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PROBABILITY ESTIMATES FOR MULTIPARAMETER
BROWNIAN PROCESSES!

BY RicHARD F. Bass
University of Washington

Let F be a distribution function on [0,1]%, and let W; be the Gaussian
process that is the weak limit of the empirical process determined by F.
If G is a function on [0,1]% upper and lower bounds are found for
P(sup, e 0,112l Wr(¢) — G(8)] < ¢).

1. Introduction. Let F be a distribution function on [0,1]¢ and let X;,
i=1,2,..., be independent random vectors taking values in [0,1]¢ with distri-
bution function F. If one forms the empirical distribution function

1 n
Fn(t) = Z l[o,t](Xi)7
n;

it is well known that vn (F,(-) — F(-)) converges in law (with respect to the
supremum norm || - ||) to the mean 0 Gaussian process W, where

Cov(W(s), Wx(t)) = F([0,s] n [0,t]) — F([0,s])F([0, t]).

We refer to Wy, as the tied-down Brownian process determined by F. Let G be a
function on [0,1]¢ The main purpose of this paper is to obtain upper and
lower bounds for P(||W,; — G| < ¢&). We also obtain analogous bounds for
P(||B — G|| < &), where B is the standard Brownian sheet.

The principal motivation is as follows. Given samples X; as above, one wants
to test whether they could have law F. One forms F, as above, one defines the
Kolmogorov—-Smirnov statistic D, = Vn (F, — F), and one would like to reject
the hypothesis that the X;’s have law F if || D, || is too large. The distribution of
D, cannot be calculated exactly, so instead one looks at ||Wy||. Even here, in the
case that the dimension d > 1, the distribution of the tail of W} is not known,
although successively better estimates have been obtained by Goodman (1976),
Cabafia and Wschebor (1982) and Adler and Brown (1986). Now suppose one
wants to determine the power of this test. [Blum, Kiefer and Rosenblatt (1961)
have argued that tests of this type should have very good power.] This means
one wants to estimate P(||D,|| < @) when the X;’s are in fact from another
distribution H. Write

P(Wn(F,- F)| <a) = P(|Vn(F, - H) + Vn(H - F)|| < a)
= P(|Wy - K|| < a),
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252 R. F. BASS

where K = V/n (F — H). Consequently, the estimates of this paper (Theorems 3.4
and 4.5) will give information on the power of the Kolmogorov—Smirnov test.
Our bounds are clearly not sharp, and hopefully future research will refine them.

Our bounds may also be viewed as being of large deviation type. Using
standard techniques, one can recover known results on the probability of large
deviations for the Brownian sheet and the tied-down Brownian process [cf.
Varadhan (1984), Theorem 5.1, for the one-parameter case]. Moreover, in a very
rough sense, these estimates give some information as to what the second-order
term should look like in Sanov-type inequalities [see Sanov (1957), Borovkov
(1967) and Groeneboom, Oosterhoff and Ruymgaart (1979)]. Of course, there one
really wants estimates for | D, — G|| and not |Wy — G]|.

A third application of our estimates is related to the extension of Chung’s law
of the iterated logarithm to the Brownian sheet. Our estimates can be easily used
to show that if there exists a function ¢(¢) such that

liminf  sup | B(s)|/¢(¢)
t)]

t=o0 sefo,(t,...,

equals a constant, as., then ¢(¢) must lie between ¢%/2(logloglog t)@ 172/
(loglog ¢)'/% and t%/%(logloglog t)*?~Y/2 /(log log t)'/2. This improves a result of
Révész (1981) who showed in the case d =2 that ¢(¢) must lie between
t(log loglog ¢)'/2/(loglog ¢)*/* and t(logloglog t)*/%/(loglog t)'/2. The presence
of the logloglog ¢ is rather surprising, and it would be an interesting but quite
difficult problem to determine if an exact normalizing function @(¢) exists, if it
can be expressed in terms of an exact power of loglog log ¢, and if so, what power.

