more general setting. '

For easy reference, we summarize the results of Giné and Zinn concerning
random entropy for classes of functions.

THEOREM A (GZ, Remark 8.11). If & is a Donsker class, then

(1) lim ]imsupE(l A supNlog N, 5(A, .%)) = 0.
8-0 n A
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THEOREM B (GZ, Theorem 8.11). Let #C %2 be such that sup{|f|; f € F}
is square integrable. Assume
(2) lim hmsupE(l A f (log N, (A, #))"* d}\) =0.

820 n—ow

Then % is a Donsker class.

THEOREM C (GZ, Theorems 5.1 and 5.4). If & is pregaussian and uniformly
bounded, then it is a Donsker class under either of the following conditions:

(3) For all € > 0,
li’tlnE[l A fo "(log N, 5(A, £, )" dx] =0
(4) There exist 8, 0, e, > 0 such that for all 0 < ¢ < ¢,
li'tlnPr{log N, |(8en='%, &, ) > oen'/?} = 0.

For two sets of functions B, G, let
B+G={f+g; feB,geG}.

Let conv B be the set of infinite sums Xa,, f, for f, in B and a, > 0, Xa, = 1.

For simplicity, we set [, =1, I, = (logn)~'/2 for n > 2. The philosophy of
our main result is very simple. It essentially states that if the quantities
ln~ 2L ¢, f(X;)|| % are small, then for each n, one can find two classes of
functions % and #7, such that each f in % isasum u+ w, uin %, win #,
and that the following hold, except on a set of small probability:

(@) [In™V2ZE 0 |fI(X))ll is small.

(ii) The metric structure of (#°, M,, ,) is close enough to the metric structure
of (Zs L?) that one can conclude that Eg|in'?L? ¢, f(X))|ly is small because

# is pregaussian.

We note the absolute values in (i), so cancellations, which are at the heart of
the CLT, play no role here. The precise formulation of (ii) depends on which
characterization of pregaussian sets one uses. We have given several rather
different characterizations of these sets, and it is too early to tell which one will
be the most useful. Hence, we just choose the simplest (as in Lemma 10), but
other rather different formulations of our main result are possible.

THEOREM 1. The following are equivalent:

(I) & is a Donsker class.
(II) & is totally bounded in L2( P), and the followmg condition holds, where
K is a constant:

Va>0,368>0,
liminfPr({3 (h,) € L%,V q 2 1, M, ,(h,) < inf(K$, al,),

FCan 2B, , + conv{h,; q = 1}}) >1-a.
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(III) # is totally bounded in L%(P), and the following condition holds, where
K is a constant:

Va>0,V8>0,3n,,Vn=ny3(h,) e L¥P),
VieF3a,(f) 20, ¥ alf)=1,

qg=1

Pr({V g>1, M, ,(h,) <inf(K$,1,),V f € %,

f— X af)h,e an“1/2Bn,1}) >1-a.
g=1

When % satisfies the entropy condition [that is, when [lH(A)2dA < 0],
the result becomes more precise.

THEOREM 2. The following are equivalent:

(I) % is a Donsker class and satisfies the entropy condition.
(A1) F is totally bounded in L*(P) and there exists a summable sequence
(B,) such that ¥V a > 0,V 8 > 0,

lim inf Pr(3 G finite; G C 2%B, ,,V ¢ > 1,
n

2-9(log N, 5279, G))"* < B; F;can™/’B,  + G} 2 1 - a.

We shall prove these results in Section 3. When % is also uniformly bounded,
we can use the methods of GZ to give weaker sufficient conditions. Several
formulations are possible; we give one that generalises Theorem C.

THEOREM 3. Suppose that F is pregaussian and uniformly bounded. Then
it is a Donsker class whenever the following condition holds:

lim lim limianr{E! G finite, & , C a?n"V'B, | + G;
) fo 204" (log N, ,(A, G))/* d\ < v; log N, ,(2an"/4,G) < a2n1/2} =1,

for each y > 0.

Using the fact that N, ,(f) < N, (f)2l|f|1? it is possible to see that
condition (5) is weaker than either conditions (3) or (4). The proof of Theorem 3
is essentially the same as the proof of Theorem 5.4 of GZ, so we shall not give it.
[One needs to use the fact that the proof of Theorem 3.2 of GZ shows that
hypothesis (3.6) can be weakened to

vVy>0, lim limsupPr{

e—0 n

L af(X)|

i<n

>y} =0
‘,-z,n
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In Section 4, we shall show that even for bounded classes that satisfy the
entropy condition, condition (1) does not imply that % is a Donsker class; we
shall give an example of a Donsker class that fails condition (5).

