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DFR PROPERTY OF FIRST-PASSAGE TIMES
AND ITS PRESERVATION UNDER
GEOMETRIC COMPOUNDING!

BY J. GEORGE SHANTHIKUMAR
University of California, Berkeley

It is shown that if a discrete-time Markov chain on the state space
{0,1,...} has a transition probability matrix P and a transition survival
probability matrix Q which is totally positive of order two (TPR,), where
Q(i, j) = L5 jP(i, k), then the first-passage time from state 1 to state 0 has
decreasing failure rate (DFR). This result is used to show that (i) the sum of a
geometrically distributed number (i.e., geometric compound) of ii.d. DFR
random variables is DFR, and (ii) the number of customers served during a
busy period in an M/G/1 queue with increasing failure-rate service times is
DFR. Recent results of Szekli (1986) and the closure property of ii.d. DFR
random variables under geometric compounding are combined to show that
the stationary waiting time in a GI/G/1 (M/G/1) queue with DFR (in-
creasing mean residual life) service times is DFR. We also provide sufficient
conditions on the inter-renewal times under which the renewal function is
concave. These results shed some light on a conjecture of Brown (1981).

1. Introduction. Brown (1980) proved that the renewal function for a
renewal process with decreasing failure rate (DFR) inter-renewal times is con-
cave. In a subsequent paper [Brown (1981)] he conjectured that DFR is also a
necessary condition for concavity. A consequence of this conjecture, as pointed
out by Brown, is that DFR distributions are closed under geometric com-
pounding (i.e., the sum of a geometrically distributed number of ii.d. DFR
random variables is DFR). Thus a counterexample to this (possible) closure
property of DFR random variables under geometric compounding would provide
a counterexample to the concavity conjecture.

In an attempt to verify Brown’s conjecture we obtained sufficient conditions
for (i) the first-passage time from state 1 to state 0 of a Markov chain on the
state space {0,1,...} to be DFR, and (ii) the renewal function to be concave
when the i.i.d. inter-renewal times have the distribution of this passage time.
Specifically, in Section 3 we show that if a discrete-time Markov chain on the
state space {0,1,...} has a transition probability matrix P and a transition
survival probability matrix Q which is totally positive of order two (TP,), where
Q(, j) = X4, ;P(i, k), then the first-passage time from state 1 to state 0 is
DFR. This result is used in the same section to establish that:

(A) DFR distributions are closed under geometric compounding.
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This, therefore, closes one possible avenue to construct a counterexample to
Brown’s conjecture. Section 4 shows that the renewal function is concave if the
inter-renewal times have the same distribution as the first-passage time from
state 1 to state O of a stochastically monotone Markov chain on {0,1,... }. Hence
Brown’s conjecture, if true, implies that:

(B) The first-passage time from state 1 to state 0 of a stochastically monotone
Markov chain on {0,1,...} is DFR.

This DFR property is known to hold for birth and death processes [Keilson
(1979)] and in general for any Markov process that can be uniformized such that
the embedded Markov chain has a TP, transition probability matrix [Assaf,
Shaked and Shanthikumar (1985)]. But it is not known whether it holds for this
larger class. For this class of Markov chains (i.e., stochastically monotone) using
ideas similar to that used in Marshall and Shaked (1983) or Shanthikumar
(1984), it can be easily shown that the first-passage time from state 1 to state 0
has the new worse than used (NWU) property. The NWU property is weaker
than the DFR property. Therefore, a counterexample to (B) will also be a
counterexample to Brown’s conjecture. In Section 4 we provide an example of a
stochastically monotone discrete-time Markov chain on {0, 1,...} for which this
first-passage time is not DFR. Consequently,

(C) Brown’s conjecture does not hold in the discrete-time case.

The discrete-time example does not generalize to the continuous-time case, and
the truth of this conjecture is still unresolved.