We obtain the upper bound by reducing the problem for the tied-down
Brownian process determined by F to the corresponding problem for the untied
process determined by F, then using stochastic integrals to reduce to the case of
Brownian sheet, and finally using the Haar function decomposition of the
Brownian sheet. This use of stochastic integrals is, as far as we know, new. The
lower bound proceeds by the same sequence of reductions and also uses the Haar
function representation, but, in addition, we use the Cameron—Martin-Girsanov
transformation. Section 2 contains the necessary preliminaries concerning Haar
functions and stochastic integrals, Section 3 contains the derivation of the upper
bound, and Section 4 contains the derivation of the lower bound.

To simplify the notation, throughout we consider only the case d =2,
pointing out the changes necessary for d > 2 when they are not straightforward.
We say F: [0,1]¢ > R has a density [ if F(t) = J10,4 f(8) ds for all t. The letter
¢, with or without subscripts, denotes constants whose value may change from
line to line.

2. Preliminaries. Let F be a continuous distribution function on [0,1]2.
We may, of course, view F as either a function or a measure. Define the
Brownian sheet determined by F, B, to be the mean 0 Gaussian process with
continuous paths and covariance given by Cov(Bg(s), Bx(t)) = F([0,s] N [0, t]).
Define the tied-down Brownian process determined by F, W, to be the
mean 0 Gaussian process with continuous paths and covariance given by
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Cov(Wx(s), Wg(t)) = F([0,s] N [0,t]) — F(0,s])F([0,t]). When F is the uniform
distribution, i.e., when F([0,s]) = [0, s]|, where | - | denotes Lebesgue measure,
we write simply B for the standard Brownian sheet.

Next, we recall the definition of the Haar functions. For m = 1,2,..., let
I(m) = {1,2,...,2™"!}. Let T'(0) = {0}. For m > 1, j € I'(m), define
9n:[0,1] - R by

2(m=1/2, ‘e [21"2’21"1 ,
m m
¢jm(t) = _gm-1)/2 ‘e 2j-1 2_]
’ gm ’ gm ’
0, otherwise.

For j=0, m=0, let ¢;,(¢) =1 for ¢ € [0,1]. It is well known that the Haar
functions ¢;,, form a complete orthonormal system for L*([0,1], dt).

Now if m = (my, m,), let T(m) = {(Jj;, Jo): J; € T(my), jo € T(my)}. If j =
(J1» J2) € T(m) and t = (¢, t,) € [0,1]?, define

Bn(t) = ¢ (2)9),, m(22)-

The ®;,,, form a complete orthonormal system for L%([0,1]?, dt).

Let y(m) be defined so that the cardinality of I'(m) is 2™, Thus

Y(m) = (m, — 1)1(m1>0) + (my - 1)1(m2>0)'

Also, observe that the number of m’s for which y(m) = & is & + 3 for & > 0, 4 if
k=0.

Let { f, g) denote [, 112 f(t)g(t) dt, and let || f|| denote sup g 12| f(t)]. Let

%m(t) = (110,35 Pjum)-

A simple calculation shows that [|ay,|| < 2(27¥™/2), while ||®;,|| = 2¢®/* is
immediate from the definitions.

The support of ¢ - [j¢;,(s)ds is the same as the support of ¢,,,. Since by
Fubini, ,

"‘jm(t) = ('/:l‘ﬁjl,ml(sl) dsl)(j(;tz‘ﬁjz,mz(sz) ds2),

it follows that the support of a;,, is the same as the support of @;,,. For each m,
the functions ®;,,, j € I'(m), have disjoint support, and hence for each m, each
point t is in the support of at most one ;. So for fixed m and constants d,,, we

have
jeT(m)

We also will need Parseval’s identities,
(22) X (F 00 = (f, 1)
J,m

< sup |djpylllajmll-
j€T(m)
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and

(2'3) Z<f’®jm><g’®jm>=<fag>’

where the sum is over all m and all j € I'(m).

We now recall the construction of Brownian sheet by means of Haar functions
[see Park (1970)]. Let Z;,, be independent standard normal variables. For each t,
N > 1, define

(2.4) By(t) = Y Y Zjng(t).

