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A MARTINGALE APPROACH TO POINT PROCESSES IN THE PLANE!

BY ELY MERZBACH AND DAVID NUALART
Bar-Ilan University and Universitat de Barcelona

A rigorous definition of two-parameter point processes is given as a
distribution of a denumerable number of random points in the plane. A
characterization with stopping lines and relation with predictability are
obtained. Using the one-parameter multivariate point-process representation,
a general representation theorem for a wide class of martingales is presented,
which extends the representation theorem with respect to a Poisson process.

1. Introduction. Roughly speaking, a plane point process (p.p.p.) is a distri-
bution of a denumerable number of random points in the positive quadrant of
the plane. The purpose of this paper is to study these processes using the
two-parameter martingale point of view as it was done, for example, in the
classical case in the book of Brémaud [4]. Clearly, some difficulties will arise due
to the fact that we do not have a complete order in the parameter set R2 , so the
tools of the general two-parameter stochastic processes theory will be necessary.
In this context, only very special cases were already studied: two-parameter
jump processes with one jump (Al-Hussaini and Elliott [1-3] and Mazziotto and
Szpirglas [8]) and two-parameter Poisson processes (Yor [11], Mazziotto and
Szpirglas [7] and Merzbach and Nualart [9]).

In Section 3, we present a satisfactory definition of plane-point processes (and
multivariate plane point processes), some characterizations of such processes by
random measures or by the notion of stopping lines and the connection with the
two-parameter martingales. Some properties concerning the left continuity of
the process, the continuity of its dual predictable projection and the predictabil-
ity of the associated stopping lines are given. Section 4 attacks the general
problem of martingale representation with respect to a p.p.p. The classical proofs
cannot work in our context since they use the distribution of the difference of
two consecutive jumps. The idea here is to truncate the p.p.p. and to consider
this truncated process as a multivariate one-parameter point process. In this
case, we can apply twice the general representation theorem of Jacod [5], and
working carefully with the conditions of predictability, we obtain a representa-
tion theorem for martingales. A more satisfactory form can be reached in some
special cases; for example, when the dual 1-predictable projection and the dual
2-predictable projection of the p.p.p. coincide. This class contains the class of
p-p.p- which can be time-changed into a Poisson process and lead tc the same
representation as the representation with respect to the Poisson process.
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266 E. MERZBACH AND D. NUALART

2. Notation and preliminaries. The usual notation and the main tools are
introduced as follows: The processes are indexed by points of R2 in which the
partial order induced by the Cartesian coordinates is defined: Let z = (s, ¢) and
2=(s,t);then z<z’'if s<s’andt<t,and z<z'if s <s"and t < t'. We
denote 2 A2’ if s<s’ and t>t. A probability space (R, #,P) is given
equipped with an increasing right-continuous filtration {%, z € R%} of sub-o-
algebras of #. For z = (s, t), denote %' = %, ., and #? =%, ,. The condi-
tional independence property: For every z, %! and %2 are conditionally
independent given %, will be assumed throughout the paper. Set R, = [(0,0), 2]
for any z € R2.

Denote by S the set of all the decreasing lines, i.e., L € S if and only if:

() Vz,22€L=ecitherzAz orz'Az
)VzeR2Zandz¢ L,32’€L:z<z2'orz' <z

For each z = (s, t), denote z = {(s, t'): t<t'} U {(s’,8): s<s'}, z={(s, ¥):
t'<thuU{(s,t):s'’<s}andz=2zU 2z Clearlyz, z€ S(butnot 2).If L, L' €
S, wedenote L < L'ifVz € L,3 2’ € L' such that 2z < z’. This relation defines
a partial orderin S. L < L’ willmean L < L’and L N L’ = @. Also z < L will
mean 2z < L.

LAL =sup{L": L” < Land L" < L'},
LV L =inf{L": L<L"and L' < L"}.

Let A be a subset of R%; the Debut of A, denoted D, will be the greatest
element of S such that: 2 < D, = z ¢ A. (For example, D,,, = z.)