The results presented in this paper, apart from providing some useful insights
into Brown’s conjecture, have other applications. The DFR property of the
first-passage times of Markov chains is used in Section 5 to show that the
number of customers served during a busy period in an M/G/1 queue with
increasing failure-rate service times is DFR. Geometric compounding of i.i.d.
random variables arises naturally in many applied probability models. A recent
paper of Gertsbakh (1984) discusses a wide range of applications in reliability
theory. In the queueing theory context it is well known that the stationary
waiting time in a GI/G/1 queue can be represented as a geometric compound of
ii.d. random variables [cf. Feller (1971)].

Related results are (i) the class of completely monotone (CM) distributions is
closed under geometric compounding and the stationary waiting time in an
M/G/1 queue with CM service times is CM [Keilson (1978)]; and (ii) the
distribution function of a geometric convolution of DFR distributions is concave
and the stationary waiting time in a GI/G/1 (M/G/1) queue with DFR
(increasing mean residual life) service times has a concave distribution function
[Szekli (1986)]. In Section 5 we strengthen the above results of Szekli.

One aspect of our methodology which appears to be new is the consideration
of a monotonicity property for a Markov chain which is stronger than stochastic
monotonicity and weaker than TP,. Stochastic monotonicity is based on the
partial ordering of stochastic ordering, TP, on ordering by monotone-likelihood
ratio. An intermediate ordering we use is the hazard-rate ordering [cf. Ross
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(1983)]. This ordering is utilized by Brown (1980, 1983, 1984) to study properties
of increasing mean residual life IMRL) and DFR distributions.

2. Preliminaries. A continuous random variable X with (without) a possi-
ble mass at zero or its distribution F on [0, o) is said to be DFR (IFR) if its
failure rate ry(t) = f(t)/F(t) is decreasing (1ncreasmg) in t€[0,00): f and F
are the density and survival functions of X (“increasing” and “decreasing” ar
not used in the strict sense). X is said to be IMRL if E(X — {|X > ¢) is
increasing in ¢ € [0, o0). Discrete cases are analogously defined.

Two nonnegative random variables X, and X, or their distributions F; and F,
are ordered in the sense of usual stochastlc (hazard rate) ordering if Fy(t) > Fy(t),
t > 0 [F(t)/F(t) is increasing in ¢ € [0, 00)]. Denote X; >,, X, (X, >, X,).
Note that [cf. Ross (1983)] X, >, X, implies {X,|X, >t} >, {X,|X, > ¢},
t=0.

Let t = [t(i, /)); j»1 8, J) =1, i>j and #(i, j) = O otherwise. Then its
inverse is t~! = [t7'(i, J)]; j»1, Where t7'(G, i) =1, i>1; t7'(G,i—-1) = -1,
i>2 and ¢£Y(i, j) = 0 otherwise [cf. Keilson (1979)]. A discrete-time Markov
chain on the state space {0,1,...} with transition probability matrix P is
stochastically monotone if t“Pt 2 0. A continuous-time Markov chain on the
state space {0, 1,...} with transition-rate matrix p = [p(3, j)]; ;.o is stochasti-
cally monotone if forany k > 0,X;, ,u(Z, j)isincreasingini < kand X, _ ,u(3, J)
is decreasing in i > k.

A function a = [a(i, j)] of two real variables ranging over linearly ordered
sets X and Y, respectively, is TP, if for any n, <n, and m, < m, (n; € X,
m;€Y), a(n,, m))a(ny, my) > a(n,, my)a(ny,m,). Equivalently, using the
convention 0/0 = 0 one has a(n,, my,)/a(n,, m,) — a(n,, my)/a(n,, m;) >0
(when defined; otherwise set the difference equal to zero).

Suppose a = [a(i, J)]; jen+ and b =[b(i, j)]; je N+ are two nonnegative
matrices (here N + = {1,2,...}).

LEMMA 2.1. If at € TP, rt € TP, and t~'rt > 0, then art € TP,.

