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TIGHT BOUNDS ON THE EXPONENTIAL APPROXIMATION
OF SOME AGING DISTRIBUTIONS

By D. J. DALEY

Australian National University

Tight bounds on the sup metric between the exponential distribution and
new better (worse) than used in expectation (NBUE, NWUE) distributions
are established in terms of the proximity of the second moments of the
distributions concerned. Real variable methods are used to identify the
extremal distributions that attain the bounds. Similar methods establish
similar results for the harmonic NBUE and NWUE classes of distributions.

1. Introduction and results. The exponential distribution is often used in
applied probability models as an approximation to some unknown distribution
for nonnegative random variables depicting “age.” The adequacy or otherwise of
such an approximation can be described by various criteria. This paper is
concerned with establishing the precise nature of one particular measure of
approximation, namely, the supremum metric, for distributions belonging to
certain classes of aging distributions. For further details on motivation, see, e.g.,
Brown and Ge (1984) or Barlow and Proschan (1975).

We study the classes of the distribution functions (d.f.’s) F of nonnegative
random variables X with unit mean and specified second moment, with

(1.1) p=EX%/2 - 1],

and which are either new better or new worse than used in expectation (NBUE,
'NWUE), defined by

(1.2) E(X-yX>y)< (2)EX =1,

respectively. The restriction to unit mean is purely for convenience: without it
we should merely have the more general definition of p as

_ - EX2/2(EX)*  (F NBUE),

1.1) )
EX?/2(EX)*-1  (F NWUE).

Writing
A(Fv Fz) = sup|Fy(x) - Fz(x)|

for the sup metric of d.f.’s, and letting Exp denote the unit exponential d.f., the
main aim is to establish best possible inequalities for A(F, Exp) in terms of p
when F is either NBUE or NWUE.
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THEOREM 1. When the d.f. F is NBUE as above,
(1.3) A(F,Exp) < A(Fp,Exp) = 1 — exp(—(2p)"%),
where Fg is NBUE and is given by
, x < (20)",
{1-(@20)""}exp(—(x - 20)"7)), x> (20)"".

THEOREM 2. When the d.f. F is NWUE as above,
(1.5) A(F,Exp) < A(Fy,Exp) = (o + 2p)"* - p=p,,
where Fy, is NWUE and is given by
(16) Fyp(x)=(1 —pp)exp(—max(O, x-p/(1-p)), x=0.

It is easily checked from (1.3) and (1.5) that for all p, and in particular, for
small p, .

(14) Fy(x) =

(1.7) A(F,Exp) < (20)%,  A(Fy,Exp) < (20)"%,
and that
(1.8) A(Fg,Exp) = (20)*(1 + 0(1)) = A(Fy, Exp),

for p |0. Brown and Ge (1984) used Fourier methods to establish inequalities
similar to (1.7) with (2p)/2 replaced by (4V6)o"/?/7 = 3.1190"% our results,
prompted by reading their paper, give the best possible bounds for the classes
NBUE and NWUE. Their paper contains references to inequalities on the sup
metric for other classes of aging distributions, and outlines the motivation for
seeking such inequalities in terms of convergence of d.f.s to the exponential
within such classes of aging d.f.’s.

Both NBUE and NWUE df.s are most easily discussed via the d.f. G
corresponding to the integral of F(x) = 1 — F(x), namely,

(1.9) G(x) = [ F(u) du.
0
The basic inequalities at (1.2) are then expressible as
(1.10a) G(x)=1-G(x) < F(x) (F NBUE),
(1.10p) G(x) = F(x) (F NWUE).

As intermediate steps in proving our theorems we have the following results also.
PROPOSITION 1. A(F,G) < A(Fg,Gp) = (2p)2 (F NBUE).
PROPOSITION 2. A(F,G) < A(Fy, Gy) = A(Fy,Exp)=p, (F NWUE).