A random decreasing line L: € — S is called a stopping line if for every
z € R%, {w: z < L(w)} € %, A stopping point Z is a random point such that VA
is a stopping line. L is called a stepped stopping line if for every w € Q, the set
of the minimal points of L(w) is denumerable and is finite in every bounded
domain.

In the product space 2 X R2, the predictable (resp. 1-predictable, 2-predict-
able) o-algebra is defined to be the o-algebra generated by the sets F' X (z, 2'],
where F € &%, (resp. F € £, F € #,%) and (2, z'] is therectangle {£: 2 < £ < 2');
it is denoted # (resp. 2%, #2). In @ X R%2 X R2, another predictable o-algebra
is needed: & is defined to be the o-algebra generated by the sets F' X (z,, 2{] X
(24, 23], where F€Z,,., ., and every couple taken from (z,, z{] X (24, 24]
satisfies the relation A. A stopping line L is called predictable 1f its graph
[L] = {(w,2): z€ L(w)}isa predlctable set.

A process A = {A,, z€ R%} is called increasing if its increment on every
rectangle (2, 2’] is nonnegative: A(2,21=A4, — A ) — A,y + A, 20. The
difference of two increasing processes is called a process of bounded variation.
Let us introduce the different kinds of martingales used below. Let M = {M,
2z € R%} be an adapted and integrable process. M is a weak martingale if
E[M(z, 2’']|#] = 0, M is an i-martingale if &%, is replaced by &%, i = 1,2, M is
a martingale if it is a 1-martingale and a 2-martingale and a one-parameter
martingale on the axes (which gives the usual definition of martingale), and M is
a strong martingale if it is a martingale and E[M(z, 2’']|%#,*] = 0, where
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F*=F v F2 for every z <z’ in RZ. To every increasing integrable and
adapted process A, we can associate its dual predictable (resp. i-predictable,
i = 1,2) projection denoted A" (resp. A®, i = 1,2) [10]. It is characterized to be
the unique predictable (resp. i-predictable, i = 1,2) increasing process such that
A — A" (resp. A — A®, i=1,2) is a weak martingale (resp. i-martingale, i =
1,2). Let X = {X,, z € R%} be a right-continuous process (lim, . ,. ,._ X, =
X,) possessing limits in the other quadrants, and denote its jump at z = (s, t) by
the following: AX, =X, - X, ,— X, )+ X,-, AX,=X, - X,-, and
NX, = X, — X, - Therefore AX, = X, — AX, ,, = A’X, — A’X,- ,.
Moreover, if X is increasing, then the set of its points of discontinuity consists of
a countable number of semi-lines parallel to the axes, and if X is also adapted,

then this set is a countable union of stepped stopping lines [6].
3. Plane point processes.

DEFINITION 3.1. A right-continuous process M = {M,, z € R%} is called a
plane point process (p.p.p.) if:

(i) M vanishes on the axes and takes its values in N U {o0}.
(i) M is increasing.
(ili) V z € R, AM,, A'M,, A’M, € {0,1)}.
(iv) M is adapted (with respect to a given filtration {£,}).

REMARKS. (1) If AM, = 1, then A'M, = A’M, = 1, but the converse does not
hold.

*(2) For all z, we have M, = ¥, _,AM,,; therefore M can be characterized as
an adapted discrete measure which is the sum of Dirac measures ¥,5, on the
jump points and is finite for every bounded set belonging to {M < o0}.

(3) Contrary to the one-parameter case, the jump points are not, in general,
stopping points so we cannot expect to characterize a p.p.p. by its jump points;
however, the jump points {Z,}, of a p.p.p. M are characterized by the following
properties:

() Z, = (0,0) and if Z, = o0, then Z,, = o0, V m > n. _

(ii) V nsuch that Z, < co,then Vm>n, Z,, &« Z, and Z, ¢ Z,,.

(i) Vrn>1, AM, =las.and M,=X,1; _,,.