{m: y(m)<N} jeT(m)

Clearly, By(t) is a mean 0 Gaussian process with continuous paths. It is known
that ||By — BJ|| = 0 in L*(Q, P), where B is the process defined by

(2’5) B(t) = Z Z ijajm(t)'

m jeT(m)

The fact that B is a mean 0 Gaussian process with continuous paths follows
from the corresponding fact about B,. Using (2.3), we have

COV(B(S), B(t)) = Z Zajm(t)ajm(s) = E <1[0,t]’ (I)jm><1[0,s]’ ‘I’jm>

m,j
= (10,4, 110,61y =I[0,t] N [0,8]].

We next turn to stochastic integrals. If h(t) =Xl ,dip, 1(t) is simple, the
stochastic integral (hdB is defined to be XI_, d;B(x;). Then’ fhdB is mean 0,
Gaussian, t — [1;, 12dB has continuous paths, and using the independent
increments property of the Brownian sheet, an easy calculation gives

(2.6) E( f th)2 = f R2(t) dt.
Applying (2.6) to h, k and Ak + k, we get by polarization that
(2.7) E(fth)(fkdB) = [R®K() dt.

An argument using Doob’s inequality applied twice [cf. Cairoli (1970)] shows
that if Y(t) = [1(, ;hdB, then

(2.8) E|Y|2 < 16 f h(t)® dt.

For h € L%([0,1]?, dt), choose h, simple converging in L? to A, and define
[hdB as the L%(Q, dP) limit of [h, dB. The equality (2.6) is used to show that
the limit exists and is independent of the choice of A,. Again, (A dB is mean 0,
Gaussian, and (2.6) and (2.7) hold. Just as in the one-parameter case, (2.8) is used
to show that ¢ — (1, ,2dB has continuous paths a.s.
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If F is a distribution function with a density f, then the process Y(t) =
f l[o,t]‘/f dB is a mean 0 continuous Gaussian process. Applying (2.7) with

h =1 q/f, k =1y /F, we get
Cov(Y(s), Y(t)) = [10,51p0,f = F([0,8] N [0, £]).

Hence Y(t) has the same law as By(t).
We need the following simple properties of stochastic integrals.

LemMa 2.1. If b € L%([0,1]?, dt), then E(fhdBy — [hdB)? - 0 as N — co.

ProOF. Note By(t) = [io,ybn(8) ds, where
(2-9) bN(S) = Z Z ijq)jm(s)’

{m: Y(m)<N} jeT(m)

Hence the first integral in the statement of the lemma makes sense. For any
H € L%, (HdBy = [Hby ds is mean 0, and recalling (2.2),

(2.10) E(beNds) ) {m: 1!/(§1)5N}je;(m)(f Hq)j'“ds)

< X (H, %) = (H,H).
m,j
Next, if K = X d ]l ,,) is simple,

deBN = Y. d;By(r;) > X d;B(r;) = deB,

as N — oo, the convergence being in L%(Q, dP).
Given &, choose K simple so that (K — h, K — h) < &. Let H= K — h. Then
by the triangle inequality, (2.6), and (2.10),

2\ 1/2
limsup(E(fthN— fth) )

N-ow

2\1/2
<2+ ﬁmsup(E(deBN - deB) ) = 2. O

N- o

LEMMA 2.2. Suppose M has density m in L%([0,1]?%, dt) and H has density h
in LY([0,1]?, dt). Suppose K € L*([0,1]?, dt). Then

< 4(f|h|(r) dr) f[o’.]KdB - f[O]KdMM

f HKdB - [ HKdM
[0, t] [o,t]
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ProOF. It clearly suffices to take A bounded, the general case following by
taking a limit. Let

Yy (t) =[ Kd(By - M), Y(t)=f KdB- [ KdM.
[0, t] [0,t] [0,t]

By Lemma 2.1, E(Yy(t) — Y(t))> > 0 for each t, and moreover, by (2.10),
E(Yy(t) — Y(t))? < 4K, K ). So by dominated convergence,

(211) E|[[Yy(t) - Y(®)] A(t) dt‘ < |17 f (E(Yy(t) - Y(t))z)l/ ®dt - 0.
Recalling the definition of b,(s) in (2.9), we have

