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A BEST POSSIBLE IMPROVEMENT OF WALD’S EQUATION

BY MICHAEL J. KLASS

University of California, Berkeley

Let X, X,,... be independent random elements taking values in a
Banach space (B, || -|) and having partial sums S, = X; + --- +X,,. Let
a>0 and let ®: [0,00) be a nondecreasing continuous function such
that ®(0) =0 and ®(cx) < c*®(x) for all ¢>2, x>0. Put af =
E max, _; ., @(lIS;l). Let T be any (possibly randomized) stopping time
w.r.t. {S,}. We prove that E max, ., . r®(||S,|) < 20(18*)Eaf. If {S,} is a
mean-zero B-valued martingale and lim,, _,  E||Sr A ,|| < o0, it is shown that
L =lim,_, ES,I(T > n) always exists and ES; = — L, so that ESy = 0 iff
L =0. Let s, =E|S,|| and s} = E max, _; . ,|IS;|l. As a consequence of
these facts it follows that if {X, } are independent and have mean zero, then
E||Sz|| < o0 and ES; = 0 whenever Es# < oo. In the mean-zero case s} <
4s,; and so, in fact, Esy < co implies ES; = 0. This constitutes a best
possible improvement of Wald’s equation.

1. Introduction and summary. Let X, X;, X,,... be any sequence of
independent identically distributed (i.i.d.) random variables with partial sums
S,=X,+ - +X,. Let T be any (possibly randomized) stopping time with
respect to {X,,}. Wald’s (1945) famous equation, extended by Blackwell (1946) to
include all X-distributions with finite first moment (which we take to be zero),
states that

(1.1) EST =0
provided
(1.2) ET < co.

Burkholder and Gundy (1970) and Gordon [in some unpublished work referred
to in Chung (1974), page 343], refined this result, showing that whenever
EX? < o0, the weaker condition ET/2 < oo implies ESy = 0.

Chow, Robbins and Siegmund (1971) (CRS) then extended Burkholder and
Gundy’s result to variates having some moment between one and two. Specifi-
cally, they proved that if E|X|* < c0 and ET* < oo for some 1 < a < 2, then
ES; = 0.

Addressing the issue in utmost generality, we ask:

ProBLEM. For any given nonconstant mean-zero X-distribution, what is the
weakest condition on the tail behavior of a stopping time 7' which will ensure
that ES = 0?
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Let a, = E|S,| and suppose T is independent of {X,}. If we are to have
ES; =0, then technically we require E|S;| < oo, in which case Eaj < o0.
Hence, to obtain ES;, = 0 for all stopping times T having common marginal
distribution, Ea, < oo is a minimal necessary condition on that distribution. We
prove that this condition is also sufficient, a result we now state formally.

THEOREM 1.1. Let X, X;, X,,... be i.i.d. mean-zero random variables. Let
T be any stopping time w.r.t. {X,}. Then

(1.3) ES; =0, whenever Ea; < oo.
The quantity a, can be approximated directly from the X-distribution. Let

K(y) = 0if X = 0 a.s. Otherwise, let K(y) be the unique positive real satisfying
(for y > 0)

(L.4) yE{( X )2A X }=1.
K(y)]  K(»)
In Klass (1980) it was shown that
(1.5) (1 - 0(n"Y%))0.673*K(n) < E|S,| < 2K(n).
Hence, (1.3) may be re-expressed in terms of T and the X-distribution as
(1.6) ES; =0, whenever EK(T) < .

