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A MULTIPLE STOCHASTIC INTEGRAL WITH RESPECT TO A
STRICTLY p-STABLE RANDOM MEASURE

BY WiEstAw KRAKOWIAK AND JERZY SZULGA!

Wroctaw University and Case Western Reserve University

A construction of multiple stochastic integrals with respect to a strictly
p-stable random measure is given, 0 < p < 2. The integrands are Banach
space-valued deterministic functions.

0. Introduction. A multiple stochastic integral with respect to the Brownian
motion was constructed by Wiener (1938) as a polynomial chaos in independent
Gaussian random variables. A more general construction is due to Itd (1951).
Actually, the theory of Gaussian multiple stochastic integrals is fairly rich [cf.
e.g., Engel (1982) for the history and framework for a more general L2 theory of
multiple integration].

For the non-L?-case the reader is referred to Rosihski and Szulga (1982), Lin
(1981) and Surgailis (1981, 1984). Double stochastic integrals with respect to
symmetric independently scattered random measures were investigated recently
by Kwapieh and Woyczyhski (1986, 1987).

Very specific problems arise in the case of p-stable multiple integrals, inten-
sively studied during the last few years. The first approach using double
Fourier-Haar expansions [Szulga and Woyczyhski (1983)], though not very
efficient, suggested the important role quadratic and multilinear forms play. A
full characterization of a.s. convergent quadratic p-stable forms was obtained by
Cambanis, Rosihski and Woyczynski (1985). This, combined with Kallenberg’s
results (1975), enabled Rosifski and Woyczyhski (1986) to give an Itd-type
construction of the iterated multiple p-stable integral. In particular, it was
shown there that a function f = f(s, t) on the triangle {0 < s < ¢ < T'} is twice
integrable with respect to a p-stable symmetric motion if and only if

T p If (s, IPf3fd1f (u, 0)P dudv
(0-1) ‘/(; j(;lf(s, t)l + fOTlf(u’ t)lp dufoTIf(s, O)lp do

An analogous result was obtained independently by McConnell and Taqqu
(1984) by a different method. A completely different approach was recently
proposed by Surgailis (1985): A k-tuple p-stable integral was derived from a
Poisson k-tuple integral by interpolation in Lorentz—Zygmund spaces.

A Lebesgue-Dunford construction of a multiple p-stable integral of Banach
space-valued functions was given by Krakowiak and Szulga (1985b). They reduce
the problem to integration with respect to a vector measure.

1+ log dsdt < o0.

Received April 1986; revised September 1986.

On leave from Wroclaw University, Poland. Research partially supported by the Office of Naval
Research.

AMS 1980 subject classifications. Primary 60H05, 10C10; secondary 60G57, 46B20.

Key words and phrases. Multiple stochastic integral, strictly p-stable measure, vector measures,
multilinear random forms, decoupling inequalities, contraction principle, Marcinkiewicz—
Paley-Zygmund condition.

764

[
3l
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )20

The Annals of Probability. RIKOAN

WWw.jstor.org



STRICTLY p-STABLE MULTIPLE INTEGRAL 765 -

All of the results mentioned above deal with symmetric random measures. A
symmetrization procedure found by Krakowiak and Szulga (1985b) allowed them
to take a step forward into the nonsymmetric p-stable case, though still the
integrability assumption (i.e., p > 1) was required.

The aim of this paper is to extend and simplify the latter construction in the
case of strictly p-stable random measures for arbitrary p € (0,2]. The main idea
is to use recently discovered “decoupling inequalities” [essentially originated
with McConnell and Taqqu (1986) and then improved by Kwapien (1987) and de
Acosta (1985)].

No method for the construction of a multiple stochastic integral for a general
p-stable random measure is known; especially, the case p = 1 seems to be
hopeless!

1. Notation. Let X be a real Banach space. A function F: N* - X, k> 1,
is called symmetric if F(i,) = F(n,) whenever i, = (i,,..., i;) € N* is a permu-
tation of n, = (n,,...,n,) and F vanishes on the diagonals, i.e., F(i,) =0
whenever at least two indices are equal. We denote by %, the class of symmetric
finitely supported functions from N* into X. A k-linear X-valued form is, by
definition, the map generated by F' according to the formula

k .
(RM)* 2 (t,...,t°) - (F;t', .., th)y = Zkf(lk)tél e th e X,
ieN

For an item a, (a)™ denotes the sequence (q,..., @) with m factors. According to
this convention, the map

RN St - (F; (1))
defines an X-valued homogeneous polynomial of degree k.
A random variable 6 is called strictly p-stable, 0 < p < 2, if af + b6 is
distributed as (a” + b?)'/Pf for every a, b € R, where 6! is an independent
copy of 6. Strictly 1-stable random variables are just translations of symmetric

Cauchy-distributed random variables, strictly 2-stable—just symmetric Gauss-
ian. The characteristic function @ is given by the formula

exp(—v|tP(1 — if tan( p7/2)sgn t)), ifp+#1,
exp(—ol|t| + ia(t)), ifp=1,
where v = ¢v(0) >0, 8= B(0) €[—1,1] and « = a(f) € R are called the scale,

skewness and location parameter, respectively. It can be immediately verified
that :

v= v( z c,.o,.) = Z lefPo(6;),

i=1 i=1

E exp(itf) = {

(1.1) B= .3( f: ciai) = i |cPsgn c;0(6;)B(6;) /v,

i=1 i=1

«= ( 5 ciﬂi) _ écia(m),

i=1
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where 0, i = 1,..., n, are independent strictly p-stable random variables and c;,
i=1,...,n, are real numbers.