40‘t]H(S)K(s)[bN(s) - m(s)] ds

=|[ K(s)[by(s) - m(s)] [ h(r)drds
(2.12) f0.4 (0-e]

= f[o t]h(r)j[‘r t]K(s)[bN(S) — m(s)] dsdr

= | [[¥n(®) + ¥u(x) = Yn(ry, ) = Yu(ts, 7)] h(x) dr

Let N — . Then [Yy(r)A(r) dr — [Y(r)h(r)dr in LY(R, dP) by (2.11). The
other terms may be treated similarly, and so the right-hand side of (2.12)
converges in LY(Q, dP) to

’ JIY®) + ¥(0) = ¥(ri, 1) = Y8y, 1) h(x) dx| < 407 f10)) .

By Lemma 21, the left-hand side of (2.12) converges to |/, HKdB —
J1o,9HK dM|, which completes the proof. O

Finally, we need to recall the Cameron—Martin—Girsanov theorem. There are
several proofs in the literature, but using the Haar decomposition of the
Brownian sheet, we can give the following simple proof.

THEOREM 2.3. Suppose h € L([0,1]?, dt). Define Q by
dQ/dP = exp( [hdB — 1[h*dt).

Then under @, B is a Gaussian process with Covg(B(s), B(t)) = [[0,s] N [0,t]|
and EQB(t) = f[o’t]h.
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Proor. Write h as ¥, (A, @) Pjp. Then [RdB =%; (h, ®;n)Z;p. Re-
calling the independence of the Z;,,’s, (2.2) and (2.3),

E,exp(iuB(t)) = EPexp( Y (iu(l[o,t], @, + (A, (I)jm>)ij>eXp(—%fh2)
j,m
3(i 2 1 [(p2
- Tenp{Hiu(to0r O + (s 0o 4[]
jm
= exp( —1u?y (Lo, 15 Bjm)” + i Yy (110,67 Pjm ) (P> Pjen)
j,m j,m
+3 X (A, (Djm>2)exp(—§/h2)
j,m

= eXp(_%uzﬂ[o,t],l[o,t]) + iu<1[0,t]’ h>)‘
So under @, B(t) is Gaussian with mean (Al ; and variance [[0,t]|. A similar
calculation for Egexp(iX,u,B(t,)) shows that the finite-dimensional distribu-
tions of B under @ are Gaussian and that the covariances under @ are the same
as those under P. O

3. Upper bound. We proceed by a series of reductions.

PRrRoOPOSITION 3.1. Suppose G is continuous and G(1) = 0. Then
P(|Wp — G|l < &) < c(e)P(|| By — G| < 2¢),
where c(e) = O(1/¢) as ¢ = 0.

PROOF. A standard calculation involving conditional distributions shows
that the distribution of By(-) given By(1) = 0 is that of a mean 0 Gaussian
process with the same covariance structure as Wy(-). The distribution of B(-)
given Bp(1) = x has the same covariance structure, and the mean is readily
calculated:

E(Bg(t)|Br(1) = x) = E(Bg(t) — F(t)Bp(1)|Bp(1) = x) + F(t)x
= E(Bg(t) - F(t)Bg(1)) + F(t)x = F(t)x,

where in the next to the last equality we used the fact that Bg(t) — F(t)By(1)
and By(1) are Gaussian random variables whose covariance is 0, hence they are
independent.

We then have

P(||Br — G|| < 2¢) > P(||By — G| < 2¢, |Bp(1)] < ¢)
= [ P(1B; — Gl 5 2B, (1) = x)P(By(1) < ai)

2 [ P(1By ~ F(-)x ~ Gl < elBy(1) = %) P(By(1) < d)

> (c(e)) T P(|Wp— GI| < €). O
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PROPOSITION 3.2. Suppose G(1) = 0, G has a density g in L*([0,1]2, dt), and
F has a density f with

d(f1/2) d(f—1/2)
dt ’ dt

e L'([0,17%, dt).

Then
P(|Br— G|l < ¢) < P(|B - L|| < ¢(F)e),
where L is the function with density g/ \/f .