ProoF. lLetA=at,R=rt,B=artandforl <n, <n,,1 <m,; <m,and
B(n,, m,) > 0, consider
B(n,, mz) _ Zt;zo-la(nl» k)R(k, my)
B(n,, ml) Z??-la(nl! 1)R(L, m,)

o~ R(k:mz)[ a(n,, k)R(k, m,)

(2.1) - kgl R(k, m,) | 32 a(ny, )R(L, m,)

R(k m2) R(k -1, m2) Z;P-ka(nv J)R(J1 ml)

- Z R(k,m;) R(k-1,m,) | T2a(n, )R, m,) ’

where R(0, m,)/R(0, m;) = 0. Since R € TP,, the expression in the square
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brackets on the right-hand side of (2.1) is nonnegative. Consider
):;"_ka(nl, J)R(j, m;) _ 1
2.a(ny, DR(1, m,) B 1+ Lia(ny, R(L, m,)
X7 za(ny, J)R(J, m,)
Now for A(n,, k) > 0, set R(0, m,) = 0 and consider
ita(ny, R(L, m,)
y-pa(ny, ))R(j, my)
_ Zf-lA(nl’ l)[R(l» m,) — R(1-1, ml)] — A(ny, k)R(k, m,)
- E24A(ny, DR, mi) = R(J - 1, my)] + A(ny, k)R(k — 1,m))
_ Z?—I(A(nl’ 1)/A(n,, k))[R(l’ m,) — R(1-1, ml)] — R(k, m,)
 I24(A(ny, J)/A(ny, B)[R(j, m) = R(j — 1,m,)] + R(k - 1,m,)
- = (A(ng, 1) /A(ny, k))[R(I, m;) — R(1 -1, m,)] — R(k, m,)
- Z;"_k(A(n2, 7)/A(n,y, k))[R(j, m;) — R(j -1, ml)] +R(k—1,m,)
_ ila(ng, R(I, my)
 I2a(ny, R, m)’
since t~!rt > 0 implies R(i, m,) — R(i—1,m;)>0,i=1,2,..., and A= at €
TP, implies A(n,, l)/A(n,, k) > (2)A(ny, 1)/A(ny, k) for I < (=)k and
n, < n,y. Then from (2.2) one gets
(2.3) E;"_ka(nl, JR(j, m,) < L7 pa(n,y, J)R(j, m;) .
71a(ny, DR(L, m,) X2.a(ny, R, my)
When A(n,, k) = 0, the left-hand side of (2.3) is zero and the above inequality is
trivially satisfied. Combining (2.1) and (2.3) one has
B(n,, my)  B(n,, m,) A
B(n,, m,) = B(ny,m,)’
Since ar > 0, B(i, j) is decreasing in j and therefore B(n,, m;) = 0 implies
B(n,, m,) = 0. Hence (2.4) in this case is trivially satisfied. O

(2.2)

(2.4) 1<n,<n,1<m <m,.

REMARK 2.2. Keilson and Kester (1978) show that if at € TP, and t!rt €
TP,, then art € TP,. This follows from the observations that art = att~'rt and
that the class of TP, matrices is closed under multiplication. Observe that
t~!rt € TP, implies rt € TP, and t~'rt > 0. Furthermore, counterexamples can
be easily constructed to show that the reverse need not be true. Hence our
condition rt € TP, and t~'rt > 0 is weaker than the TP, condition of t~'rt.

3. DFR first-passage times and closure of DFR under geometric com-
pounding. Let X = (X,, n=0,1,...} be a temporally homogeneous discrete-
time Markov chain on the state space N = {0,1,...} with a transition probabil-
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ity matrix P = [P(, j)]; jen(PG, J) = P{X, =j|X,_, =i}, i, j € N). Define
the first-passage time
(3.1) T = {min[n: X,=0,n=1,2,...]|X,=1}.