Owing to the fact [proved in Klass (1973)] that E|S,| = o(n'/*) [or alterna-
tively K(n) = o(n*/*)] whenever E|X|* < o0 and 1 < a <2, it is clear that
Theorem 1.1 strictly refines that of CRS. Moreover, these results [(1.3)—(1.6)]
extend to the nonidentically distributed case and (1.3) extends to Banach space
as well. Furthermore, if {S,} is a mean-zero martingale and T any stopping time
such that lim,_ E|Sp,, < o, then (see Theorem 4.1) ES; = 0 iff

lim, _ ES,I(T > n) = 0, a result which improves upon Theorem 2.3 of CRS.
Plainly, the sequence {Sr , ,} is uniformly integrable whenever
(1.7) E max |S,| < oo.
. 1<n<T

In such instances,
ES;= lim ES;,,=0.

n—oo

(Alternatively, just invoke dominated convergence.) Therefore, in the interest of
obtaining ES; = 0, it suffices to establish (1.7). In Section 2 a somewhat
elementary proof is presented which works for i.i.d. random variables. To extend
the result to random elements (and not necessarily identically distributed ones at
that) requires a different approach. The key tool is the following fundamental
lemma used by Burkholder and Gundy (1970) exploiting dependence between
random variables.

LEmMMA 1.2 [Burkholder and Gundy (1970) and Burkholder (1973)]. Let U
and V be nonnegative random variables. Suppose there exist positive reals f, 8, y



842 M. J. KLASS

such that B~ — y > 0 and

(1.8) P(Uz=By,V<8y)<yP(U=y), forally>O0.
Then
(1.9) EU< (B '-y) 's'EV.

Since the proof is short, we will include it here.

Proor. For any y > 0,
P(U = By) = P(U = By, V< 8y) + P(U = By, V > 8y)
<yP(U = y) + P(V > 8y).

Integrating with respect to y, EB U < yEU + 6 'EV.
Solving for EU gives (1.9). O

Since Lemma 1.2 is to be used to derive a sufficient condition for (1.7) (i.e., to
upper-bound E max, _, _,|S,|), it will be no more difficult to upper-bound
E max, _, _79(||S,|) for increasing functions of polynomial growth. In this
regard we prove

THEOREM 1.3. Fix any a > 0. Let ®: [0, 00) be any nondecreasing continu-
ous function such that ®0) = 0 and ®(cx) < c*®(x) for all ¢ > 2 and x > 0.
Let X,, X,,... be independent random elements taking values in a Banach
space (B, || |) and put S, =X, + --- +X,. Let T be any ( possibly random-
ized) stopping time with respect to {X,}. Then there exists a universal constant
0 < C*(a) < oo depending only on a such that

(1.10) E maxT<I>(||Sn||) < C*(a)Eaf,
1<n<

where

(1.11) a) = E max o(|IS,l).

Equivalently, letting v be independent of {X,} and distributed as T,
(1.12) ElmaxT<1>(||Sn||) < C*(a)Elmax ®(|IS,II)-

In a forthcoming work it is shown that there exists a universal constant
C4(a) > 0 such that

(1.13) Cu(a)Eak < ElmaxT®(||Sn||).

The following corollary, due in part to a remark of de la Pena, is an immediate
consequence of (1.10).

COROLLARY 14. Leta} =lim,_ a}, wherea} = Emax,_, _,®(||S,|). For
c>0, let

(1.14)

T - firstn > 1: ®(||S,||) > caX,
¢ o0, if no such n exists.
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Then for each ¢ > C*(a),

(1.15) Ea} = oo,

whenever

(1.16) P(T, < ) =1.

Combining (1.14) and (1.15) it also follows that for any ¢ > C*(a),
(1.17) Elgla;(n‘l’(llsnll) = o0

whenever (1.16) holds.

Employing Theorem 1.3 together with a couple of additional ideas, the paper
concludes (in Section 4) with our most comprehensive extension of Wald’s
equation, stated below.

THEOREM 1.5. Let (B, || - |) be any Banach space. Let X, X,,..., be inde-
pendent mean-zero random elements taking values in B, S, = X, + -+ +X,
and a, = E||S,||. Let T be any ( possibly randomized ) stopping time with respect
to {X,}. Then

(1.18) ES; =0, if Eap< oo.
» Moreover, if
(1.19) im E||Sy , ,ll < o0,
n— oo
then
(1.20) L= nh_r)x:o ES,I(T > n)

and ES; both exist and
(1.21) ES; =0, iff lim ES,I(T > n) =0 (since ES; = —L).