(@iv) For every random point Z such that [Z] N (U,[Z,]) is evanescent, we
have AM, =0 as., and if moreover [Z] N (U,[Z,]) is evanescent, A'M, =
A’M, =0 as. (This condition means that if A'M, =1, then there exists an
integer n such that Z € Z, and if moreover A*~*M,, = 1, then there exist integers
mand nsuchthat Z=2,nZ,)

(4) Conversely, let {Z,}, be a sequence of stopping points satisfying (i) and
(ii); then the process M defined by M, = & — 1, where & is the number of sets
[Z,, o) which contain the point 2, is the p.p.p. associated with {Z,},,.

(5) In the same spirit, we can define the concept of a multivariate plane-point
process using the notion of discrete measure, since the couples of random
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variables (Z,, X,,), ., cannot characterize a multivariate p.p.p. We consider a
Lusin space E and an extra point A. A multivariate p.p.p. is the following
discrete random measure on R2 X E:

p(w; dz, dx) = 3 17, (0)< 0)E(Z,(0), Xty 925 0X),
n>1

ewhere ¢, denotes the Dirac measure located at point a,

e the random points {Z,}, satisfy properties (i) and (ii) of Remark (3),
e {X,}, are random variables in E U {A},

o X, (w) = A if and only if Z (w) = o0, and

e for each Borel subset C of E, the process

MZ(C) = M(Rz X C) = Z I{Z,,SZ)IC(Xn) isadapted.
nx1

Note that if E reduces to one point, then M_(E) reduces to an ordinary p.p.p.
As in the one-parameter case, we can prove and characterize the existence of
the dual predictable projection of a multivariate p.p.p. [5].

Let us introduce now the following sequences of random lines, associated with
a given p.p.p. M. _
Define L, = L} = Dy ., = A,Z,, and for n > 1, define

Ln = D(z: AM,=1,L, ,<z)}

(which is equal to A,Z, for all the integers & such that L, ;, <Z,) and
L, = D(M, >n}*

PROPOSITION 3.2. Any of the sequences {L,}>_, or {L},}7_, which satisfies

=1
the respective following properties characterizes the p.p.p. ]l; :
(i) V n, L, and L), are stepped stopping lines.
(ii) The sequences {L,}, and {L}}, are increasing.
(iii) {L,}, is digjoint: [L, 1 N [L,,] = @ for m # n.
(iv) Vm+n,V weQ, the set [L(w)] N [L,(w)] is countable.

Moreover these lines satisfy
Utz.1 < ULL,] < UIZ,] < ULL;].
n n n n

PrOOF. Let the sequence {L,}, satisfying (i), (ii) and (iv) be given, and
construct the bounded variation process
0, ifz<UL},
B,=(n, ifL,<z<L;,,,,
oo, ifVn,L,<z.

This process is adapted and can be decomposed by B = M — N, where M, =
X, <.liaB,-+1p N;= —X. ..lap,- 1) are adapted and increasing processes.
M is the p.p.p. associated to the sequence {L},. The same holds for the
sequence {L,},.0
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REMARK. Let T be an optional increasing path, i.e., a random increasing
path formed by stopping points, and consider a p.p.p. M along this path: M T In
general, the one-parameter process obtained is not a point process since jumps of
magnitude 2 can occur (however, it is a one-parameter multivariate point
process). In fact, in most of the examples MT is a point process since the
intersection of a stopping line and an optional increasing path must be a
stopping point. Conversely, if M is an increasing process and if it is a one-param-
eter point process along every optional increasing path, then M is a p.p.p.

Turning now to the properties of predictability for a p.p.p. M, let us call the
dual predictable projection of M, the predictable measure associated with M,
and if this measure is absolutely continuous with respect to the Lebesgue
measure, denote the density by A, and call it the intensity of the p.p.p. M. This
process can be chosen to be predictable. Notice that M — M® — M® + M" is a
martingale of bounded variation.

The following propositions are essentially proved in [6].