We also consider the larger classes of distributions for which G(x) < (>)e™%,
called by Rolski (1975) HNBUE (HNWUE), where H stands for “harmonic” on
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account of the characterization that F is HNBUE as above if and only if
=7 [(@(u)/F(w) du =1, allx >0,
0

Klefsjo (1983) gives more references on HNBUE and HNWUE distributions. For
distributional inequalities see Stoyan (1983).

THEOREM 3. Within the HNBUE class as above,

(1.11) A(F,Exp) < A(Fyg,Exp) =1—-e77,
where
(1.12) y=1-06e%/(1-e"%),
(1.13) 2p=1-e%—0%"%(1-e"?),
for some 0 > 0, and Fyy is HNBUE and is given by

1, x<vy,
(1.14) Fyp(x) = {e—o, y<x<@9,

e %, 0 < x.

THEOREM 4. Within the HNWUE class as above,

(1.15) A(F,Exp) < A(Fyw,Exp) = (e7?— (1 - 0))/6,
where
(1.16) 20=0(1+e %) —-21-e7Y),
for some 8 > 0, and Fyy, is HNWUE and is given by
(1.17) Fuaw(x) = {(1 —e)/6,  0=<x<d,
e %, x>4.
It is not difficult to check from these expressions that as p — 0 we have
(1.18) A(Fyg,Exp) = (30)°(1 + 0(1)),
(1.19) A(Fey, Exp) = (30/2)"°(1 + o(1)).

Indeed, with a little more algebra and calculus these results can be strengthened
to

(1.20) A(Fup, Exp) < 1 — exp( - (3)""") < (30)"",
(1.21) A(Fyqw, Exp) < (30/2)™°.

The converse question of whether knowing A(F, Exp) implies an upper bound
on p is discussed in the final section of the paper.

When the results and methods of this paper are compared with those of
Brown and Ge (1984), they can be seen as furnishing yet another example of
inequalities established to the right order (here, p'/2), via Fourier methods, but
with a constant around double the size of the best possible constant [see, e.g.,
Daley (1980) for a similar note and references concerning the renewal function].
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The proofs below are given verbally. Mostly, it is simplest to argue from a
diagram, sketching the exponential function, the tails F and G of distribution
functions that are, respectively, monotonic, and monotonic and convex, and
considering areas of appropriate regions that are bounded at least in part by a
straight line or lines. Detailed notes that expand the proofs sketched in Sections
5 and 6 are available from the author.

2. Proofs of the propositions. We start by observing that since the (right-
hand) derivative of —log G(x) equals F(x)/G(x), we necessarily have by in-
tegration on (x, y) for 0 < x < y < oo that
(2.1a) G(x)/e *> G(y)/e™> (F NBUE),

(2.1b) G(y)/e*<G(y)/e™> (F NWUE).
In particular, as is well known, G(x) < or > e * (all x) according as F is
NBUE or NWUE, respectively.

Consider first the case that F is NWUE, and suppose that for some given

z=>0,

G(2) = F(z) +p,
for some p > 0. Then since p equals the area between the curves F(x) and (i(x)
over 0 < x < 00, G(2) has slope —F(x) at 2z, G(x) is convex on x > 0, and F(x)
is nonincreasing in x, the right-angled triangle with two sides parallel to the axes

through (2, F(2)) and hypotenuse the tangent to G(x) at z, has area equal to
(p/2)(p/F(z)) which cannot exceed p, i.e.,

p* < 2p(F(2)) = 2p(G(2) - p),
so the quadratic inequality yields
p<—p+ (0 +20G(2))"” < p,
since G(z) < 1 (all z). It is readily checked that for F equal to Fy,
1-F0+)=G(0+)-F0+)=p,

which establishes Proposition 2.
Suppose now that F is NBUE, and that for some z we have

F(z-)=G(z2) +q.