PrOOF. By Section 2, t] f'/?dB has the same law as Bj. By Lemma 2.2
(with H = f-172) K = {12, M = L),

|B(t) — L(t)| < (

VB [ 1 dL” = (e(F))™IB; - Gl
] [0, -]
The proposition is now immediate. O

ProPosITION 3.3. If H has a density h € L*([0,1]?, dt), then

P(|B-H|<e) < clexp( - %/[0 1]2h2 dt)exp(—czs‘2ln(1/e)).

Proor. By the definition of stochastic integrals,

‘fl[m] dB — [, qdH

=I(B - H)(s) + (B— H)(r) - (B—H)(r,s,) — (B - H)(s;, 13)|
< 4B - H).
Since any Haar function ®;,, can be written as T,d{’ wlir,s,]> Where the sum is
from i=1 to i=1, 2 or 4 (depending on j,m) and d(‘) = 1||®;ll, then
| /cp,m d(B — H)| < 16||®,,||||B — H||. On the other hand, f(I) d(B - H) =
Zi — {®jm» h). So if ||B H|| < ¢, then for each j and m, |Z;,, — (@}, )| <
16(2%m™)/ 2)8 Since the Z;,,, are independent, then for each M,

(3.1) P(|B-H| <¢) <

]._I pjm,
(m: $(M) <M} j€T(m)

where
m = P(1Z5m — (2;

By the trivial mequahty

R)| < 16(24/2)¢).

jm>

P(ZeA) < (2qr)“/2( sup e"zﬂ)lAL
yEA

for Z a standard normal random variable, we have that for each j and m,

(3.2) Pim < (27) 7/%16(2¢00/2) ¢,
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By this same inequality, we have

6y P (27) 7 /16(2™/2) e exp( — 1(KDjms BY| — 16(2472)e)’)
< 16(27) "1/ 24®/ 2 exp( — 1(®;, kY Jexp(c(i,m, h)(e + o(e)))

provided [(®;,,, A)| > 16(2¥/%)¢,

Now let 8 € (0,1) be fixed, and choose K large so that

Z Z(h’ (I>jm>2 2 <h, h) - 8‘
{m: y(m)<K} j

Then take ¢ small enough so that for every m with ¢(m) < K and every
j € T(m), either [®;,, )| =0 or > 16(2¥™/?)e. Pick M so that
16(27)~1/2(2M/2) € [¢71/16, ¢~ ']. If necessary, choose ¢ even smaller so that
M> K.

Observe by our choice of ¢ and (3.2) that (3.3) holds for every m such that
Yy(m) < K and j € I'(m). Since K does not depend on ¢, we have
(3.4) I1 1T exp(c(G,m, 2)(e + o(e)) = O(1),

{m: y(m)<K} jeT'(m) :

as € » 0.

Using (3.3) when ¢(m) < K and (3.2) when K < {(m) < M, substituting into
(3.1), and recalling (3.4), we have

P(IB - Hil < ) < [T exp(~ (@4, 1Y)

(m: y(m)<K) jE€T(m)

X ( Il 16(277)_1/22“’(““)/28).
{m: y(m) <M} jeT'(m)

By the choice of K, the product of the exponentials is

< exp(—1((h, ) — 8)) < cexp(—i(h, b)),
and so to complete the proof, it suffices to bound
= TII [T 16(27) " 2evem/2e
{m: y(m)<M} jeT'(m)

= I (c2¥/2g)g¥a@m)
{m: y(m) <M}

where by the choice of M, c2¥®™/2¢ < 1. Taking logarithms, we get
M
Ing< Y Y, 2FIn(c2*/%)
k=0 (m: y(m)=Fk}

M
< Y k2FIn(c2*%)
k=0

< clflelnx In(cyxe?) dx

(3.5)

(3.6)

M82 _ M€2
=ce? ff In yIn(c,y)dy + 2¢,¢ 2ln(1/e)f22 In(c,y) dy
< —cze %In(1/¢),
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if ¢ < 1/256. To get the last inequality, we used the facts that
/21"82 > 27 /(256)%

&2 1/(256)2
and that the integrands do not depend on e. O

REMARK. For d > 2, T}T % 0 yam-r)l 2 Zphok? ", provided y(m) is de-
fined in the obvious way. With this change in (3.6), we obtain — c,e~%(In(1/¢))¢~ 1.