Even in the real-variables context, (1.19)—(1.21) strictly improves Theorem 2.3
of Chow, Robbins and Siegmund (1971) (see Example 4.5).

2. Wald’s equation on R'. Let Y,,Y,,... be (any) independent mean-zero
random variables, n any integer > 1 and 7 any stopping time with respect to
{Y,}. Then there exist universal constants C, and C, (independent of (Y}, n, 7)
such that

n
>. Y| [Marcinkiewicz and Zygmund (1938)]

n 1/2
(2.1) E(Z(Y;?)) <CE
Jj=1 Jj=1
and
n r 1/2
(2.2) E max lelg < GE jzl(yjz)) [Davis (1970)].
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These two inequalities plus that of (1.5) make it possible to proceed along
pleasingly elementary lines to establish the following result. Extension of Wald’s
equation (in the i.i.d. R! setting) is a simple consequence.

THEOREM 2.1. Let X, X,, X,,... be i.i.d. mean-zero random variables,
S,=X,+ --- +X,, and T any stopping time w.r.t. {X,}. Define K(-) as in
(1.4). Then there exists a universal constant ¢ < oo (c is independent of X and
T) such that

(2.3) E maxT|Sn| < cEK(T).
l1<n<

REMARK 2.2. Inequality (2.3) upper-bounds E sup, _,, . ,|S,| directly in terms
of T and the underlying X-distribution. Moreover, the derivation of (2.3) is
facilitated by the fact that {27"/2K(2")} is nondecreasing in n. Because a, =
E|S,| does not quite enjoy this property, it is easier to work with K(n).
Nevertheless, in view of (1.5), it is clear that the conclusion of Theorem 2.1 could
have been equivalently stated as

(2.4) E maxT|S,,| < c¢’Ear,

l<n<

for some universal constant ¢’ < oo.

ProoF oF THEOREM 2.1. Notice that K(y) increases and so y K ?%(y) =
E(X? A |X|K(y)) is nondecreasing. Hence

(2.5) ¥~ 2K (y) is nondecreasing.
Let

(2.6) k= min{k: 2F > T}
and put

(2.7) T* =2k — 1,

By the concavity of the square-root function,

T+ /2 [ kp-1 1/2
(E=) (5. 2.7

k=0 2ij<2k+1

IA

(2.8) kTZ_l( Y Xf)w

k=0 2k5j<2k+1

= f ( Y Xf)l/zl(T* > 2%).

k=0 2ij<2k+1
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Taking expectations and using in turn the inequalities of Davis (1970), (2.8),
Marcinkiewiez and Zygmund (1938) and Klass (1973), we have

T 1/2
ElmaxT|Sn| < C2E( Y Xf) [by (2.2)]
=n< Jj=1
T* 1/2
< C2E( Y Xj?) (since T* > T)
j=1

<CEY ( ¥ ij)wI(T* > 24 [by (2.8)]

k=0 2k5j<2k+l

0 1/2
=CEY I(T*> 2k)E( Y XJ?) (by independence)

k=0 gk <j<ghtl
< ClczEki I(T* > 2F)E|Sy| [by (2.1)‘]
=0
< 2CIC2Ek§, I(T* > 29)K(2%) by (1.5)]
=0
kp—1
=2C,G,E kgo (27F/2K (2*) )22
kp—1

< 2C,C,E2~*r=D/2K (2kr=1) 3 2k/2 [by (2.5)]
k=0

< 2C,C,EK(2%r~1)(1 — 27/2) "

< 2C,C,(1 — 272) 'EK(T) [since K (y) increases].
]

By the uniform integrability argument following (1.7), (1.6) is immediate and
(1.3) holds by application of (1.5). Hence, we have

COROLLARY 2.3. Under the assumptions of Theorem 2.1,

(2.9) ES; =0, if EK(T) < oo,
and, equivalently,
(2.10) EST = O, if EaT < 0.

These results will be extended in the next sections.
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3. Upper-bounding Emax,_,_,®(||S,|). In this section Theorem 2.1 is
generalized. Though somewhat more involved than that of Theorem 2.1, the
proof given here is not lengthy. Moreover, it has both the virtue of proceeding
from first principles and that of producing explicit constants.

