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BOUNDARY CROSSING PROBLEMS FOR SAMPLE MEANS!

BY TzE LEUNG LAl

Stanford University

Motivated by several classical sequential decision problems, we study
herein the following type of boundary crossing problems for certain non-
linear functions of sample means. Let X, X,,... be iid. random vectors
whose common density belongs to the k-dimensional exponential family
h,(x) = exp{0’x — \[:(0)} with respect to some nondegenerate measure v.
Let X, = (X, + X,)/n, 0, = (v¥)"XX,), and let I(9,)) =
E, log{h,(Xl)/h,‘(Xl)} (= Kullback—Lelbler information number). Consider
stopping times of the form

T,(\) = inf{n: I(§,,A) > n""%g(cn)}, c>0,

where g is a positive function such that g(¢) ~ alog ¢~! as ¢t —» 0. We obtain
asymptotic approximations to the moments E,T)(A) as ¢ — 0 that are
uniform in 6 and A with |\ — 8|2/c » o0. We also study the probablhty that
Xr -(n) lies in certain cones with vertex Vy(A). In particular, in the one-
dimensional case with A > 8, we consider boundary crossing probabilities of
the form

P{8,>Nand 1(8,,7) > n‘ig(cn) for some n} .

Asymptotic approximations (as ¢ — 0) to these boundary crossing probabili-
ties are obtained that are uniform in 6 and A with |A — 8|2/c - oo.

1. Introduction. In this paper we study 'a class of boundary crossing prob-
lems for sample means that are related to several classical problems in sequential
statistical methodology. Important advances in these statistical problems were
made during the past two decades for normally distributed random variables by
using continuous-time approximations and by analyzing the corresponding free
boundary problems involving the heat equation, but much remains to be done for
other distributions and towards a more basic understanding of the problems. The
analysis of these statistical decision problems has led us to a fundamental class
of boundary crossing problems for sample means from a multidimensional
exponential family. Qur main results are stated in Section 2, and the derivation
of these results is given in Sections 3 and 4, where some further results and
methods for boundary crossing problems are also presented.

We now review briefly some of these sequential decision problems in the
context of normal random variables to illustrate that they are intrinsically
related to a unifying class of boundary crossing problems for the Wiener process,
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376 T. L. LAI
which we describe in

LEMMA 1. Let a > 0 and let w(t), t > 0, be a Wiener process with drift
coefficient p. Let f be a nonnegative function on (0, o) such that

(1.1) () ~ (2atlogt™1)"?, ast— 0,

and

(1.2) supf(t)/t < oo, foralla> 0.
t>a

@) Let r(f)=inf{# |w(t)| > f(t)} and let A(f)=sup(t: |w(t)| < f(2)).
Then as |p| = oo,
(1.3) Er(f) ~ENf) ~ (2alogp®)/p?.

(ii) Suppose furthermore that there exist real numbers B and vy such that
(14)  f(t) = {2t(alogt™ — Bloglogt™ — v + 0(1))}1/2, ast— 0.

Then as p — oo,
P{w(t) < —f(t) for some t}

(1.5) = P_,(w(t) > f(t) for some t}
~ 77—1/267a1/2"“1"(2a)(2u2)—“(log Mz)ﬁ—“‘*‘l/z'

The special case a =1 of Lemma 1 was obtained by Lai, Robbins and
Siegmund (1983) in their analysis of the optimal stopping rule that minimizes
2 R(p; t)e”* dp, ¢> 0, among all stopping rules < 3 for the Wiener
process w(t), where

R(p; 1) =pE{r+ (1 - 27) <), iEp20,

= WE {7+ (1 = 27) )0y}, Hfp<O.

This optimal stopping problem arose as the normalized limit of Anscombe’s
(1963) model for the optimal determination of the length of a clinical trial
involving paired normal data to select the better of two treatments for N
patients. Earlier, by an asymptotic analysis of the associated free boundary
problem involving the heat equation, Chernoff and Petkau (1981) showed that
the optimal stopping rule is of the form 7( f ) in Lemma 1, where f(¢) = Ofor ¢ > ;
and

(1.7) f(¢) = {2¢(logt™* — 1loglog ¢~ — Llog 167 + 0(1))}1/2, ast— 0.

For the special case & = 1 in Lemma 1, the probability in (1.5) is of a smaller
order of magnitude than the expected sample size in (1.3) only when 8 < 2; in
this case, by (1.6),

R(p; 7(f)) ~ (2logp?)/Ipl, as || = oo.
If B> 2, then the probability in (1.5) is of a larger order of magnitude than

(1.6)
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Es(f)and

R(p; 7(f)) ~ e"(log p2)P % /(20" 2|u)), as |p| - oo.

Thus, stopping boundaries with the asymptotic behavior (1.7), or more generally
(1.4) with B < 2, give an asymptotically optimal balance between the expected
sampling time (1.3) and the probability (1.5) of wrong decision, as noted by Lai,
Robbins and Siegmund (1983).

An important development in the subject of Bayes sequential tests of com-
posite hypotheses is Chernoff’s (1961, 1965) pioneering work on testing the sign
of a normal mean. A renormalization of the original problem led to the continu-
ous-time optimal stopping problem of minimizing [*_R(p; 7) dp among all
stopping rules for the Wiener process w(¢), where

R(p; ) = EI‘{’T + pI(w(,)<0)}, ifu>0,

(1.8) :
= p,{T + |""|I(w(f)>0)}’ lfﬂ <O0.

The optimal stopping rule is of the form 7( ) in Lemma 1, where
(1.9) f(t) = {3t[log t™* — (log8)/3 + 0(1)]} "%, as¢ -0,

[cf. Chernoff (1965)]. Note that in Lemma 1, || times the probability in (1.5) is
of smaller (larger) order of magnitude than Er(f) if 1 — 2a <(>) -2, or
equivalently, if a > (<)2. When a = 2, |p| times the probability in (1.5) is of
smaller (larger) order of magnitude than E(f) if B < (>)2. The Bayes stop-
ping boundary (1.9) corresponds to a = 2 and B8 = 0.

We can prove Lemma 1 by using the same argument as the proof of the
special case a = 1 given by Lai, Robbins and Siegmund (1983), pages 57-58. The
argument is based on an asymptotic formula of Jennen and Lerche (1981) on the
first exit density of the Wiener process through a moving boundary. While these
results for the Wiener process can be applied to sums of i.i.d. normal N(4,1)
random variables X, X,,... in the sequential decision problems via the
space—-time transformation

n
(1.10) t= cn, w(t) = c1/2 ZXi’ ” = c—l/zo’
1

their extensions to nonnormal random variables require a different and more
general approach, which will be presented in Sections 3 and 4. This approach can
be applied not only to the Wiener process but also to sample sums from an
exponential family and can be easily generalized to higher dimensions, as will be
described in the next section.