3. Proof of Theorems 1 and 2. Before we start the proof, we list the main
tools that we shall use. The proof of the following lemma is similar to that of
Lemma 2.7 of GZ.

LEMMA 4. Assume sup; c zE|f — Ef| =y < 0. Then for t > 2yn'/2, we have

el | = 10x) - B | - tnlﬂ}sm{ Ze,-f(Xi)“;(tn‘/?—zny)/Z}.

isn i<n

For a class of functions G, let |G| = {|f|, f € G}.

LEMMA 5. For a class of functions G, we have _
EQ(” Zgif(xi)lhm) = 2EQ(" Zgif(Xi)"G)‘

ProorF. We can assume that G contains zero. We note that
M, (Ifl = If') < M, o(f — f). Fernique’s theorem as in GZ, (2.28), shows

EQ( ;ﬂelg Zgi|f|(Xi))\s EQ( ?lellc); Zgif(Xi)) = EQ(“ Zgif(Xi)"G)
and similarly,
Eq( !;lell();(— Zgilfl(Xi))) < EQ(" 2gif(X)) "G)

The result follows since
sup Y gilf|(X;) = 0, sup — Y gilfI(X;) = 0. a
feGg feG
LEMMma 6 [GZ, (2.9)].

| Em] )< 5 e o

i<n
The following is a minor variation on GZ, (2.14).

> &i(X,)

i<n

LEMMA 7. (a) If & is a Donsker class, then

(6) lim limsupE“n‘1/2 Y g.f(X)| =o.
80 n i<n 5;'6
(b) If & is totally bounded in L?, and if for each ¢ > 0,
) lim limsupPr{ Y e f(X)| = snl/2} =0,
80 n i<n A )

then % is a Donsker class.
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The following is a specialised version of Dudley’s theorem. See GZ, (2.24).

LEMMA 8. There is a universal constant K, such that for each n, each
Y > 0, and each class of functions G C yB, ,, we have

EQ(n‘1/2" Zgif(Xi)"G) = Kl(Y + Y.279(log N, ,(279, G))VZ)..

The following is a consequence of a standard computation.

- LEMMA 9. There is a universal constant K, such that whenever G =
{hg, g 2 1}, where M,, o(h,) < l,, we have

S by

Eq(n—l/zn Y e f(X) ||G) <K,.

The study of Donsker classes, when the entropy condition is not assumed, will
rely on the following, which is an adaptation of the results of the author (1985).
A complete proof will appear in our (1987d).

LEMMA 10. Suppose & is pregaussian. Fix ¢ > 0. Then for each 6 >0
small enough there is a sequence (h,) in L*(P), with ||k || < inf(K8, el ;) and
Fs C conv{h, g >1}.

Of essential use will also be Bernstein’s inequality (GZ, page 983). For a
function g, with Eg = 0,

Pr{ Y a(X) = t} < exp{ —t*/(2nEg? + 2t||g||../3) ).
i<n
LEMMA 11. Let h be in L%(P). Let n, ¢ > 0. Denote by h’ the truncation of h

at levels w = +n'/? Eh?/¢ [that is, h' = min(w, max(h,— w))] and let " =
h — K. Then we have E|h"| < en? and

Pr({M, »(7') = 2||h|)}) < exp(—3¢?/2ER?).

ProoF. We first note that, since |2| > w whenever A" # 0, we have w|h"”| <
h? so E|h"| < Eh*/w. Let g = i’* — Eh’%. We note that ||g||,, < 2w? and that
Eg? < Eh'* < w?Eh? The result then follows from the fact that

Pr((M,(¥) = 211)) < Pr{{ X o(X) = 9nE(1))

i<sn

and from Bernstein’s inequality. O

ProOF OF THEOREM 1. We first prove that (II) = (I). Suppose that %#; C
an~'/?B, | + conv{h,; q > 1}, where M, ,(h,) < al,. [We note that the extra
information M, ,(h,) < K& is not actually needed.] Let G = conv{h,; ¢ > 1}.
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Since #; € an"'/?B, | + G, we have
EQ(n_l/ZHZeif(Xi) ||3¢:’) Sa+t EQ(n_l/ZHZeif(Xi)"G)°
Using Lemmas 9 and 6, we get that
Eq(n™*| Leif(X) ;) < Ko

and % is a Donsker class from lemma 7.
We now prove that (I) = (III). Fix « > 0. Let ¢ = 10~ %a. Let 5 < ¢2/2K, be
small enough that