This time consider the right-angled triangle with two sides parallel to the axes
through (z, F(z —)) and hypotenuse the intercept of the line from (0,1) to
(2, G(2)). Since F(x) is nondecreasing as x decreases and G(x) is convex with
G(0) = 1, the area of the triangle, equal to (¢/2)2(¢/(1 — G(2))), is again
bounded above by p, i.e.,

p = q%2/2(1 — G(2)).
Now 1 — G(2) = JZF(u) du < z, whence by substitution in the inequality for p

it follows that g < (2p)"/2. It is readily checked that equality holds here for
F = Fy and z = (2p)'/?, establishing Proposition 1.
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3. Proof of Theorem 1. As an aside, we start by noting that if for some
2z > 0 we have
(3.1) e *> F(x) > G(x), for0<x<z,
then from 1 — e™? > [?F(u)du = 1 — G(z) we have G(2) > e”?, implying that
if (3.1) holds, then it holds with equality throughout, and that if F(z) < e™* for
some 2 > 0, then for some 2’ in 0 < 2’ < z we have F(z") > e™ .

Let F be NBUE as in Section 1. Suppose that for some 2z we have

F(z-)=e"+gq,
for some g > 0. As in Section 2 we consider a right-angled triangle with sides
parallel to the axes intersecting at (2, F(z — )) and hypotenuse the tangent to
the unit exponential function e™*, where it intersects the level F(z — ). This
intersection point is at a distance y(q), say, from (2, F(z —)), being determined
by
(3.2) Fz-)=e M =¢=24gq,
The area of the triangle is bounded by p because e™* > G(x) when F is NBUE,
and G(x) being conveg, it lies always below the hypotenuse for 2z — y(¢) < x < z.
Thus,
p = (y(q)/2)y(q)F(z -),

ie., ¥(q) < (2p/F(z — ))/% Then from (3.2) we have

g = F(z-)(1 - e@) < F(z - ){1 - exp( - (20/F(2 -))""’)}.

It is a matter of simple calculus to check that £%(1 — e~*/%) increases for
0<é(<1,s0
(3.3) g <1 - exp(-(20)").
The d.f. Fy at (1.4) is NBUE and for this function Fg(z — ) — e~ * equals ¢ as at
(3.3) when z = (2p)/2. B

It remains to consider how large e™* — F(2) may be for NBUE F. Denoting it
by g, we have from (2.1a) that for y > z,

G(y)<G(2)e " "I<F(2)e ") = (e * — q)e ™2
- e_y —_— qe_(y_z)’

so that

p f (e * - G(u)) du
0
> fw(e"‘ - G(u)) du
> que"("") du = q.
Now 1 — exp(—(2p)*/?) > (2p)"/2 — p, which in turn exceeds p for 0 < 2p < 1 as

holds for NBUE F. Thus, e~* — F(2) is again bounded by the right-hand side of
(1.3), and Theorem 1 is proved.
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4. Proof of Theorem 2. Supposing now that F is NWUE and that e~ % >
Fz)y=e?- - q for some g > 0 and some z > 0, it follows from G(x) >e " (all
x) that ¢ < G(2) — F(z), and thus, from Proposition 2, that ¢ < (p® + 2p)"/2 —

p. Since this bound is attained for Fy, as 1 — Fy,(0 + ), it remains only to
consider the possibility that for some z, G(2) > F(z) > e * = F(z) —

From (2.1b) it follows that

= /0°°(c—;(u) — e %) du
> f:o(C_}(u) —e*)du

>G(2)—e?2q,

and since (p? + 2p)"/2 — p increases with p and exceeds p when p < 2/3, it
suffices to show that we always have such ¢ < 2/3. Writing

G(z)—e?= j:(e_" — F(u)) du
< Lz(e_" —e*+q)du
Z—2z(e*+q),

it follows that ¢ < (1 + 2)™! — e7%, and since the right-hand side here always
< 1/4in z > 0, the theorem is finally proved.