2. Main results. In this section we provide a useful analog of Lemma 1 for
sample sums from the Koopman-Darmois (exponential) family of distributions
and also generalize the result to the multidimensional case. Let X, X;, X,,...
be iid. random vectors whose common density (with respect to some
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nondegenerate measure v) belongs to the k-dimensional exponential family
(2) ho(x) = exp(8'x — ¥(9)},

where 0 = (0,,...,0,), x = (x4,...,x,) and ' denotes the transpose of a vector.
Then E,X = vy(0), Cov,X = v%)(8), and the Kullback-Leibler information
number is given by

1(6,A) = Eqlog{hyo(X)/h\(X)}
(2.2) = (60 -A)yvy(8) — (¥(8) —¢(N))
= fol(r — &)A=Y (VN (A + (1 — £)8)} (A — 0) de.

Here and in the sequel, we use the notation vy to denote the gradient
vector (dy/d6,,...,dy/d30,Y and V2% to denote the Hessian matrix

(0%/30,36)),.; ;. Moreover,let S,=X, + -+ +X,, X, = S,/n, and let
i YV N<i, j<sk n
0= Int{ﬂ: fexp(l)'x) dr(x) < oo}

be the interior (Int) of the natural parameter space, which is a convex subset of
R*. Noting that vy is a diffeomorphism on ©, the maximum likelihood estimate
8, of 0 at stage n is given by

(2.3) b,=(vy) (X,), if X, e vy(0).

To begin with, consider the case of one-dimensional normal random variables
with mean 6 and variance 1. Introducing the transformation (1.10), we obtain
from Lemma 1 its discrete-time analog in

CoROLLARY 1. Let X,, X,,... be i.i.d. normal random variables with mean
0 and variance 1. Let f be a nonnegative function on (0, o) satisfying (1.1) and
(1.2). For ¢ > 0, define T, = inf{n: ¢'/%|S,| = f(cn)} and L, = sup{n: ¢*/?|S,| <
f(en)}. Let 8, < A, be positive numbers such that :

8,20 and §/c— oo,
A,-> o0 and A,=o(logec|), asc— 0.

(i) Asc— 0, E,T, ~ E,L, ~ 2a0~2log(6%/c) uniformly in 0 with §, < 6% <
A..
(i) Let g(t) = f %(t)/2t. Suppose furthermore that for some B,

(2.5) g(t) > alogt~! — Bloglogt™t, ast— 0.
Then as ¢ — 0,

(26) Po{c/%S, < ~f(cn) for some n) = O((c/0%)" {log(6%/c)}" "),
uniformly in 6 > 8}/2.

(2.4)

In Corollary 1, the restriction 82 > §, ensures that 82/c » « as ¢ — 0 by
(2.4), while the restriction 82 < A, ensures that (log c'02)/02 - o by (24).
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Defining 7(f) and A(f) as in Lemma 1, note that by (1.10),
c(f)<sT,<L,+1<c ]A(f)+1,

and therefore Corollary 1(i) follows from Lemma 1(i). In view of (1.10),
Py{c'/?S, < —f(cn) for some n} < P{w(t) < —f(t) for some ¢}, so Corollary
1(ii) follows from Lemma 1(ii).

We now extend these results from the normal case to the exponential family
of distributions (2.1). Note that for the normal distribution of Corollary 1,
¥(0) = 62/2 and the Kullback-Leibler information number is glven by I(8, \) =
(8 — A)?/2. The maximum likelihood estimate of § at stage n is X,. Moreover,

c/’S, < —f(en) ® X, <0 and I(X,,0) = n"'g(cn),

where g(t) = f %(t)/2t. This equivalence provides a basic idea in the generaliza-
tion of Corollary 1 to the exponential family. Since v %}(8) = Cov,X need no
longer be constant as in the normal case, we will restrict 8 to a convex subset A
of © such that

inf Auio(V(0)) >0, sup Apu(V(0)) < o,
GEAP fcA

(2.7) g

and v % is uniformly continuous on A, for some p > 0,

where A, = {x € R*: infy 4]x — 0] < p} denotes the p-neighborhood of A, and
A mins» Amex denote the minimum and maximum eigenvalues of a symmetric
matrix. Note that in the case of a (nonsingular) normal distribution, we can take
A =0O(= R*=A)). In analogy with T, and L, of Corollary 1, we define for
c>0and A €0,

(2.8) T(A) = inf{n: 6,eA,and I1(4,,A) > n- g(cn)}

29) L(\) = sup({n: ,€A,and 1(6,,\) < n- g(cn)}
)

u{n: X, & vy(4,)}),

where 9,, = (V¢) XX,), as given by (2.3).

First consider the one-dimensional exponential family. Here vy = dy/d#,
d*/d0? = A, (V) = A, (V3), and the convex set A is an interval. The
quantities ¢, and I(8, \) are basic ingredients in the following generalization of
Lemma 1 and Corollary 1 to the one-dimensional exponential family. Letting
&(t) = f%(t)/2t, note that f satisfies (1.1) and (1.2) iff

(2.10) g(t) ~alogt™, ast— 0,
(2.11) supg(t)/t < o, forall a > 0.
t2a

THEOREM 1. Let X,, X,,... be i.i.d. random variables having common
density hy(x) = exp(0x — (0)) with respect to some nondegenerate measure v.
Let A be a subinterval of the natural parameter space © such that (2.7) holds.
Let a > 0 and let g be a nonnegative function on (0, ) satisfying (2.10) and



380 T.L.LAI

(2.11). For ¢ > 0 and \ € O, define T(\), L(\) by (2.8) and (2.9), where §n is
given by (2.3) and I(8, \) is the Kullback-Leibler information number defined in
(2.2). Let 8, < A, be positive numbers satisfying (2.4).