PROPOSITION 3.3. Let M be a p.p.p. The following properties are equivalent:

(i) M is a predictable process.
(ii) The stopping lines {L,}, are predictable.
(iii) The stopping lines {L}, are predictable.

For any nonnegative process X = {X,, z € R%}, the predictable projection of
X is defined to be the unique predictable process Y = (Y,, z € R} such that
E[/X,dA,]1=E[[Y,dA,] for every increasing and predictable process A =
{Az’ S Ri}‘

PROPOSITION 3.4. Let M be a p.p.p. and consider the following properties:

(i) For all n, the predictable projection of the process I;;,; vanishes.
(ii) M is quasicontinuous to the left: For every predictabie stopping line L,
f I IL] dM = 0.
(iii) For every predictable stepped stopping line L, [Iy;;dM = 0.
(iv) The dual predictable projection M™ is a continuous process.
(v) The predictable projection of the process 1, {5 j vanishes.

Then
(i) = (i) « (iii) = (iv) = (v).

Intuitively, property (i) means that the stopping lines { L/}, are “inaccessible”:
They do not intersect any predictable stopping line.

EXAMPLES. (1) One-jump process. This kind of process was extensively
studied by Al-Hussaini and Elliott [1-3] and also by Mazziotto and Szpirglas [8].
Let Z=(S,T) be a stopping point and consider the p.p.p. M = I, ..
Denote by F the distribution function of Z and by G its survivor function:
G(z) = P{z < Z}. The predictable measure of M clearly depends on the chosen
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filtration. In the minimal filtration such that Z is a stopping point (which does
not satisfy the conditional independence property, except in some degenerate
situations), one obtains [8]

2

M: = © O)I(MSSOI‘OST)(dF(u’ D))/(l - F(u_, O_))'
In the product filtration (which satisfies the conditional independence property
if and only if S and T are independent), one obtains [2]

AZ

M = [F"(dG(£)/(G(¢)).
0,0

In both cases, M — M7 is a weak martingale. Moreover, if F' is continuous then

MT™ is continuous, M is quasicontinuous to the left and the stopping line Z is

inaccessible.

(2) The Poisson process. The two parameter Poisson process was defined and
studied by several authors; see, for example, the work of Yor [11] and the work
of Mazziotto and Szpirglas [7] for a martingale approach. The doubly stochastic
Poisson process was defined in [9]. The Poisson process is characterized by the
fact that the intensity is deterministic, %, -measurable in the doubly stochas-
tic Poisson process case, and M — M™ is a martingale (or a strong martingale).
M is quasicontinuous to the left and both the stopping lines {L,}, and the
stopping lines {L}, are inaccessible [6]. Moreover, the trace of a (doubly
stochastic) Poisson process along an optional increasing path is still a point
process which is a (nonstationary) (doubly stochastic) Poisson process. Therefore,
the jump points {Z,}, are not stopping points.

4. The representation theorem. The aim of this section is to prove that if
the filtration is generated by a p.p.p., then each martingale can be written as a
sum of integrals with respect to the p.p.p. or to its associated predictable
measure. The method will be to consider the truncated p.p.p. as a multivariate
one-parameter point process, where the mark is the value of the process at the
second coordinate, and then to use the one-parameter multivariate point process
representation theorem due to Jacod [5].

In the Poisson case, such a theorem was already proved by Yor [11]: If M is a
standard two-parameter Poisson process with parameter A and if X is a
square-integrable martingale, then there exists a constant X|,, a square-integra-
ble predictable process ¢ = {¢,, z € R%} and a square-integrable P-predictable
process ¥ = {{y, ., 2, 2, € R%} such that for every z

X, =X, + £0,0)¢£(de — A d¢)
4 4
+f f 'le,zz(szl - >\dzl)(szg - Ad‘z2);
(0,0)7(0,0)
and this decomposition is unique.