=1l-e

5. Proof of Theorem 3. We sketch the key steps in the proof. Suppose that
for some z we have either F(z —) — e 2 > 0 or e ? — F(z) > 0. In either event,
the area between G(x) and e™* must be at least that bounded by the exponen-
tial function and two straight-line segments, intersecting at (z, G(z)) and
tangential to the exponential function at z — § and z + 7, say, respectively.
Since this area is bounded by p, an upper bound on |e™* — F(z)| is thereby
implied, with the greatest such bound being achieved by maximizing the area
between G(x) and e™* into a “triangular” region with vertices at (a, e™ %),
(a + 0,e %), and the intersection at (a + v, A), say, of the tangents to the
exponential function at the other two vertices. Immediately, for such G(x) and,
therefore, F,

A=t~ ye = (1-y)es,

A = A(F,Exp) = max(e > — e *7,e7 Y — e 7 f),

Ae®*=max(l —e ", e " —e7?),
and after computing areas,
=1-06e%(1-e7Y),
20e*=2(1-e %) —0(1+e % +y(e?—(1-9))
=1-e?—0%°%(1-e").
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Show that
max(l —eY,e "—e?)=1—¢"
by establishing
y=1-0e /(1 -e%) > —log[(1 +e7%)/2],

by differentiating in 6, and finding that dy/d@ exceeds the derivative of the
right-hand side. Next, noting that for fixed p we can regard 6 as a function of «,
v as a function of 8, and thus A a function of a, we have

(A + dA/da)e* = e "dy/da = e (dy/d6)(d8/da).

Substituting e ® = (1 — y)/(1 + § — y), deduce that dA/da has the same
sign as —1 + ye Y1 + 1/(6 — v)), which is shown to be negative via e? >
Yy+v/(§ —vy)and y < 8 — v, i.e, 8 > 2y (in this last step, expand e’ to the
term in #%). Thus, a = 0 and (1.11)—(1.14) follow.

(1.18) is proved by noting from (1.11)—(1.13) that

vy=(6/2)(1+0(8)), 1-ev=(6/2)(11+ 0(9)), .
[(1 - ) — 8%°] /(1 - e~?) = (6°/12)(1 + O(6)).

To prove (1.20), the right-hand inequality is simply 1 — e™* < x, x > 0, while
for the rest, it is enough to show [cf. (1.11) and (1.20)] that y3 < 3p. Since both
sides vanish at § = 0, it is enough to show that y2dy/df < dp/d@ (all ), which
on simplification reduces to 2y2 < 6§ — 1 + e~%. Again, both sides vanish at
6 = 0, so it is enough that 4ydy/df <1 — e*, which reduces to 4y(6 — y) <
e’(1 — e~ ?)2, which from 4x(1 — x) < 1 means that it is enough that fe=%/% <
1 — e~ % or equivalently, that 6 < e?2 — e=%2 for 6 > 0, which is a standard
inequality.

6. Proof of Theorem 4. Again, we merely sketch the proof. Supposing
q = e * — F(z) > 0 for some z > 0, we proceed (cf. the proofs of the results for
the NWUE case) by noting that the area between G(x) and e *, which in total
equals p, is at least as large as the area between the unit exponential function
and a straight line intersecting the exponential at z and z + £, say, with slope
—F(z) = —e™* + q. Similarly, if ¢ = F(z —) — e™* > 0 for some 2z > 0, then
the area between G(x) and e™” is at least as large as that between a straight line
with slope — F(z — ) and the unit exponential between intercepts at (z, e~*) and
(z — m, e”**"), say. In either case, for given 2z, the quantity ¢ is maximized by
having the area between the straight line and the exponential function equal
to p.

Consider then such a straight line with intercepts with the exponential at
(a, ™), (a + 0, e~*"%) for some a > 0, § > 0. Computing areas, we have

A=e*— F(a+),
2pe*=0(1+e7 %) —2(1-e7"),
with
0F(a +) =e (1 —e7%),
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Ae*=1-(1-e7%) /8.
As in Section 5, dA/da has the same sign as —A + 2p/6%, and thus as
B1+e?)—201-e’)-02+0(1-e")= -21-0+6°/2-¢"’) <0,

so A is maximized at a = 0. (1.15)-(1.17) follow.