(i) For every fixedr > 0, as ¢ — 0,
(2.12) E,TI(A) ~ E,Li(A) ~ {alog(c™*A — 612)/1(8,))},
uniformly in § €A and A€ A, with 5, <\ —0?<A_. In fact, L(\) >
T(\) — 1, and for every fixed 0 <9 <1,
(2.13) Py{T(A) < (1 — m)alog(c™ "]\ — %) /1(8, 1)} - 0,
(2.14) Py{L(A) = (1 + n)alog(c™*]\ — 6%)/1(6,A)} = O,
as ¢ = 0, uniformly in € A and A\ € A, such that 5. < ]\ — 0> < A..
(ii) Suppose that condition (2.10) is strengthened into the asymptotic expan-
sion
(2.15) g(t) = alogt™* — Bloglogt™ — vy +0(1), ast—0,
where B and y are real constants. Then as 8 |0 and c |0 such that 8%/c — o
but 8logc — 0,

Po{ﬁn €A,,0,>0+8andI(8,,0+8)=n""g(cn) for some n}

p? n =
(216) ~Pf,€A,,8,<0—-8andI(8,,0 - 5) = n"'g(cn) for some n}

B—a+1/2

~ 71/ 13/2=aT(2a)(29"(0)82/c) ~*{log(8%/c)) ,
uniformly in 6 € A. [ Note that " (0)6% ~ 21(0, 6 + 8) uniformly in 6 € A.]
(iii) Suppose that condition (2.10) is replaced by
(2.17) g(t) > alogt™ — Bloglogt™!, ast— 0,
for some real constant B. Define the interval
J(0) =[N, 00), if A> 0,

(2.18)
= (—o0,A], i A<8.
Then as ¢ — 0,
(2.19) P,,{én eJdy(0)NA, and1(4,, A) = n~'g(cn) for some n}
2.19

= O({e™'r - 012) "“{log(c ™A — 82)}* 77,
uniformly in 0 € A and A\ € A with |\ — 0% > 6..
We now generalize Theorem 1 to the k-dimensional exponential family. First

consider the boundary crossing probabilities (2.16) and (2.19). A multivariate
extension of the event {#, € J)(8)} has the form

(2.20) (X, - v¥(A) € g,(A - 0)},
where 0 < p <1 and
(2.21) %(y)={ue Rk w'y > plu| |y}
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is a symmetric cone with vertex 0 and subtending an angle cos~'p about an axis
in the direction of the vector y. Note that if M is a positive definite symmetric
matrix and r = A, (M)/A ;. (M), then

(2.22) Mz € %, (M 'y) = x€ %,(y) = Mx € %,-,(Mly).

In the one-dimensional case, the cone %,(y) with 0 <p <1 reduces to the
half-interval [0,00) or (— 0, 0] according as Y>0or y<0, and therefore the
event (2.20) is the same as {(vy) Y(X, )= 8,) € J)(8)}. This observation and
(2.22) lead to the following multivariate generahzatlon of parts (ii) and (iii) of
Theorem 1.

THEOREM 2. Let X,, X,,... bei.i.d. random vectors whose common density
(with respect to some nondegenerate measure v) belongs to the k-dimensional
exponential family (2.1). Let A be a convex subset of the natural parameter
space such that (2.7) holds. Let a > 0 and let g be a nonnegative function on
(0, ) satisfying (2.11) and (2.17). Fix 0 < p < 1, and define the cone () for
¥ € R* by (2.21). Let I(6,\) be the Kullback-Leibler information “number
defined in (2.2) and let 0 be the maximum likelihood estimate defined in (2.3).
Let {6.: ¢ > 0} be a set of positive numbers satisfying (2.4).

(i) Asc -0,
R{f. €A, X, - v¥(A) € €,(\ - 6) and
(2.23) 1(8,, 1) = n~'g(cn) for somen > 1}
= O({c™A - 82} *{log(c™ 1A — B12)) "),

uniformly in 6 € A and A € A with |\ — 0|® > §,.

(ii) Let k > 2. Suppose that condition (2.17) is strengthened into the asymp-
totic expansion (2.15). Then as ¢ = 0 and A — 0 such that |\ — 0)%/c - oo but
A — 8|log c = 0,

B{b, < 4, (v¥(0) (X, vm))e%’((vw(a))‘”(x—o))

andI(@n, )\) > n"'g(cn) for somen > 1}

(2.24) .
~ n Vit (2a){ [26724(1 — ) di/T(3(k - )
p

x {2¢7M(A — 6Yv(8)(A — 8)} *(log(c A - 612)}7 77,
uniformly in 0 € A.

The proof of Theorem 2 involves an asymptotic analysis of certain mixtures
of likelihood ratios and is given in Section 4. In Section 3, we make use of
certain uniform strong laws to prove the following multivariate generalization of
Theorem 1(i).
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THEOREM 3. Let a> 0 and let g be a nonnegative function on (0, )
satisfying (2.10) and (2.11). Let X, X,,..., A,8,,1(0,\) be the same as in
Theorem 2. For ¢ > 0 and A\ € ©, define T(\), L(\) by (2.8) and (2.9). Let
8. < A, be positive numbers satisfying (2.4). Fix r >0 and 0 <7 < 1. Then
(2.12), (2.13) and (2.14) still hold (in the present k-dimensional case) uniformly
in@eAand A€ A, such that §,< ]\ — 02 < A_.

Statistical applications of the above theorems are presented in Lai (1987a, b).
The uniformity of the convergence in these theorems is of particular interest in
these applications since it allows us to integrate the asymptotic relations (2.12),
(2.19) and (2.23) with respect to (prior) measures on # in evaluating the Bayes
risks. Moreover, the asymptotic relations (2.12) (with r = 1) and (2.19) [or (2.23)
in the multidimensional case] provide the correct balance between the probabil-
ity of wrong decision and the expected duration of sampling, for stopping
boundaries of the form I(6,, A\) > n~'g(cn).

3. Uniform strong laws and the proof of Theorem 3. Since E,X =
v{(9), it follows from (2.1) that for ¢ € R,
(81)  Eeexp(#(X - E,X)) = exp(4(8 + ¢) — v(9) — '9(6)}.
In view of (2.7) and (3.1),

(3.2) sup sup Ezexp{t'(X — E4X)} < o,
0e€A |t|<p
which implies that for all r > 0,
(3.3) sup Ej|X — E,X|” < .
feA

The uniform L, -boundedness (3.3) leads to the following two uniform strong
laws, which we use for the proof of Theorem 3.

LEMMA 2 [Chow and Lai (1975)]. For every r > 1, there exists an absolute
constant C, such that for all i.i.d. k-dimensional random vectors X, X,, X,,...
with EX = 0 and E|X|"*! < o0, and for all ¢ > 0,

E[sup{n: |n"'S,| > e}] < C{(e2E|1X1?)" + e CTOE| X,

LEmmA 3. Let X, X, X,,... be i.i.d. (one-dimensional) random variables
with a common distribution function F € & such that EzX =0 and
Supg c #Ep|X|” < 0o for some r > 2. Then for every fixed £ > 0, as ¢ |0,

(3.4) sup PF{|Sn| > £[n log((cn)_l)]l/2 for some n < nc} -0,
Fex
where n, are positive integers such that n, - oo and cn,— 0 as c | 0.