Since we are only interested in the first-passage time T of X, without loss of
generality we will assume that state 0 is absorbing [i.e., P(0,0) = 1].

Let Q = Pt be the transition survival probability matrix of X (i.e., Q(i, j) =
X¥_;P(i, k), i, j € N). One has

THEOREM 3.1. Q € TP, implies T € DFR.

ProOF. The failure rate r of T is given by
rp(n) = P{T=n|T >n} = P{X,=0X,_, > 1}

)
E P{Xn = O'Xn—l = i’ Xn—l 2 l}P{Xn—l = i|Xn—1 = 1}'
i=1

That is,
(3.2) rr(n) =1 - E[Q(X,_,,1)],

" where X,_, =, {X,-11X,_, = 1} (=, stands for equality in law). Let , be the
probability vector of X, [ie., »,(k) = P(X, = k}], P,=[P(i, j)], jen+ be a
submatrix of P and »! = »{P/*, where »{ = (1,0,0,...) = »,. Since state zero is

absorbing, it is easily verified that
(8.3) v, = 2P/, Ple = vi/vie,

where e = (1,1,...). Note that P, is the transition probability matrix of the
lossy process X! = {X!, n=0,1,...} of X on the state space N + [cf. Keilson
(1979), page 44] and »! is the probability vector of X! [i.e., v/ (k) = P{X! = Ek}].
Now consider (¢!, n = 0,1,...). Clearly,

l
Yo
1
et

and therefore from the closure property of TP, matrices under multiplication

e TP,

l l l
1 4 | 4 v,
_i t = _‘l) Plt = _(I) Ql
L) L1 n

is TP, since Q; = [Q(i, J)];, je n+ I8 TP, (Q € TP, implies Q, € TP,). Now as an
induction hypothesis assume that

l
Yp—1
l
Vn

We have shown that this is true for n = 1,2. Since Pt is TP, and P is a
transition probability matrix, one may verify that t~'Pt > 0. Observe that

t e TP,
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t~'Pt is a submatrix of t~'Pt. Hence t "'P;t > 0, and therefore from Lemma 2.1

l
L
l

Yn+1

is TP,. Observe that this TP, property implies

P{X!,,2k+1} P{X!,, >k}
P(Xlzk+1) = PX!>k)

Combining (3.3) and (3.4) one sees that

(3.5) X,..=2, X, n=0,1,.

Since >, implies stochastic ordering and Q(i, 1) is mcreasmg in i, one has from
(3.2) and (3.5), rp(n) is decreasingin n € N + .0

l
=n—1

t= Plt

=n

(3.4)

k=1,2,....

REMARK 3.2. It is known that if P is TP,, then T has log-convex probability
mass function which implies T € DFR [Assaf, Shaked and Shanthikumar (1985)].
However, our condition Q is TP, is weaker since P € TP, implies Q'is TP, and
not necessarily in the reverse direction.

REMARK 3.3. Let T} = (min[n: X, <k — ]|X0— Rk}, k>1.
Considering a modification of X such that its states {O 1 — 1} are lumped
into one absorbing state, from Theorem 3.1 one sees that Q € TP, implies
T; € DFR.

Next consider an absorbing, right-continuous continuous-time Markov chain
Y = {Y(¢), t >0} with state space N, where 0 is the absorbing state. Let
k= [1(3, J)]; je N be the transition-rate matrix of Y [u(i, j) is the transition
rate from state i to state j],

o0
k= E”’ij’ D, = diag{po, py--- },
Jj=0

(3.6) T* = {inf[¢: Y(¢£) = 0, ¢ > 0]|Y(0) = 1}.
Define p* = sup{p;, i = 0,1,...}. Then using uniformization [cf. Keilson (1979),

Chapter 2 or Assaf, Shaked and Shanthikumar (1985), Section 3] one has from
Theorem 3.1

COROLLARY 3.4. If there exists a \, p* < X\ < o0, such that
[I + (ll' - D;L)/A]t
is TP,, then T* € DFR.