In what follows, let (for a > 0)

= {®: [0, 0) — [0, ) such that ®(0) = 0,
(3.1) ®(-) is nondecreasing and continuous,

and ®(cx) < c*®(x) forall x > 0, ¢ > 2}.

THEOREM 3.1. Fix a >0 and ® € F,. Let X,, X,,... be independent ran-
dom elements taking values in a Banach space (B, || D. Let S; =0 and
S,=X,+ -+ +X, (for n > 1). Define

(32) a; = E max ®(|iS}).

Let T be any ( possibly randomized ) stopping time with respect to { X;}. Then for
any 8 > 0 and B > 3%1 + &) such that g = B~ — 6°8(B — 3*(1 + 8)) 1>,

(3.3) E max ®(||S,|) < (¢8) (1 + 2**2)Ea.
1<n<T

Moreover, by letting ,B 31 + &)1 — /6%6)~" and & = (4 6%)"l it can be
seen that ming 4(¢8)~" < 20(18%).

Proor. For simplicity, let

(3'4) S(;kn, n] = mngjlfnusj - Sm”
and
(3.5) S =Sty

We intend to employ Lemma 1.2. Fix y > 0. Let

T =

{first 1<m<T:®(S}) >y, ifsuchm exists,
Y

0, otherwise.

Let d* = max,_;_r|X/|| and n* = sup{n: a} < 6y}. Note that for any 0 <
a<bcx<eg,

P(a+b+c)<®(3c) <39(c) <3®(a) + ®(d) + ®(c)).
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Hence,
{@(S7) = By, ®(d*) V af < 8y)
c {3“(q>(sT=§_1) + ®(| Xy 1) + D(S#, 1)) = By, ®(d*) < 8y, T < n*}

< {3°0(Si,, raney) 2 ¥(B - 3°(1 + 8))}.
The bounds on ®( T, 1) (I>(||XTy||) and T derive from the construction of the
stopping time 7|, and the constraints on ®(d *) and a}. By Markov’s inequality
P(®(S}) 2 By, ®(d*) V af < 8y)
<3y (B~ 3%1+38)) ED(SF, 1 rnry)
We must bound the latter expectation:
E®(S#, 7nnn)

n*—1

Z Eq)(s(?,TAn*])I(Ty =j’ T>J)

j=1

n*—1

Y E®(S% ) I(T, =/, T>j)

=1

IA

n*—1
Y. E®(S% ,+)P(T,=j, T>j) (byindependence)

J=1

n*—-1
Y E®(2S%)P(T, =, T>j)
j=1
<2°E®(S%)P(T, < T)
< 2%yP(®(S¢) = y).
Letting y = 6°6(B — 3%(1 + §)) !, Lemma 1.2 implies that
E®(S#) <87Y(B1 —v) 'E(®(d*) V af).

Since E(®(d*)V a}) < E®(d*) + Ea}, to establish (3.3) we must bound
E®(d*). Let n,=0and n, = first m: E®(S}) > 0. Having defined n,,..., n,
let

IA

N {first m>n,: E®(S}) = 2" E®(S}),
kel o0, if nosuch m exists.

Note that not all of the n, need be distinct. Let 2* =last k: n, < T and
k** = sup{k: n, < co}. Observe that

(3.6) 2¥"'EQ(S)¥) < af < 2VE®(S}).
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Hence
k**
E®(d*)<EY d>( max ||Xj||)I(T2 n)
k=1 NE=<J<Np+y
k**
<Y Ed)( max ||Xj||)P(T2 n,)
k=1 Np<J<Npiy
k**
< Y E®(28¥  _,)P(T=n,)
k=1
k**
<2¢ Y E®(S} _,)P(T > n,)
k=1
k**
<2% ) 2*E®(S*)P(T = n,)
k=1
k*
=2°E®(S})E ¥ 2*
k=1
< 2°"2E (2% T'E0(S}))
<2*"2Ea} [by (3.6)].
Consequently,

E®(Sy) < (¢8)7'(1 + 2°*®)Eaz. m

REMARK 3.2. When ®(x) = x, the bound given in (3.3) can be somewhat
improved. Notice that in this case

{S#=2pB,d*Var<a)c{St ran=y(B—1-28)}
and
E(S% ) <E max ISl (by Jensen’s inequality)
Jj<k<n*
< ES}.