ProOF. Since E;X = 0 and supy < #EfX|” < oo,
(3.5) EgS,|" = 0(n'/?), uniformlyin F € #.
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Let m_ = [logn_]. Then
PF{|Sn| > €[n log((cn)_l)]l/2 for some n < nc}

m

<X PF{ max 18] = €[eklog((0e’°)_l)]l/2}

k=0 ek <j<et*!

k=0

ol ¥ {log(e-’*/c)}"”) [by (3.5)]

=0 % {log(1/c) —m, +J'}_'/2)

Jj=0

me

=0| ) {log((cnc)_l) +j}_r/2),

Jj=0

uniformly in F € &#. Since r/2 > 1 and cn, — 0, (3.4) follows. O

PRrOOF OF THEOREM 3. Let

D= sup A (v¥(8)), d=1%inf A (VH(0)).
beA, OEA‘\7
Then
(3.6a) dlf — A < |vy(8) — v¢(A)| < DJ6 — A
and
(3.6b) d|d — N2 <I(6,\) <D|§ — A%, forallf,A€A,,
by (2.2). We first show that as ¢ = 0,
(3.7) P{T(\) < idD 'alog(c™'|0 — A|?)/1(6,))} = 0,

uniformly in § € A and A € A, with |0 — A > §,. .
Let 6 € A and A € A, with |§ — A|?> > §,. By (3.6b), if §, € A, then

- I(6,,A\) < D|§, — N\ < 2D{|6, - 61> + d"1(8, )},
and therefore by (2.10), as ¢ — 0,
Py{T.\) < {dD alog(c |8 — A|*)/1(6,\)}
< Po{én € A, and 2D, — 6|* > n~'g(cn) /3 for some
(3.8) n < 1dD 'alog(c™|8 — N|?)/1(8,7)}

4Ds,

where 0 < ¢ < d(a/6D)"?; the last inequality in (3.8) follows from (3.6a) and
(2.10). From (3.3), Lemma 3 and (3.8), (3.7) follows.

-1
< Po{IS,, - nvy(0)| = €[nlog((cn)‘1)]1/2 for some n < M},
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Let 0 < 9 < 1. Take a small positive constant ¢ < 1 (to be specified later) such
that for all x, y € A, with |x — y]® <0,

(3.9) 1-dn<I(x,5)/{3(x - 2)v(3)(x - y)} <1+ .

We shall consider the two cases 8, < |0 —Al2<e? and e2< |0 —A2<A,
separately. Let f(8, ) = alog(c |0 — A|?)/I(0,\), m* = 1dD7'f(8,)), n =
@ +n)f(6,N), n =@ —n)f(0,\). We assume that 7 is sufficiently small so
that 1 — n > 1dD™%.

CaSE 1. §,< |0 — A2 <¢% We first note by (2.10) that for m* <i <n,
i"g(ci) < 5Dd" (8, \), provided that e and c are sufficiently small. Since
I(8, \) < D|6 — \|? < De? by (3.6b), it follows from (3.9) that for m* <i<n
(and with ¢ and c sufficiently small)

10, — 012< ei~'g(ci)(< 5D e2) =0, — A2 < ¢, €A,
= 1(8,7) < 3(1+ n)(d,-\)'v 20(A)(§;— A) and §; € 4,.

Noting that ‘

(3.11) (8, = AY9(A)(8,~ ) < DId, - 612 + (6 - \yYvH(A)(8 - A)

(3.10)

+2D|6; - 6|16 - Al

and that 1n(6 — AYVH(AX0 —A) <1 — {n)"'nl(0,\) by (3.9), we obtain
from (3.10) that for m* <i < n,

(3.12) 10, — 012 < ei'g(ci) = iI(B,,\) < (1 — 3n)g(ci),

provided that ¢ and c are sufficiently small. From (3.12), it then follows that for
sufficiently small ¢, as ¢ — 0,

Py{m* < T(\) < n}
< P,{@i € A, and |, — 8] > ei~'g(ci) for some m* < i < r_z}

313) < B{IS:— ivy(0)l = 3d[eai 1og((ci)‘1)]‘/ ’
for some i < 57 'log(c } [by (3.6a) and (2.10)]

— 0, uniformlyinf € Aand A € A, with§, < |6 — A2 < €,

by Lemma 3. From (3.7) and (3.13), the desired conclusion (2.13) on T,() follows.
Let L = sup{n: |X, — v{(0)| = ¢|6 — A|}. By (3.3) and Lemma 2, for every
r > 1, there exists M, > 0 such that

(3.14) E,L" < M/(e]0 —A|)~ %", forall A, € A with |§ — A\|? < ¢Z.

In view of (2.7), we can choose ¢ sufficiently small such that for every 6 € A the
sphere {x: |x — V{(0)| <&} is contained in V{(A,), as can be shown by
arguments similar to those used to prove the inverse function theorem [cf.
Spivak (1965), pages 35-38]. For n> L, |X, — V{(8)| <eld — A| < ¢ and
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therefore X, € V{(A,); moreover, by (3.6a),
(3.15) 10, — 012 <d 23X, — v(0) < d 2?0 — A\|*(< d™2*).
Hence, if ¢ is sufficiently small, an argument similar to (3.10) and (3.11) then
shows that
n>L=1(8,,A) > 1(1 - 3n)(6, - A)v%(A)(6,—\)and §, € A,
= I(6,,A) = (1 - 4n)I(6,A) and 4, € A,.
From (3.16) and (2.10), (2.11), it follows that by choosing e sufficiently small,
(3.17) L (M) <max{L + 1,n},
and therefore
(3.18) P{L(A) 27} <P{L+127}<E(L+1)/A—>0, asc—0,

by (3.14), umformly in €A and A € A, with §, < |0 — A|® < ¢%. This proves
(2.14). In view of (3.14) and (3.17), the des1red conclusmn (2.12) follows from
(2.13), (2.14) and the fact that T(A) — 1 < L(A).

CasE 2. e2< |0 —A2<A,. In this case, instead of L defined above, we
consider

(3.16)

L = sup{n: |X, — v¢(9) = €%}.
By (3.3) and Lemma 2, for every r > 1, there exists M, > 0 uch that E,L'
M=% for all § € A. For n> L, |X, — v{(0)| < & and therefore 6,4,
moreover, by (3.6a), |0, — 0] <d !X, — v{(8)| <d 'e* while |0 — }\| > e
Hence, if ¢ is sufficiently small, then it follows from (2.2) that

n>L= 9;; €A,
(1 - 1n)I(0,A) <1(8,,A) < (1 + $n)I(6, 7).