We now present some applications of the above results. Let {Z,, n = 1,2,... }
be a sequence of i.i.d. random variables with support N + and K be a geometric
random variable with P{K =k} =(1 —p)*~!p, ke N+. {Z,) and K are
mutually independent.
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THEOREM 3.5. Z, € DFR implies Z* = LX_,Z, € DFR.

ProoOF. Let X be a temporally homogeneous Markov chain with state space
N and transition probability matrix P, where P(0,0) = 1, P(i, i + 1) = 1 — rz(3),
P(i,1) = (1 — p)ry(i), P(i,0) = pry(i), i € N + and all other entries are zero.
ry(i) = P{Z, = i|Z, > i} is the failure rate of Z,. Let T be as defined in (3.1) and
define

(3.7) T, = {min[n: X, <1,n=1,2,... ]| X, =1}.
Simple calculation shows that

Pt = 1) = T1 (- ra)r(h)

=P(Z,=k), k=12,....

It can also be verified that P{X; =1} = (1 — p) and P{X, = 0} = p. Since
state 0 is absorbing, employmg the Markov property of X, (3.8) and the fact that
T, is a stopping time of X, it is not hard to see that

(3 .9) T =d Z* .

Computing Q one sees that @(i,0) =1, i € N, Q(i,1) = 1 — pry(i), QQ, j) =
1 —r (i),2 <j < i i € N+ and all other entries are zero. In this case Q € TP,
as long as r,(i) is decreasing in i € N + . The required result now follows from
(3.9) and Theorem 3.1. O

(3.8)

Suppose {W,, n = 1,2,...} is a sequence of i.i.d. continuous random variables
with support [0, c0) and surv1val functlon F, and K is a geometric random
variable with P(K = k} = (1 — p)* " 'p, k= 1,2,... . {W,} and K are mutually
independent. Then approximating W, by a sequenoe of discrete random vari-
ables that converges in distribution to W, one easily obtains from Theorem 3.5

COROLLARY 3.6. W, € DFR implies W* = ¥X_\W, € DFR.

REMARK 3.7. Szekli (1986) shows that W* has convex survival function (say
F*). However, W* € DFR is equivalent to that F* is log-convex: a stronger
property than convexity.

4. Concave renewal functions. Consider a discrete-time renewal process
with the inter-renewal time having the first-passage time distribution of X from
state 1 to state 0. Let y(n) be the probability that a renewal occurs at time
n=1,2,... (v is the renewal density). Then the expected number of renewals
M(n) during {1,2,..., n} is equal to X}_,y(k) (M is the renewal function.)

THEOREM 4.1. t71Q > 0 implies y(n) is decreasing inn € N + (i.e., M is
concave on N +).
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ProoF. Let X* = {X* n=0,1,...} be a modification of X such that as
soon as X reaches 0 it is placed back to state 1 (representing a renewal). Then
Q*(, j)=€QG,j), ieN+, j=23,..., and @*(j,1)=1, iEN+. So
t71Q > 0 implies t71Q* > 0 and therefore X* is stochastically monotone.
Specifically, { X *| X = 1} >,, {X,*.,|1X* =1}, n = 1,2,... (note that the state
space of X* is N + ). Then the observation that

v(n) =1- E{Q(X;:,,1)}
and that Q(i, 1) is increasing in i leads to the desired conclusion. O

We will next see that for inter-renewal times with a discrete distribution, this
distribution need not be DFR for the renewal function to be concave. This will

be achieved by showing that t~!Q > 0 is not sufficient for the DFR property
of T.