THEOREM 3.4. Suppose G(1) = 0, G has a density g, F has a density f,
a(f'?) d(i)
dt ' dt
Then

€ 1([0,1],dt) and g/yf € L%([0,1]¢, dt).

P(|W; — Gl <€) < clexp( -3f (&) dt - e in(1/e) ),
where ¢, and c, are constants depending only on F.
Proor. Combine Propositions 3.1, 3.2 and 3.3. O

4. Lower bound. Again, we proceed by a series of reductions.

ProposITION 4.1. If GA1) = 0, then
P(|Wy — G|| < &) > P(|| By — G|| < ¢/2).
ProoF. Define Y(t) = B(t) — F(t)By(1). Clearly, Y is mean 0 Gaussian with
continuous paths, and a simple calculation shows that the covariances of Y are
the same as those of W, hence the law of Y is the same as the law of W}.. But

since ||F|| < 1, we have that if || B, — G|| < £/2, then in particular |B(1)| < /2,
and so ||Y — G|| < &. The proof is now immediate. O

PROPOSITION 4.2. Suppose F has a density f with d(f'?)/dt €

LX([0,1]?, dt). Suppose G has a density g with g/ \/f € L*([0,112, dt). Let L be
the function with density g/ ‘/7 . Then

P(|Br— G| <€) = P(||B - L|| < ce).

PrOOF. Apply Lemma 2.2 (with K=1, M=L and H={2) to get
|Bp(t) — G(t)| < ¢||B - L||.O

PrOPOSITION 4.3. If H has a density h € L%([0,1]2, dt), then

P(|B-H|<¢) = exp(—é/h“’ dt)P(||B|| <e).
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PROOF [cf. Csaki (1980)]. By the symmetry of the Gaussian measure, for all r
and s;,...,8,,

E(B(r); |B(s,)| < &,...,|B(s,)| <€) = 0.
By taking limits, we get E(B(r); ||B|| < &) = 0. Using this, we have
(4.1) E( j hdB; ||B|| < e) =0,
if A is simple, and by taking limits, we have (4.1) for all A € L2
Define a probability measure @ by dQ/dP = exp(— (hdB — 1[h%dt). By
Theorem 2.3, the law of B under @ is that of a Gaussian process, B has
continuous paths under @ (since P and @ are equivalent), Covg(B(s), B(t)) =

[0,s] N [0,t]| and E4B(t) = — H(t). Thus the law of B under @ is the same as
the law of B — H under P. Therefore

(42) P(|B-H|l<e)=@Q(|Bl|l<e)= f

(IBli<e

)exp(—fth i L dt) dP.
Using Jensen’s inequality with respect to P(:|||B|| < ), we get

f(“B"SE)exp( - fth) dP

> P(||B|| < e)exp( f( "BHSE)( f - th) dP/P(||B| < e)).

Combining (4.1), (4.2) and (4.3) completes the proof. O

(4.3)

PROPOSITION 4.4. P(||B|| < €) > c,exp(— coe~2(In(1/¢))?).

ProoOF. Fix ¢ small, and choose N so that 2Ve2/N? € [1,16]. Let B, =
B/7*(y(m) + H)(IN — Y(m)| + 1)~?, so that LB = L 0L m: y(ay=£)Bem < 1.
Let ry, = In P(|Z;,,| < 2¢™/2B,_¢/2).