Therefore (3.17) and (3.18) still hold in this case with L replacing L, noting that
by (3.6b)

(3.20) log(c'|0 — A\|2)/I(8,A) = D 'log(c ™0 — A|*) /10 — A|* = o,

as ¢ — 0, uniformly in § € A and A € A, with ¢® < |0 — A> <A, by (24).
Moreover, by (3.19) and (3.20),

(3.21) P{m* < T(\) < n} < PB{L > m*} < E,L/m* >0,
as ¢ — 0, uniformlyind € Aand A€ A, with 2 < |0 —A?<A.O

(3.19)

4. Boundary crossing probabilities and the proof of Theorems 1 and 2.
To highlight the basic ideas in the analysis of the boundary crossing probabilities
in Theorems 1 and 2, we focus on the one-dimensional case (Theorem 1) for
which the notation is considerably simpler, and then briefly indicate how the
methods can be extended to the multidimensional setting of Theorem 2. In the
one-dimensional case, we only consider boundary crossing probabilities of
the form

(41) P{6,€A,,8,20+8and 1(d,,0+8) > n~'g(cn) for some n > 1},

p? 'n
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with § > 0, as an obvious modification of the argument can be used to study
P,{@n €A, 6,<6—58and I(@n,0 - 8) > n"'g(cn) for some n > 1}.

We first outline the main steps in the asymptotic analysis of (4.1). Introduce
the stopping time
(42) N=intf{n:§,€4,,0,>0+5and I(4,,0 +8) > n"'g(cn)),
(inf @ = o0), and note that (4.1) can be expressed as 2 ,P){b' < N < bi*!} for
every b > 1. Let
(4.3) B(0,r)= {x:|x -0 <r},

1/2

(4.4) e, = {Kn‘llog((cn)_l)} ,

where K is some sufficiently large number as specified in Lemma 4. For certain
values of m (such that e, is much larger than &), we make use of Lemma 4 to
reduce the analysis of P){m < N < bm} to that of Py(E,,), where

(4.5) E,={m<N<bm}n {fycB(6+8,2e,)}.

Letting A = @ + §, a key idea in the analysis of Py(E,,) is the representation
N

@) AED) = [ {TT(h(X)/AED L0 0,) d@s

where the measure @, is defined by

(4.7) Q,(E) = /A sos )P,‘(E)du, for all events E,
and
(48) Ln = [ TT(h(X)/h(X) du.

A,NB(\, r)i=1

The representation (4.6) of P(E,,) follows from the (Radon-Nikodym) change-
of-measure formula

B(E,) = fE (dP,/dP,)(dP,/dQ,,) dQ,,.

For other values of m, we obtain bounds on Pj{m < N < bm} by first finding
bounds for the likelihood ratio ITN.,A4(X,)/A\(X;) (With A = @ + &) in the
representation

(49)  P{m<N<bm)= [ I (ko(X,)/h(X.)) dP,,

{m<N<bm}i=1

and then applying Lemma 4 to reduce the analysis of P\{m < N < bm} to that
of P\(E,,), which we estimate by using the representation

(4.10) P(E,) = /E LA, 4e,) dQ,,.
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A basic step in the analysis of the integrals in (4.6) and (4.10) is the
approximation, in Lemma 6, of the mixture (4.8) of likelihood ratios by some
multiple of n~1/2 xp(nI(0 A)). This involves the classical ideas of the Laplace
method for the asymptotic evaluation of an integral. Making use of Lemma 6
and the limiting behavior of the overshoot NI(f,0 + 8) — g(cN) given by
Lemma 5, Lemmas 7 and 8 provide bounds and estimates of P,{m < N < bm},
which are then used to prove the desired conclusions for the boundary crossing
probability (4.1).

The same notation and assumptions as Theorem 1 will be used in Lemmas 6-8
below. Lemmas 4 and 5, however, are given in the more general multidimensional
context of Theorem 2.

LEMMA 4. With the same notation and assumptions as in Theorem 2, given
a > 0, there exists K > 0 such that

(411) Po{én € A, and |, — 0| > Kn~'|log cn| for some n < m}
4.11

= O((cm)2“), ascm - 0,
uniformlyin 6 € A, ,
PROOF. By (3.68), |0, — 0] < d"%|X, — vy(8)|? for 6,0, € A,. Let x, de-
note the jth component of x € R*. Since |X, — vy(0)|? < k maxlsjsk()_(n -

v¥(0))?, it suffices to show that there exists K sufficiently large such that for
every fixed j,

M 2
gop,,{ max (8, - nvy(8))? = Kd?2log((c2) )} = 0((c2")™),

as c2M - 0, umformly ingeA, , Asin (3. 1), the moment generating function
of (X — vy(9)); is given by

Egexp{u(X — vy(9));}
= exp{\p(al,...,aj_l,ﬂj + u,0j+1,...,0k) - y(0) - u(pr(ﬂ))j}-

Let 7, = (d?|log(cr)|)*/2. In view of (2.7), we can apply standard martingale and
exponential inequalities [cf. Chow and Teicher (1978)] to show that if K is
sufficiently large, then

sup P,{ max (S, nvy(6));> K"/}
bea, r<n<2r

< s {exp(~K"202)) (Epeso{r /0, (X = w(0)),))" = O((er)™),

sup P,{ max (nvy(8) - S,); > K1/2r1/2n,} = O((cr)2“),
0€A,, r<n<2r

as cr = 0. Hence the desired conclusion follows. O
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LEMMA 5. With the same notation and assumptions as in Theorem 2, as
m — oo and x — 0 such that |x|logm — 0,

(4.12) P{b, ¢ A, for somen > m} -0
and
(4.13) P{|n1(8,,0 + x) — (n — 1)I(,_,, 0 + x)|

> ¢ forsomem < n < m?} - 0,

for every & > 0, uniformlyin § € A, ,,.

ProoF. In view of (3.2), we can use an argument similar to that used in the
proof of Theorem 3 [in particular (3.19) and (3.21)] to prove (4.12). Moreover, it
follows from (3.2) that there exists K > 0 sufficiently large so that as m — oo,

o0

(4.14) > P{IX,- vy(8) =K logn} -0
and
(4.15) Y P{|S, — nvy(8)| = n**} > 0,

uniformly in 6 € A,. Suppose that A, 6, and §,_, belong to A,. Then by (2.2),

(4.16) n1(8,,A) = (n = D)I(8,_,, 1)

A

=1(8,_,,\) + n{1(6,,0,_.) + (6,_, - A)(v¥(4,) - vy(4,_,))).
Noting that vy(8,) = X,, it follows from (3.6a) and (3.6b) that
0y = A < 18 = N + d7YX,_, — vi(0)],
1(6,,6,_,) < Dd*X,- X,_,]%,
V‘P(én) - V‘P(én—l) = In - X—n—I,
X, — Xl < {1X, — V(0)] + X, — v¥(0)]}/(n - 1).
From (4.12) and (4.14)-(4.17), (4.13) follows. O

(4.17)

LEMMA 6. Let X,, X,,... bei.i.d. random variables having common density
hy(x) = exp(0x — Y(0)) with respect to some nondegenerate measure v. Let A be
a subinterval of the natural parameter space such that (2.7) holds. Define
B(0, r) by (4.3) and L, (A, r) by (4.8).