Clearly, the converse also holds: These Stieltjes integrals are stochastic
integrals and, therefore, the process X is a martingale.
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From now on, let M be a p.p.p. and let { £} be the filtration generated by M,
eventually completed by a given ¢-algebra %#,. We fix T > 0 and denote by
0=3S, <8, <8, < --- the sequence of the first coordinates of the set of points
{Z,, n >0} N ([0,00) X [0, T]), ordered in increasing order. Set Z, = (S,, T,).
Then, we have:

(1) For any n >0, S, is a stopping time with respect to the one-parameter
filtration (Z, 7, s > 0}. Indeed, {S, < s} = {M, ;> n} € Z, ;.

(2) For any n>0, T, is % r-measurable. Indeed, (T, <t} N {S, <s} =
{My,r2n} N {Mg ,>Mg ,} €% r,forany t < T, since M is adapted.

Therefore, {(S,,T,), n>1} is a one-parameter multivariate point process
with respect to the filtration {Z ;, s > 0}.
We assume that M satisfies the following hypotheses:

(H1) M is nonexplosive (M, < o0,V z € R2 as.).

This implies that the multivariate point process (S,, 7)) is also nonexplosive for
any T > 0.

(H2) The filtration {#, 2z € R} is the natural filtration generated by the p.p.p.
M and verifies the property F4 of the conditional independence.

In particular, (H2) implies that {%, ;, s > 0} is the one-parameter filtration
generated by the multivariate point process {(S,, T,), n > 0}.

Then following Theorem 5.4 of Jacod [5], for any right-continuous local
martingale {N,', Z, 1, s > 0} there exists a finite #7-measurable process {X7,,
§ 20,0 <t < T} satisfying :

. $ (T o1 T
) [ [ 1% 1M do, dr) < o,
() NT=NT- jos f()TX,,{,(M"’(do, dr) — M(de, dr)) as.,

where 27 = 21T ® Z[0,T], 7 = o((s,s'I X F, F € % 1}, and M is the
dual #7-predictable projection of M, with respect to Z, ¢ = FM, introduced by
Jacod [5]. Notice that the dual predictable projection M™" does not depend on T
and is equal to the dual 1-predictable projection of the two-parameter increasing
process M, M®. Moreover, if T < T, then $T c $T’' c P,

Using the result of Jacod we can establish the following representation for the
martingales adapted to the o-field generated by the point process M.

THEOREM 4.1. Let M = {M,, z € R%} be a plane-point process satisfying
(H1) and (H2). Assume that M is continuous in the first coordinate, and M®
is continuous in the second coordinate. Suppose that N = {N,, z € R2}isa
martingale with respect to the filtration %, (= FM) which is bounded in any
rectangle R ,. Then, there exist processes X, and Y(z, z') verifying the following
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properties:
(i) X, is 1-predictable and adapted, and Y(z, z’) is P-measurable. Also,

[ [1Xm(dz) < e,
070
and
f f 1Y(£, £)MO(dE)MD(dE') < 0, forallz, 2 € RZ.
R,'R,
(ii) For any z such that N, < o0, we have

N, = Noo + [ X(M®(dE) ~ M(dg))

+ fR fR Y(£, £)(MO(dg) — M(d§))(MP(dE) — M(dE)).

PROOF. We may restrict our parameter set to some bounded rectangle R,,
= (8¢, o). Let N + (resp. N _) be the positive (resp. negative) part of N,.In
v1ew of the decompos1t10n

Nz = Nz+ - Nz_’
where
E(N;|#) E(N,\%)
+ o %P2/ S S LY
Nz E(N+) 3 Nz E(sz_o) 9

we assume that N, is a nonnegative bounded martingale such that E(N, ) =1
Now we fix the coordmabe T < t,. Without loss of generahty we may assume
that N is equal to 1 on the axes. Then, {N, 5, s >0} is a one-parameter
martingale. So, we can choose a nght-contmuous version of this martingale and
apply the representation result of Jacod,