By (2.1) with dj,, = Z;,,(w), we have that if sup;e rom)l|l@jmll |Zjm| < Bme for
each m, then

1Bl < X

m

Z zZ jmajm
jel'(m)

< Y B.e<e.
m
So using the independence of the Z;,,’s, we have

P(IBI < &) = TIP( sup llajnll 1Z;al < Brrt)
m

jeTl(m)
(4.4) = ]—[P( sup |Z;,,| < 2"’(“‘)/2,Bme/2)
m jeT'(m)

=TT I1 exp(ry).

m jel'(m)
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We now proceed to estimate. Recalling that the r;,, are < 0 we have

9= Z Z r jm
{m: y(m)<N} jeT(m)
(4.5) N
> Y Y 2 P(|Z| < 2%/%B.¢/2),
k=0 {m: y(m)=Fk}
where Z is a standard normal variable. By our choice of N, 2¥/28_¢/2 is bounded
above and below by constants independent of N and &, hence
P(|Z| < 2%/%B,e/2) = c2*/%B.¢/2,
and so

N . c2k/2¢
@z L (Rt 42 h‘( (k+4)(N—k+ 1)2)

cy2%e?
2N +1-k)*
coxe?

(Inx)“N + 2 - Inx)*

N
>c, Y, k2*In
k=1

> cleNm xln(

2
2N C2x8
> clL lnxln( (lnx)z) dx

_clfllenxln(

= CII]. - ClI2 + 0(8_2).

Since 2Ve2/N? is bounded above and below independent of N and ¢, we can
write

) + o(e72)

) dx + o(e7?)

N+2

dx + o(e7?)

Lz [Y(nx)ds+ e, [*nxd
2 2

(4.6) - N
—ln(ﬁg)j; lnxdoc—2f2 InxInln xdx.

Now [((Inx)?=x(Inx)? — 2xInx + 2x; [Inx =xIlnx — x;and [InxInlnx =
xInxInlnx — x — [ Inln x. Carrying out the integrations in (4.6) and using the
fact that | /2" Inln xdx| < 2¥InIn 2" = o(N2V), we get

(4.7) I, > —cN2V.
For I,, we have

L < c2"’f1 In(2Vu)In(4/u) du
2—N
(4.8) = c2"’ln2"’fl In(4/u) du + c2"’f1 Inuin(4/u) du
2~V 2~V

< cN2N.
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Combining, we get
(4.9) g, = —cN2V = —cN32N/N2 > —c(In(1/¢))% 2.

For y > v, > 0,
In P(1Z| < y) = In(1 — 2P(Z > v)) = In(1 — ciexp(—c,¥?)) = —cexp(—cyv?),
for constants depending on y, but not y. Hence

q; = Z }: Tim

{m: Y(m)>N} jeT'(m)

% 2r/2B ¢
= Y Yy 2k1nP(|Z|< B )
kE=N+1 {m: y(m)=Fk} 2
x _022k£2
> —c k + 3)2%ex
(4.10) L, ) p( (kv (kv 1 N)“)
°° . —¢,2/N? ‘
> —¢,N2%7% Y (j+ N)2%exp| — 22 - 4)
j=1 (J+N)(j+1)
N
= —c1N2£'2( Y+ X ) =d, + J,.
Jj=1 J>N
Now
Jy 2 —¢;N2%72(2N) ) 2%xp| ——— | = —¢;N%2,
j=1 (j+1)
while

Jy> —c, N2 2 i (2j)2féxp( — e ) > —¢,N%2
b2 —¢ T a2 a .
~ 2+’

Jj=1
Substituting in (4.10),
(4.11) gy > —cN3% 2> —ce %(In(1/¢)).
Adding (4.9) and (4.11) and substituting in (4.4) proves the proposition. O

REMARK. Again, for d > 2, we get a (In(1/¢))*?~V term from the fact that
Lim: pmy=ryl = k71, To use the two different estimates for P(|Z| < y) and yet
have L8, < 1, we must choose N so that 2V/N%4~D = ¢=2,

Finally, we have

THEOREM 4.5. Suppose F and G have densities f and g, respectively, with
d(f¥?)/dt € L([0,1]% dt) and g/f € L*%[0,1]% dt). Suppose G(1) = 0.



264 R. F. BASS
Then

PWe = Gll 5 ) = cempl 4[| (#*/1) dt = cge*(n(1/0)"*""),

where ¢, and c, are constants depending only on F.
ProoF. Combine Propositions 4.1, 4.2, 4.3 and 4.4. O
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