() There exists § > 0 such that foralln 21, A\ € A, ,, and r > n™/2,
(4.18) L,(A,7) 2 ¢n~V%exp(nI(d,,))), on{d,cA,nB(,r2).

(i) Let r, be positive numbers such that r,, > 0 but n'/*r, - o as n - oo.
Then as n — oo,

(4.19) L,(\, 1)~ (2'n'/n\p"()\))l/2exp(nI(én, )\)),
on {, e A, N B(A, r,/2)}, uniformly in A € A, ,.
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ProOF. Let A € A, , and assume that 0 €A, NB(A,r/2).Forue A, N
B(A, r), we obtain from Taylor’s expansmn of <p(u) =(u- MNX, — (\p(u) -
Y(A)) about the maximizing value u = 0 [with 4/(0 ) = X,] that

H (R (X;)/hN(X;)) = exp{(u = N)S, — n(¥(u) — ¢(7)))
(420) -1

= exp{nI(@ }\) — 1ny"(6*)(u-4 )2},

where 6,* lies between 0 and u and therefore belongs to A,. Letting # = min{r, p}
and D = supyc 4 4/’(0), it follows from (4.8) and (4.20) that

L, (A, 7r)> exp(nI(0n, )\))f exp(— 1Dnt?) dt,

proving (i). To prove (ii), note that B(A,r) C A, if r < p/2. For r = r,(— 0), it
follows from (4.8) and (4.20) that as n - oo,

(421) L, (A, r,)= exp(nI(ﬂn, A))fx 90 +rexp{ 11+ o(l))n¢'f(§n)t2} dt,

n~Th

where the o(1) term is uniform in A € 4, ,, in view of (2.7). Since |\ — b, <ry2,
(4.19) follows from (4.21). O

LeEMMA 7. With the same notation and assumptions as in Theorem 1(iii), let
8~> 0 and define N by (4.2). Let d= 21nf06A4/’(0), =supyc ¥ (),

= 1d(D 'a)/2. Then there exist positive constants B> 1> q such that if
cm < q,

Py{m < N < 2m}
< B(cm)“|log cm|f+1/% { —dmé? — d(mé?|log cm|)l/2}

for all 0 € A, with 6 + 6 € A, ,. Moreover, forallm>1 and for all € A,
wtth0+8€A

(4.23) Py{m < N < w0} < exp(—dmé?).

(4.22)

Proor. First note that

420 TT(ha(X)/hy.o( X)) = exp( ~05y ~ N($(8) = 4(0 + 2))

= exp{ —8N(Xy — ¢'(6 + 8)) — NI(6 + 8,0)}.

By the definition of N, X, = zp'(ﬁN) > y/(0 + 8). Since I(0 + 8,0) > dé? by
(3.6b), (4.23) follows from (4.9) (with A = 8 + &) and (4.24).
In view of (3.6a) and (3.6b),

s (En=vO+9)=d(ly-0-0)

> d?D"I(8y,0 + 8) > d2D"'N~'g(cN).
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From (4.24), (4.25), (2.17), and the fact that I(8 + 8, ) > d&2, it follows that on
the event {m < N < 2m},

N
(4.26) i-_l—ll(ho(Xi)/h0+8(Xi))
< exp{ —8m'/?(dD 'alog cm|) (1 + o(1)) — dm82},

as cm — 0, uniformly in 6 €A, and § + § € A,. In view of (4.9) and (4.26),
(4.22) will follow if it can be shown that as cm — 0,
) uniformlyin§ + 86 € 4, ,.

Since §N € A, it follows from Lemma 4 that
(4.28) Py,o{m <N <2m, 8y & B(8+8,2¢,)} = 0((cm)™),

uniformly in 6 + 8§ € A, ,, where ¢,, and B(A, r) are defined in (4.3) and (4.4).
Defining @,, by (4.7) (with A = 6 + §) and E,, by (4.5) (with b = 2), we obtain
by (4.10) and Lemma 6(i) that

Pys{m<N<2m,8,cB(6+9,2,)}

‘= 'P0+8(Em)

= [ L3Y(0 + 8,4¢,) dq,,
(4.29) Em
<¢! N'%xp(-g(cN)) dQ,,
(m<N<2m)
< 2¢7Y(2m)"*(2cm) log cm|ﬂf du,
A,NB(0+38,4¢,,)

where the last inequality follows from (2.17) and (4.7). Since B(8 + d,4¢,,) has
width 8(Km™'|log cm|)'/2, the desired conclusion (4.27) follows from (4.28) and
(4.29). O

LEMMA 8. With the same notation and assumptions as in Theorem 1(ii), let
b>1, 8 > 0, and define N by (4.2). Let

(4.30) m(c,8) = 1/{8%log(c~182)}.
Then as ¢ = 0 and 8 — 0 such that §2/c — oo but 8 log ¢ — 0,
P{b71m(c,8) < N < bm(c, ))

—a a e gwl/2 L
~ ,”.‘1/2e1a1/2—a(2¢11(0)82/c) (log 82/C)B +1/2 (;2:1:2’(:;)»1/232« 1p—s d?,
a

uniformly in 0 € A.

Proor. First note that cm(c, ) — 0 and log((cm(c, 8)) 1) ~ log(c'62). By
(44), epc,5 ~ K25 log(c™8%) > 0, 50 8 = 0(&,y, ). For simplicity, write
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m =m(c,8) and define E, as in (4.5). From Lemma 4 and the fact that
8 = o(e,,) and Oy € A, it follows that

(4.31) Py{m < N < bm, 6y & B(8 + 8,2¢,,)} = O((cm)™),
and therefore
(4.32) P{m < N < bm} = Py(E,,) + O((cm)™).