(8) Y. exp(—3e?/29%2) <e.

g=1
From Lemmas 7 and 10, there is § > 0 such that

> gif(Xi)" > 82n1/2}) <e
FA

i<n

9) Any,Vn=n,, PX({EQ

and such that there is a sequence (%,) in L%(P), with llA,ll < inf(K8, nl,) and
Fs C conv{h, q > 1}.

The construction will depend on rn. To simplify notation, we consider n > n,
fixed. Denote by A/ the truncation of k, at levels +n'/?Eh2/¢, and let
hy = h, — h{,. Consider the event A = {V q, M, ,(h}) < 2||h|}}. It then fol-
lows from Lemma 11 and (8) that Pr(A) > 1 — &. From Lemma 9 it follows that
if G = conv{h; ¢ > 1},

AC{EQ

L af(x)] <en).
i<n G

For each f in %, we fix coefficients a( f) such that f =X, a,(f)h, and
a,(f) =20, Xa,(f)=1. Let D be the set of functions X ,a,(f)hy. We have
fs — Lg212,(f )R, C D so it remains to show that with probability > 1 — a + ¢,
we have D C an~'/2B, ;. Since E|h}| < en~'/? for each g, we have E|f| < en~'/?
for f in D. Since D C F; — G, we have

Px({EQ ) gif(Xi)" 2 282n1/2}) < 2e.
D

i<n

It follows from Lemma 5 that

Py {EQ Y e f(X)| = 4£2nl/2}) < 2e.

i<n |D|

It follows from Lemma 6 that

Py {EQ Y ef(X)] = 432n1/2}) < 2,

isn |D|

o[ s 7] <

isn
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We now use Lemma 4 with y = 2en~1/2, t = 6¢, to get

|

Since Ef < en~'/2, we have

Pr({ supM, () > 7an—1/2}) < 2e.
feD

Y f(X;) — Ef ” > 6£n1/2}) < 24e.
|D|

i<n

The proof is complete since (IIT) = (II) is obvious. O

PRrROOF OF THEOREM 2. We first prove that (II) = (I). The proof that (II)
implies that % is a Donsker class goes as in Theorem 1, using Lemma 8 instead
of Lemma 9. We now show that # satisfies the entropy condition. Let &
corresponding to the choice of a = 1/2 in condition (II). Since % is totally
bounded in L%, we can cover it by a finite family B,, ..., B, of balls of radius 8.
For A > 8, we have N(A) < k. We show that for 277 < § we have N(279) <
k exp(229+882, ,); this will obviously suffice. let F be a maximal subset of F#
such that any two distinct elements of % are at distance > 279 Fix m < k. Let
& be the center of B,,. Enumerate as A,,..., h; the elements of the type f — g
for f in F N B,,. Note that they belong to #;. Fix a large enough that if for
i <j <1, we denote by h; ; the truncation of h;, — h; at levels +a, we have
llk; Il = 2797 " for each i <j < L The law of large numbers shows that

EmPr{Vi<j<li, M,,(h;;) 22792} =1.

So there is n large enough such that with positive probability M, ,(h; ;) >
27972 for i, j<l and %F;cC in"'?B,, + G, where for each g,
279" *%(log N, 42797, G))/? < B,,4 And we can assume n large enough that
n~% <2734712/42 For i <, write h;=u;+ v, where M, ((u;) < jn"'/2,
v; € G. For i < j, we have
Ui_”j‘_'hi_hj_ (u; - uj)y
where M, ((u; — u;) < n” /2. Wenow fix i <j and set B = {|u;, — u| > 27974},
so we have P(B) < n~%%2/27974 < 2729478 /q2,
We have, since ||A; ||, < a,
M, (v, —v) 2 Mn,Z((hi - h;— (u; - uj))lﬂ\B)

2 Mn,z((hi - hj)ln\B) - M, o((u; - u;)lg\ 5)

2 Mn,2((hi - hj)IQ\B) —-27a4

2 Mn,2(?zi,j19\3) —-279*

>M,,(h;;) - M, (h, 1) —279*

>M, ,(h;;)—2"9%>27973,
It follows that N, ,(2797% G) 2 L. This concludes the proof.
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We now prove (I) = (II). Surely % is totally bounded if it satisfies the
entropy condition.