Hence, P(S > By, d* V a}) <8(B—1— 8)"'P(Sf > y) provided 8 > 1 + 4.
Putting 8 = (1 + 8)(1 — V8) 'and V6 = 27 (5 — 1), Lemma 1.2 implies that

(37)  E max |S,)l<4(1+V5)(/5 —1)7'(3 - V5) "E(d* Vv af).

4. Wald’s equation: Further extension. We inquire when a randomly
stopped Banach-space-valued martingale has zero mean.

THEOREM 4.1. Let (B, | -|) be any Banach space. Let S, = X, + -+ +X,
be a mean-zero martingale taking values in B and let T be any ( possibly
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randomized) stopping time with respect to {S,}. Suppose

(4.1) lim E||Sy |l < .
n—oo
Then
(4.2) L= lim ES,I(T > n)
n— oo

and ES; exist and
(4.3) ES; =0, iff L=0(sinceES;= —L).

ProoF. By Fatou’s lemma, E||Sy|| < c. Hence ES; exists and its value is
given by

n— oo

lim E(Sy,, — S,I(T > n))

= — lim ES,I(T > n) (since ESy,,=0):
Consequently, L exists and ES; = —L.0O

REMARK 4.2. In the real-valued setting, Chow, Robbins and Siegmund
[(1971), Theorem 2.3] (CRS) show that ES;= 0 provided E|S;| < co and
liminf, ,  E|S,|I(T > n) = 0. Since E|S; , ,| is nondecreasing, the CRS condi-
tions are equivalent to the two conditions lim,_ E|S;,,| < o and
liminf, ,  E|S,|I(T > n) = 0. Hence, Theorem 4.1 above strictly improves the

CRS result, as Example 4.5 will demonstrate.

REMARK 4.3. Even though E|S;, || may tend to infinity, E|Sy| can be
finite and ES; can equal zero. Thus, an all-encompassing theorem identifying
when the randomly stopping sum continues to have mean zero is probably
impossible. However, if a bit more regularity is required, Theorem 4.1 again
appears to be definitive. Dubins and Freedman (1966) showed that (for real-val-
ued martingales) there always exists a stopping time T, < T such that E|S;,| =
oo whenever lim,_, E|S; , ,| = co. Hence, for real-valued martingales, {(4.1)
and L = 0} is necessary and sufficient for

(ES; = 0and E|Sy,| < oo forall T, < T}.

As a trivial consequence of Theorem 4.1 we have

COROLLARY 4.4. Under the conditions of Theorem 4.1,

(4.4) ES; =0, if E sup ||S,|| < .
1<n<T
PROOF. ||Sy rqlls [IS7 A oll - - - is @ submartingale which is L' bounded whenever

Esup, _, . 7llS,|| < oo. Moreover, in this case lim, _, , E||S,||I(T > n) = 0. Hence,
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(4.1) holds and L = 0, proving (4.4). Of course, a simple proof using uniform
integrability or dominated convergence would have sufficed. O

ExXAaMPLE 4.5. Let X, X,,... beiid. with P(X,=1)=P(X,= -1)=2"!
and let T = first n>2: S,=0, where S, =X, + --- +X,,. Then |S;,,| is a
martingale (!) so E|S; , ,| = 1. By symmetry, ES,I(T > n) = 0. Thus Theorem
4.1 but not Theorem 2.3 of CRS (1971) may be invoked to conclude the obvious
fact ES; = 0. Nor does Corollary 4.4 have the strength to entail ES; = 0, since
Emax, _, . 7|S,| = oo. This latter assertion follows from (1.13), using the fact
that Emax, _, _,|S,| has order n'/?, and the well-known fact that P(T > n) =
Cn~'/2. Furthermore, it is interesting to note that E|Sy,| < oo for every stop-
ping time T, < T even though Esup, _,_7|S,| = . (To see this observe that