By (4.6) and Lemma 6(ii), as ¢ > 0 and 8 —» 0 such that §°/c - co and
dloge — 0,
N
(T
+ol 4y

uniformly in 8 € A, where @,, is defined in (4.7) with A = 8 + §. Let

U =6N(Xy— /(8 +8)) + NI(0 +8,0) + (NI(8y,0 + 8) — g(cN)).
Then by the definition of N,
(4.34) U>0, soe U<1.
Moreover, by (4.24), (4.33) and (4.34),

Py(E,) ~ (v(8)/27)" [ N'Vexp(~U - g(eN)) dQp,

(4.33) Py(E,) ~ (v"(8)/27)""* fE

m

}N1/2e—1v1(0~, 0+8) de,

(4.35)
~ (¥(8)/27)"*e"|log emiPec= [ N**'/%e"V dQ,,,
E,,

in view of (2.15). Since # € A and e, ~ K'/?5log(c"%8%) >0 as 8§ >0
and ¢— 0 such that 82/c > co and 8logc — 0, we can assume that
B(0 + §8,4¢,,) C A,, and therefore in view of (4.34) and the fact that 1 < N/m <
b on E,,, we obtain from (4.7) that

f Na+1/2e—UdQ
E, m
(4.36) ~ m**1/2§ log(c™162)

4K'/? a+l/2 _U
Xf {f (N/m) e dP0+8+t8103(c“82)} dt.
_sx2\’E,

Without loss of generality, we assume that K (in Lemma 4) is large enough so
that

(4.37) K > 2a/ inf §(x).

Let 0 <y (sufficiently small). An argument similar to the proof of Theorem 3
(Case 1) shows that as ¢ — 0 and 8 — 0 such that 82/c — oo but dlogc — 0,

P0+8+t8103(c“82){m <N <bm} -0, uniformlyinf € A,
(4.38) andin —4K'2 < ¢ < (2a/b97(8))"* — 7
or (2a/9"(0))/*+n<t<d4K2
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Moreover, uniformly in § € A and (2a/y"(0))"/2 > t > (2a/by"(8))'/2,

(4-39) P¢)+s+tslog(c—lsz){ ’I'V‘ - 2—2,,‘1—‘ < "12} -1,
m  t%"(0)

and we now make use of Lemma 5 to show also that

(4-40) Po+s+t81og(c-182){|U - 20/t < "I} -1

To prove (4.40), first note that (N — 1)I(,,_,,0 + 8) < g(cN)if by_, > 6 + 8
and 9, _, € A,. Moreover, an argument similar to (3.18) can be used to show
that

(4.41) P,,MHMOS(c_lsz){én < + & for some n > m/2} — 0.
From Lemma 5, (4.39) and (4.41), it then follows that
(4.42) Py sesropesy{ NI(By, 0 + 8) — g(cN) > n/3} - 0.

On (fy € A, N B(0 + 8,2¢,,)}, since Xy = ¢'(By) = V(0 + ),

(443) Xy —y/(8+8) ~y(8)(By — 0 - 8) ~ {297(0)1(dy,0 + )},

Since ¢, ~ K'/?5log(c™'6%) — 0, it then follows from (4.12), (4.37), (4.39) and
Lemma 4 that

(4.44) Py 1 5415 10g(c16%) {9 €A,NB(0+3, 2£m)} -1,

uniformly in § € A and (2a/Y"(0))/% > t > (2a/by"(0))/%. From (4.39),
(4.42)—(4.44) and (2.15), it then follows that
(445)  Pyisismiogeion{ION(Xy — /(0 + 8)) - 2"/t| <n/3} > 1.

From (4.42), (4.45) and the fact that m&% — 0, (4.40) follows.
In view of (4.34), (4.38)—(4.40) and (4.44), it follows from (4.36) that

f No+1/2, —UdQ

(4.46)

Y " 2a a+1/2
— matl/2 —152Y [@a/¥"(8)/? _
me+1/2§ log(c~182) f(za/ww»w ) exp(—2a/t) dt.

Using a change of variable s = 2a/¢ in (4.46), we obtain from (4.35) and (4.30)
that Py(E,,) is asymptotically equivalent to

a1V 27y1l/2-¢ a(2¢n(0)82) (log c—182)ﬁ a+l/2 (20‘6“’/(0))1/2 2a—1 o—5 ds.
Q2ay"(0))"?

A similar analysis of Pj{b~'m < N < m} then completes the proof. O
PrOOF OF THEOREM 1(iii). Take ¢ > 0 and define m = m(c, 8) as in (4.30).

Assume that 82 > §. Then cm < c/{8, log(c™*3,)} — 0, so by Lemma 7, there
exist positive constants ¢ < 1 < B and d, d such that (4.22) and (4.23) hold, and
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therefore
(4.47) X PR{2/<N<2/"} <Be* ¥ o),
J:2/<om Jj:2/<om
(4.48) Y P2/ < N < 2/*1} < Be® Y s;(c,8),
jiom<2/<q/c jiom<2/<q/c
where
ri(¢) = 2%|log(c2/)|f+1/?
and

s;(c,8) = rj(c)exp{ —J(2f82|10g(c2f)|)1/2}.
Since ry(c)/r;1(c) ~ 27¢ it then follows that as ¢ — 0,
Y rc) < (om)log(com)/f*1/2 3. 271 + o(1))
(4.49) J:2/<som i=0
< (1 -27*2)"Y(om)"log cm|B*1/2.
If o is chosen large enough so that 2%xp{— (22 — 1)¢/2d} < 1, we have by
(4.30) that for all small ¢, s;, (¢, 8)/s,(c,8) < } for 82 > 8, and om < 2/ < g/c
(assuming that q is sufficiently small), and therefore
(4.50) Y s;(¢,8) < 4(om)*llog cm|f*'/%exp(—o'/?d).
Jjiom=<2/<gq/c
By (4.23),
(4.51) P){N > g/c} < exp{ —dgq(8%/c)}.
Since (cm)“|log cm|f*/2 ~ (¢/8%)%(log 8%/c)f~**1/2, the desired conclusion
(2.19) follows from (4.47)-(4.51). O

PrOOF OF THEOREM 1(ii). Take b > 1 arbitrarily large. Apply (4.47) and
(4.49) with ¢ = b1, (4.48) and (4.50) with o = b, together with Lemma 8 to
obtain the desired asymptotic relation (2.16). O

We now show how the preceding argument can be modified to prove the
multidimensional generalization in Theorem 2. In the k-dimensional setting,
B(0, r) defined by (4.3) represents an open ball with center § and radius r, and
we define ¢,, @,,, L, (A, r) by (4.3), (4.7) and (4.8) as before. A straightforward
modification of the proof of Lemma 6 shows that there exists £ > 0 such that for
aln>1,A€A, ,and r>n"'?

(4.52) L,(A,r) = én"*%xp(nI(8,,7)), on {9;; € A, N B(A, r/2)};
moreover, if r, | 0 but n'/?r, > o, then as n — oo,

(4538) L\, 1)~ @7/n)**(det vA(A)) " *exp(nI(8,, 1)),

on {§, € A, N B(A, r,,/2)}, uniformly in A € A, ,.