Since # satisfies the entropy condition, so does F’' =% — %#. So, for each
q = 0, one can find a subset F, of #’, such that each element of %’ is at L?
dlstance <277 of an element of F and that X, .,v, < co, where y, =

27 9(log card F,)'/%. Let £, = v, + v,_1, so X, 218, < oo. Foreach g > 1, let

q

so ||zl <279*! for z in C,, and 27¢ (log(cardC ))‘/2 < ¢, Also, the usual
chaining argument shows that ifxes, x| < 2‘ “2, we can write x = L_, ;x,
where x, € C,. Now let a > 0. Let ¢=10"%a and take 7 < :;'2/2K2 small
enough that (8) holds. Take I large enough that (9) holds for § = 27/~2 and

Yoo <n/4,2X,.,27%q+1<n/4 Forq=1set
(10) a, = 277 {log(27* card C,)) .
We have

C,={x-yx€F,yeF, ,|lx-y| <277},

Ya,< ¥ 279 (log(card C,)) " + ¥ 279" g+ 1 <.

g=1 g=>1 g=1
Set a=%,.,a, 50 a<1. Set H,=(a/a,)C, —{(a/a )y; y€ C,}. Set H =
U,siH, Let t > 0. If for some q and some y in H, we have | y| > ¢, then
2- 2 g > a,t. This implies first that ¢ < a. Using (10) this also shows that
cardH = cardC < 27 % exp(a?/t?). It follows that we have

(11) card{y € H; ||yll 2 t} < exp(a®/¢?).
Let us enumerate H as a sequence (A,) with ||k, || < | A, It follows from
(11) that ||h,|| < al, < yl,. Since each x in #; can be written x =¥, ,x, for
x, in C, it can be written x =X b,y,(x), where b, = a,/a and y(x) =
(a/a, )x € H,. So b, =1. We now fix n 2 n,. For a function A in H,
write A its truncation at levels +n'/2Eh?/¢ and h” = h — h’. Consider the
event

B {V h € H, M, ,(K) < 2||hI|,V x € %, M,.,I(quy;'(x)) < an"”}.
' q

Inspection of the proof of Theorem 1 shows that we have Pr(A) >1 — a. Let

= {L,2:0,7)(x); x € %;}. We know that on A, M, (3;(x)) < 2|y, (x)|| <
2 *29/a,, s0 M, ,(b,y)(x)) <2792 It is now routine to check that G C
279%3B , “and that 2- q(log 2277 G))l/2 < B,, where B, =L,_, . 3£:2"79 (so
LB, < oo) The proof is complete |

" 4. Examples.

THEOREM 12. There exists a countable uniformly bounded class of functions
that satisfies the entropy condition, and condition (1), but is not a Donsker class.
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The proof contains a simple idea, but checking all the routine details would be
tiresome. We shall hence just give a sketch. The basic measure space is [0, 1];
Lebesgue’s measure is denoted by P. The basic construction is as follows. Let %
be an integer, k> 3. Let n=2*"*! Fix disjoint subintervals (A)),_, with
P(A)) = 2/72k71 Note that P(UA;) < 2. Consider the family F, of functions
of the type :

f= Z k_12_j]‘Bj
j<k

where B; C A; and card B; = 92k+j=1 | ,et
a, = P”{(xl,...,xn); Vj<k,card{x,,...,x,} NA;> nP(Aj)/2},
Standard estimates show that lim, , . a, = 1. When
Vj<k, card{x,...,x,} NA;2> nP(Aj)/2 = gJ+2k-1
there exists an f in F, such that
Y f(x) > T o121 = 921 = 9-3/2p1/2

i<n J<k

So we have

(12) Pr{ .

We show now that there are sets U,, ,, € [0,1]™, with
@13 P™(U, ) 21-by,, whereb, , <3k /2 mli_r)n°° bp.m=0,

> f(=)

i<n

> n1/2/4} > a,.

such that
Uy C {sup}\zlog N, .\, F,) < l/k}.
A
Let A} =U,_;A;, so P(A}) < 2/7%* Let
Upm={(x1,.., %,); Vj < k,card{x,,..., x,,} N A} < mkP(A})}.
For any set A, Bernstein’s inequality gives

P'"({-:; Y 1,(x;) = kP(A)}) < exp(—m(k — 1)P(A)).

ism

Also, the left hand side is less than mP(A). So we have

pm({_’;l; Y 14(x;) > kP(A)} < inf(mP(A),exp(—m(k — 1)P(A))),

SO .
P™(U, ) 21— Zkinf(mP(A}),exp(—m(k - 1)P(A3))).