(1) Nor=1+ [ ["XI (M®(do,dr) - M(do, dr)).
00

Consider the random measure N,;M(ds, d7) on [0, ) X [0, T']. Following
Jacod (see the remark after Theorem 4.1 of [5]), the 1-predictable projection of
this measure is absolutely continuous with respect to M®(ds, dr). We will
denote by Z, , ;. the corresponding density. That means for 7' fixed,

d[N, M]® d[N, M]?
dM® -

aTy

dM®

R, X[0,T] R, X[0,T]

(2) Zyr =

The second equality of (2) follows from the martingale property of N, on the
coordinate T.
From expression (15) of Jacod [5], we obtain

Xf, =N,-7— I(N,—T>O)Z07T
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Observe that we can choose a version of the bounded martingale N which is
right-continuous and has left limits in the remaining three quadrants. Note that
N,- is 1-predictable and adapted. Moreover, we can select a version of
Z,.r which is a measurable function of all its variables and as a function of
(0, T,w), 1< T<t, is 1-predictable and 2-optional. Indeed, we claim that
{Iin,_p>0yZorrs T< T < 1,} is a (generalized) martingale with respect to the
filtration {%,-;, 7 < T < t,}. To see this fact, we first observe that Z_ ., is
&, -measurable because {Z,,, (0, 7) € [0, 8] X [0, T']} is #T-measurable. Fur-
thermore, for any #T-measurable and bounded process £(o, 7), we have

Eﬁﬁg(U,T)I(N,_T>0) aMY(do, dr)
s T
=E,/(;‘/;£(O’T)I{No—r>0) atoM(do d'r)
s T
=Eff g(ﬂ, T)I(N_t >0)thoM(do d'l')
_Eff £(o, ”)I(N, >0) oty M®(do, dr)

- Ef f £(o, T)E[I(Na_t >0)Zart,/3z;-1~] MY(do, dr).

Here we have used the fact that N,- , > 0 implies N,-5> 0, because {N,-,,
t>0}isa nonnegatlve martingale.

In conclusion, {XZ, 7 < T < t,} is a bounded martingale with respect to the
filtration {Z,-;, 1< T < t,}. We can take a right-continuous version of this
martingale.

Now we fix the interval [0, 0) and order the points of the set {Z,, n > 0} N
([0, 0) X [, 00)) in such a way that the second coordinates of the jump points Z,
are increasing. As before we obtain a one-parameter multivariate point process
with respect to the filtration {#%,-,, < t}. Thus, using again the representation
theorem of Jacod, we can write

3) XZ=X5,+ [ ["¥(&,or)(MO(dg, dv) - M(dE, dv)),
0 T

where

(4) Y(év,07) = X7 — Iixo- 5 0 Z4yar-

Here

d[X2.M(d¢t, dv)]?
dM®(d¢, dv)

Zf’l’ﬂ’l’ =
[0,0) X[ 7,0)

We may take a version of Y(¢, », 6, 7) which is a measurable function of all its
coordinates. By convention, we take Y(§, »,0,7) = Ounless ¢ > £ and » > 7. It is
clear that the process Y is £ measurable, because as a function of (o, ») this
process is predictable.

Finally, we obtain the desired representation from expressions (1) and (3),
setting X (o, 7) = X_and Y(z, 2’) being the process defined by (4). It remains to
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check the integrability conditions of part (i). But this is immediate because the
martingale N is bounded on R, and, therefore, the processes X(£) and Y(§, £)
are also bounded by construction. O

REMARKS. (1) Using the continuity properties of the processes M® and
M® (on the first and second coordinates, respectively), it can be proved that the
processes X(§) and Y(£, ¢') appearing in the above representation are essentially
unique. From this fact it follows that the representation result holds for locally
bounded martingales.

Actually, the boundedness property has only been used to assume N has a
right-continuous version with left limits and also to check the integrability
conditions (i) and (ii).

(2) Clearly, a symmetric version of the representation theorem could also be
stated. If we assume that M® = M®, then both representations coincide and
the process X(§) is predictable. In this case we obtain a generalization of the
integral representation for Poisson martingales obtained by Yor [11].
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