Expanding (1.16) and (1.17) in powers of 8 yields (1.19).

To prove (1.21) examine the sign of the derivative in 8 of 3p — 2A3, It has the
same sign as 2 — 4A%, and thus of § — 2A, which is positive for § > 0.

7. The complementary lower-bound problem. Since A(F, Exp) = 0 if and
only if F is an exponential distribution, a question which then arises is the
following. Given p > 0, is there some A, > 0 such that

(7.1) A(F,Exp) = A,,

whenever F is in some specified class of distributions with p as in (1.1)? Or is it
the case that for some classes we can find a sequence {F,} of distributions in the
class for which

(7.2) A(F,,Exp) - 0,
as n - o0?

THEOREM 5. Within the HNBUE class as in Section 1,
(7.3) A(F,exp) = A, >0,

where the lower bound is attained by a NBUE distribution with an atom of size
8 + e” " at 0 and unit exponential density on (a,v), where § =1 — e and,
with ¢ the root of

(7.4) a—-8+8(y—a)=eY,
0 =v=1y whene V<8 and

(7.5) 2p = (20 — a) + 8(0 — a)’,
and otherwise y = —log 8,

(7.6) 0=1+(a+7v)/2— a/28,
(7.7) 2p =280 — 280% + y%e Y — a%e™".

Within the HNWUE class, (7.2) holds rather than (7.1).

THEOREM 6. For any given p, there exist HNWUE distributions {F,} for
which (7.2) holds.
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PRrROOF OF THEOREM 5. Suppose that F' is HNBUE with A(F,Exp) = § > 0,
so that for all x,
max(0, e™* — 8) < F(x) < min(1, e™* + §).
From the second inequality, writing « = —log(1 — §), we have

X, 0<x< a,

G(x)s{a+1—8—e‘x+8(x—a), x> a,

so that
P e *—(1-x), 0<x<a,
(7.8) ¢ Gx) < {a—8+8(x—a), x> a.
From the first inequality, writing 8 = —log 8, we likewise obtain
—-x _ [, e-—x’ X > B,

(7.9) e G(x)s{8+8(,3—x), 0<x<B.

It is easily checked that (7.8) is smaller for small x and (7.9) for large x, with the
change-over point being the root ¢ of (7.4) if e™¥ < §, and otherwise 8 as at (7.6).
In either case, substituting the appropriate bound for e * — G(x) leads to
retention of equality in

p=(foa+f0+foy+f:°)(e“*—c_¥(x))dx,

a

and the rest of the proof is a matter of algebra. O

It should be noted that for sufficiently small §, the distribution detailed in the
theorem is not NBU.

ProoF oF THEOREM 6. We sketch the idea, and leave the algebraic detail to
the reader. First, notice that a unit exponential distribution perturbed by adding
atoms A at 0 and § at (large) 6 and deleting an interval (a, 8) interior to (0, 8) of
mass A + 8§ = e~ — e~ # is HNWUE (a sketch graph shows this easily). Its first
moment is unchanged at one if

80 = (A + &),
for a certain n with a < n < B, and its second moment is approximately
2+4+20=2+80%=(A+8)n?=2+86%— 80.

Choose & = 2p/6% A =2p/0,s0 7 =1, and A(F,Exp) = 2p/8, > 0 as 6 - .
Such a distribution is not NWUE because F(x) = G(x) = e * forx > 6.0

Acknowledgment. I thank Professor Brown for the remark that the exam-
ple at the end of Section 5 of his paper with Ge can be adapted to give a
sequence of distributions with decreasing failure rate—and therefore in the
HNWUE class—converging as at (7.2) to the exponential distribution and
having any specified finite or infinite p.
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