E|Sy| < iminfE|Sy, , ,| = liminf E|Sy, ,| = 1.)
n— oo n— oo
Applying Theorem 3.1 to Corollary 4.4 it follows that if S, = ¥_, X, is a sum

of independent mean-zero Banach-space-valued random elements and T is any
stopping time with respect to {S,},

(4.5) ES; =0, if Ea} < o0,

where

(4.6) a¥=E max ||S,.
1<k<n

With the next lemma, this result can be recast in the same form as (1.3) and
(2.10).

LEMMA 4.6. Let X, X,,... be independent mean-zero random elements
taking values in a Banach space (B, || - ||). Foreachk > 1letS, = X, + --- +X,.
Then for any n > 1,

(4.7) E max ||S,|| < 4E||S,|l-
1<k<n

Moreover, if B = R, this can be improved to read
(4.8) E max |S,| < 3E|S,|.
1<k<n

PROOF. An analogue of Ottaviani’s inequality is required. Notice that a
conditional version of Jensen’s inequality implies that

E|Xpiy + - + X< EN X + - + X |,
for any 1 < k < n. Hence, Markov’s inequality entails
(4.9) P(| Xy + -+ + X, | <2E| X, + -+ +X,|) = 271
Fix n > 1. For any y > 0 let

. {first 1<k<n:|Sll=zy+2E|S,l,
Y o0, if no such % exists.
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Then

P( max [|S,l| =y + 2E|S,ll) = ¥ P(7,=k)
1<k<n k=1

A
M™Ms

2P(1, =k, IS, — S,ll < 2E||S,I)

k=1

< 2P(1, < o0, [IS,]| 2 ¥)
< 2P(|IS,ll = ).
This is the required Ottaviani analogue. Hence,

E S “p S dt
—_ >
max ||S,| fo (|max S, = t)

< 2E|S,|| + f2 z"Sﬂ"P( max [|S,ll = ¢) dt

1<k<n

[~2]
< 2E|S,| + ["P( max 1S =y + 2E[S,[]) dy

< 2E|IS,|| + fo 2P(|IS, | = ¥) dy

= 4E||S,||.
In the real-variables context, let

.= {firstlskSn: S, >y + E|S,|,
Y o0, if nosuch % exists.
Notice that

P(S, - S, 2 —E|S,)) =1 - P(S, - S, > E|S,|)
>1-E(S,—S,)"/E|S,| (byMarkov)
>1- ES;/E|S,| (by conditional Jensen)
=21 (since ES, = 0 implies E|S,| = 2ES,;).

Reasoning as above,

P( max S, >y + ES,)<2 Y P(r,= &, S, - S, 2 —EIS,))
1<k=<n k=1
<2P(S,>y).
Similarly,

P( max (=S;) 2y + E|S,|) <2P(-S,> ).

l1<k<n

These two bounds combined imply that
P( max |S,| > y + EIS,|) < 2P(S,| > ¥).
1<k=<n
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Therefore,

E max |5,| = ["7P( max S, 2 y)dy + ["P( max |5, >y + EIS,[) dy

l<kx<n
o0
<EIS,|+ [ 2P(S, 2 y) dy
0
= 3E|S,|. O

REMARK 4.7. Inequality (4.8) improves the bound Emax, _,_,|S,| < 8E|S,|
found in Doob (1953), Theorem 5.1, Chapter VII.

Combining Lemma 4.6, Theorem 3.1 and Corollary 4.4, the next result is
immediate.

COROLLARY 4.8. Let X,, X,,... be independent mean-zero random elements
taking values in a Banach space (B, | -|). Let S,= X, + --- +X, and a, =
E||S,|l. Let T be any (possibly randomized) stopping time with respect to {S,)}
(or equivalently {X,}). Then )

(4.10) ES; =0, ifEap< .
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