394 T. L. LAI

Proor oF THEOREM 2(i). Define
N, =inf(n: §,€ 4,, X, - vy(A) € €,(A - 8) and I(f,,A) > n""g(cn)}
(inf @ = oo) In analogy with (4.24), we now have

(4.54) H (ho(X:)/h\(X,)) = exp{ —n(X - 8)(X, — v¥(})) — nI(A, 0)}.
By the deﬁmtlon of N,, (2.21), (3.6a) and (3.6b),

(A - 6)(Xy, — v¥(1))
(4.55) 2 plA - 0| 1 Xy, = V(X))

> p|A — 01{d*D"'N~'g(cN)}"*, asin (4.25).

In view of (4.52), (4.54) and (4.55), we can use the same argument as in the proof
of Lemma 7 and Theorem 1(iii) to complete the proof, noting that the volume of
B(A, 4e,,) is a constant multiple of &*. O

Proor oF THEOREM 2(ii). Define
N, = inf(n: 9, € A,, (v¥(0)) %X, - vs()) € ¢ ((V2¢(0))1/2()\ 9))
and 1(4,,A) > n'lg(cn)}
(inf @ = o0). Analogous to (4.55), we obtain by (2.22) that
(4.56) (A — 0)(Xy, — v¥(N)) = p(d/D)I\ - 6|{d2D~'N-"g(cN)}.

Hence, using an argument similar to the proof of Theorem 1(ii), we need only
prove the following analog of Lemma 8: Let b > 1,

(4.57) Z2=A-0)vH(6)(A-19),
and define m(c, 8) by (4.30). Then as ¢ = 0 and & — 0 such that §2/¢ - oo but
dloge — 0,

P{b~'m(c,8) < N, < bm(c, 8)}
~ a2k /24282 /¢) " *(log 82/c)ﬁ_a+k/2{r(%(k -1))}

_ 1/2
X 12t—2a(1 _ tz)(k 92 [@ab)*t 2a-1,-5 go\ gs.
1\1/2
p (ab~1)'/%¢

(4.58)

To prove (4.58), write m = m(c, ) for simplicity and define
U= Ny(A = 0)(Xy, - v¥(N)) + N,I(A, 0) + (N, I(by,, ) — g(cNy)).
In view of (4.56), (4.34) still holds. Let V; = v?)(0) and let E,, = {m < N, <
bm} N {0N € B(A,2¢,,)}. In analogy with (4.35), we now have
By(E,) ~ @) "*det ;)" [ N}exp(-U - g(eN)) dQ,,
(4.59) .
~ (27) **(det V,)*e"|log cm|Bc"‘f Ny+k/%-UdQ, ,
Em
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by (4.6), (4.53) and (4.54). Moreover, in analogy with (4.36),
j‘ Ne+k/2%=U 4@
E,,
(4.60)  ~ me+*/2{5log(c162)} det(V;1/2)

k/2 _yp
X/ / N, m)"+ e dPA 5log c-162)V:1/2 }dx
|W1/2x|s4K‘/2{ Em( 2/ +(8log ¢ Wy Vex

Assume, without loss of generality, that K > 2a/inf, . 4A,;.(Vs). Let 0 < g
(sufficiently small). Noting that for § € A and 2a/b < |x|> < 2a, as ¢ —» 0 and
A — 0 such that |\ — 8|2/¢c > oo but |]A — f|log ¢ — 0,

(Vi2(A = 0)) (Vi 2 [ve(A + 8(log ¢ 82)Vy /%) — vy (M)] )
~ (A= 0)V}%x (8 log c~18?),
[V 2[ vy (A + 8(log ¢7162)V; /%) — wy(A)]| ~ (8 log ¢7182)jx],
it can be shown by an argument similar to the proof of Theorem 3 (Case 1) that

N2 2a
P}‘+(81080_182)V9_1/2x{ ; — ix—|2 < ,ql/2}
(4.61) - ]_, X € gp+n("01/2(}\ _ 0)),

=0, x¢& ¢, (V2 -0),

the convergence being uniform in # € A and x belonging to the regions indicated
and such that 5 < |V, %x| < 4K'/2 Furthermore, uniformly in § € A and
x € %,,,(V3/2(\ — 0)) with q < |V;/%x| < 4K'/?,

(4'62) P)\+(8logc_‘82)V,_‘/2x{|U - 2a|x|_’1p(x, ‘,01/2(>‘ - 0))| < 7'1/4} -1,

where ¢(x, ¥) = x’y/(|x| |y|) is the cosine of the angle between the vectors x and
y- The proof of (4.62) uses (4.61) and an argument similar to the proof of (4.40),
noting that on {0y, € A, N B(A,2¢,,)},

(A= 0)(Xy, - v¥(1))
~ (A= 8)yv(8)(8y, - 7
= V37 (\ = 01 1V3/*(By, = M)io(Va"*(y, = 1), Vi/2(A - 0))
~ 8(21(dy,, x))‘/ 2(p(%1/2(9~2 = 1), Vi/2(A - 0)), by (4.57).
Moreover, an argument similar to the proof of Theorem 3 also shows

that Py, 5105 c-16%)yv;12{m < N <bm} - 0 uniformly in § €A and [x| <
2a/b)/2 — n or 2a)/% + 9 < |x| < 4KY2/\_; (Vs /?). Hence, it follows from
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(4.34) and (4.60)—(4.62) (where 7 can be arbitrarily small) that
( J N2"‘+k/2e‘”de) / {me+#/2(810g c~62) " det(V; /)
E,

[ g prry, 2/ BT P exp{ —2alxl (2, V(A - )} de
p\ Yo - :

2a/b<|x|?<2a

1/2
— [@o 2/ . f ) {(2a/r2)“+k/2
(4.63) r=(2a/b) 0<w, <cos™'p; 0<wy_, <2

0<Wp,e..,Wp_o<T
k-2 .
X e~ @e/meos o pk=1 T (sinwi)k_’_l} dw, -+ dwy_, dr
i=1
(k—1)/2
- 27 chS"p 2a)'/? 2a)“+k/2r—2a—le—(2a/r)cosw1
F((k-1)/2) % Jeamye
X (sinw,)* ? drdw,, ‘
since [7(sinw)’ dw = 7'/2T(4(j + 1))/T(3j + 1). Using a change of variables
t = cos w,;, s = 2at/r in the above integral, we can apply (4.59) and (4.63) to
evaluate the component Py{m < N, < bm} of (4.58). This and a similar analysis
of the other component Py{b~'m < N, < m} then complete the proof of the
desired conclusion (4.58). O '
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