Let by , = L, ,inf(mP(A}), exp(—m(k — 1)P(A}))). Then lim,b; , = 0.
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Moreover,
bim< L mP(47) + L exp(~m(k ~ 1)P(4})),
J<p J>p
where p is the largest value of j such that mP(A}) < k~'/2, Since for each j we
have P(A}) = 2P(A}_,), we get that for all m, we have

bim < 2872 + kexp(—(k — 1)k"/?) < 3k™V2,

We now fix x,,...,x,,inU, ,,and A > 0. For1 <I<k let
' 1 1/2
a,= Z 22k—j 1) .
(mk2 I<j<k

Suppose first A < a,. Let G be the trace of F, on {x,,...,x,}. We have

N, o(A, F,) < card G. An element of G is zero outside A}. Suppose first that
mk2% > 23 We have card{x,,...,x,} N A} < mkP(A}) < mk2™% and a
function in g is determined by a subset of {x,...,x,} N A}, of cardinality
< 23%; 50 we have

NoshF) < T (427 < (emba sty
i<2%

and

1
Mlog N, ,(A, F,) < 5 k224klog(emk2‘4k),

S0 eashlly Mlog N, 4(A, F},) < 1/2k. Suppose now mk2-* < 23 Then card G <
2mk2°" and

mk
2 mk2log2 < 1/k.
We now investigate the case a; < A. Let I be the smallest with ¢, < X. If I =1,
since each function of F, has M,, ,norm < a,, we get N,, »(A, F,) =1.1f 1> 1,
for f=2X;<x2” le, write f le;sk2 lB, f" =f — f'. We have

M, (f)<a,<A, so we can bound N, T, 2(As Fk) by the number of different
traces on {x,,...,x,,} of functions of the type f”. Note that A < a;_,; the
method is similar to the case A < a,, so the details are left to the reader. We thus
have

(14) sume,Z(A, F,) <10/k

A210g Nm,2(>\: Fk) <

on U, ,,. This completes the basw construction. Now let (k,) be an 1ncreasmg
sequence; let ' =U ka This class satisfies the entropy condition, since each
function in %" is zero a.e. Condition (12) shows that &’ is not a Donsker class.
It is easy to check that if the sequence (k,) increases fast enough, (13) and (14)
imply that for each y > 0

hmPr{sup}\z s, F7) > 'y} -o0.

The only problem is that %’ is not countable. Let (g,) be any sequence. Each
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function of F, is a finite sum Xa.1,, ,. Replace each function 1, , by 1,, where J
is the dyadic interval of length 279 containing x;. Let # be the class obtained
this way. It is routine to see that & will satisfy the conditions of Theorem 12
provided (g,,) increases fast enough.

THEOREM 13. There exists a countable Donsker class that does not satisfy
condition (5).

Proor. Consider a sequence (a,) and the class #= {a,r,; n > 0}, where
(r,) is an independent Bernoulli sequence. Then it is easy to see that it is a
Donsker class if and only if the following holds:

(15) For each ¢ > 0, the series ) exp(—¢2/a2) converges.

Consider the sequence (a,) constructed in the following way: For each &, let
n(k) = 22*’. For each k and each j with 1 <j < , one repeats 22”**"* times
the number 1/(%2/n(k)'/*). This sequence satisfies (15). For one given &, the
total number of terms involved is of order exp c,n(k)m, where ¢, — 0, so with
probability going to one, any two of the functions r, involved for a given % are
at distance > 1/3 for M, ,. It follows that with probability close to one,

Vi<k, log Nn(k)’z((3k2fn(k)l/4)_l, ‘gl/k,n(k)) > 22/n (k)" *log2.
It follows that if 8! = 3kn(k)Y*,
5 1/2
jo (log Nya oAy Fijimiy)) - dA = (log2)™? /6.

Since the functions a,r, have a constant absolute value, one can check that a
small perturbation in /! norm is essentially irrelevant and that (5) fails. O
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