COUNTEREXAMPLE 4.2. Consider the first-passage time T' [defined in (3.1)]
of a Markov chain with transition probability matrix

1 0 O
p=|% 0 }
0 i i
Then
1 0 O
Q=|1 & 1%
11 3

and t71Q > 0. So the renewal density is decreasing (Theorem 4.1). Computing
one gets rp(1) = 2; rp(2) = 0; r;(3) = &. So T is not DFR. Then one sees that
in the discrete-time case the DFR property of inter-renewal times is sufficient but
not necessary for a concave renewal function.

We next turn our attention to the continuous-time case. The inter-renewal
times have the first-passage time distribution of Y from state 1 to state 0. y and
M are the renewal density and renewal function, respectively, of the renewal
process. Similar to the discrete-time case one has

THEOREM 4.3. Y is stochastically monotone implies y(t) is decreasing in
t € [0, o0) [i.e., M is concave on [0, c0)].

REMARK 4.4. An interesting consequence of Theorem 4.3 and the conjecture
of Brown (1981), if true, is that the first-passage time T™ from state 1 to state 0
of a stochastically monotone Markov process Y with state space N is DFR.

5. Application in queueing. Consider a GI/G/1 queue at which customers
arrive according to a renewal process with rate A. The service times form a
sequence of i.i.d. continuous random variables with a common distribution
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function F and mean E[S]. The arrival process and service times are mutually
independent. We will first consider an M/G /1 queue.

THEOREM 5.1. The number of customers served during a busy period of an
M/G/1 queue with IFR service times is DFR.

PrOOF. Let X be the number of customers in the M/G/1 queueing system
just after the nth customer departure. Then X = {X,, n=0,1,...} is a
temporally homogeneous Markov chain with transition probabilities P(z =
g(j+1—-1i),ie N+; PO, j)=g(Jj), j< N, where

0, E=—-1,-2,...,

g(k) = f°° e M(Ae)*
o k!

[cf. Ross (1983)]. Consider a modification X of X such that state 0 is absorbing
in X [ie., P(i, j)= P(i, j),ie N+, je N and P(0,0) = 1]. Then if T is as
defined in (3.1), it is the number of customers served during the first busy
period. Consider Q(i, )) = G(j+1—-1i), i,j€ N+ [@(0,0) =1, O, j) =0,
JEN+],

dF(t), k=0,1,..

1, k=-1,-2,...,
Gk)=( Y1), Ek=01,...
l=Fk

It is known that if F(¢+ x)/F(t) is decreasing in ¢ (ie., F is IFR), then
G(n + k)/G(k) is decreasing in k [Block and Savits (1980)]. This observation
leads to a straightforward verification that Q € TP,. The DFR property of T
now follows from Theorem 3.1. O

Let H be the stationary distribution function of the waiting time in an
M/G/1 queue with a server utilization p = AE[S] < 1. It is well known that
[cf. Ross (1982)]

H(t)=(1-p)+p(1 - p)ki " TIFER(t),

where F§P) is the k-fold convention of Fj, with itself and Fj is the distribution
function of the stationary residual life of the service times [ie., Fg(t) =
(1/E[S])/{Q — F(x)) dx]. Observe that H is a mixture of a mass at the origin
and a geometric compound of Fy. Since F is IMRL implies F is DFR from
Corollary 3.6, it is not hard to see

THEOREM 5.2. The stationary waiting time in an M /G /1 queue with IMRL
service times is DFR.

Next we will look at GI/G/1 queues. Let H be the staticn.cy distribution
function of the waiting time in a GI/G/1 queue with server utilization p =
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AE[S] < 1. Then

H(t) = (1- a) + a(l — a) ¥, a*~'F(2),

k=1

where a = 1 — H(0) and F), is obtained from F and the distribution function of
the inter-arrival times [cf. Feller (1971)]. Szekli (1986) shows that if F is DFR,
then F,, is also DFR [see Lemma 3.2 of Szekli (1986)]. It is then clear from
Corollary 3.6 that one has '

THEOREM 5.3. The stationary waiting time in a G1/G/1 queue with DFR
service times is DFR.
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