Hereinafter 0!,...,0% denote independent copies of a sequence 0 = (6,) of
independent strictly p-stable random variables. We assume throughout the
paper that in the case p = 1,

(1.2) a = supla(f;)| < oo.
J

REMARK 1.1. In all the proofs in the paper, we can assume without the loss
of generality that components 6, of the sequence 8 are identically distributed in
the case p # 1. Indeed, since all the results deal with a comparison of norms or
quasinorms of multilinear forms in strictly p-stable random variables, we can
assume that v(6;) = 1 instantly. Moreover, for every j € N we can find a finite
sequence (c;,,, m C M;), M; C N, such that 1 = v(f)) = Lylejml” and B(6) =
L) ¢jm|”sgn ¢;p,.. Therefore, each 6; can be decomposed as a combination ¥¢;,0;,

of independent strictly p-stable random variables with v(6,,,) = 8(6;,) = 1.

For a € R put a* = min(|a|,1). Let L (X), 0 < g < o0, denote the Banach
(Fréchet if ¢ < 1) space of all X-valued g-integrable random variables ¢ equipped
with the usual norm (quasinorm if g < 1)

g1, = (ENg19)"7.

LX) denotes the Fréchet space of all random variables valued in X with
1€llo = E||€]|* chosen as the metric. £ (£) stands for the distribution of a random
variable £.

REMARK 1.2. We will be considering certain norms or quasinorms on the
product space X" like (T |lx,||*)"/? or [[Zx,8,|,, (x;) € XN. Their completeness
enables us to apply the closed graph theorem [as it appears, e.g., in Rolewicz
(1984)]. For example, it follows immediately by the Borel-Cantelli lemma that
2 llx;||? < oo whenever Y.x,0; is bounded in L (X). By virtue of the closed graph
theorem there is a constant ¢; > 0 such that

e Tl 2)” <|| L8],

uniformly with respect to all sequences (x;) € X™ (cf. Lemma 4.1). We will also
follow this approach in the proof of Theorem 3.1 [property (3.2)]. By Remark 1.1,
the constants appearing there do not depend on skewness, scale or location
parameters.

2. Auxiliary results. A family Zc L (X) is said to satisfy a Marcinkie-
wicz—Paley-Zygmund condition with the exponent q, 0 < g < oo, if there is a
number 6 > 0 such that for every £ € &,

P(ligll > 81i£1,) > 8;
in short notation: %€ MPZ(q) [compare the papers by Paley and Zygmund
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(1933) and Marcinkiewicz and Zygmund (1937) for the cases ¢ = 4 and g = 2,
respectively]. It is not hard to establish another useful reformulation of
Marcinkiewicz-Paley-Zygmund condition:

PROPOSITION 2.1. Let ZC L (X).

(1) The following statements are equivalent:

(a) € MPZ(q);

(b) for every r € (0, g)sup; c 2|I€ll o/11éll < 003

(c) thereis anr € (0, q) such that sup, c #|I€ll,/1I¢]l, < oo.

(i) Let Z° denote the L(X)-closure of & and Z* = {§ € Ly(X): L(¢)isa
weak limit of £(¢,), £, €2Z). If € MPZ(q), then so do Z° and Z*.
Moreover, all L (X )-topologies are equivalent thereon for r € [0, q].

This result was explicitly formulated and proved by Krakowiak and Szulga
(1986a); however, it is a part of the mathematical folklore and is used throughout
the literature [see, e.g., Rosinski and Suchanecki (1980)].

Let ¢, €', €2,... be independent sequences of independent Rademacher ran-
dom variables, i.e., variables taking values 1 or —1 with equal probabilities.

Another important concept associated with random multilinear forms is the
multilinear contraction principle, which by definition is satisfied by X if there
are an r € (0, 0) and a ¢ > 0 such that

(2.1) Z L

i,J=1

Z 8%, €1Er
i, j=1

b

r ¢

for all neN, all n X n-matrices (x;;) € X n* and for all choices of signs
(s;) {1, 1}" Such a property was introduced by Pisier (1978). It is neces-
sary for our purposes to know the following result.

PropPOSITION 2.2 [Krakowiak and Szulga (1986b)]. Let X satisfy the multi-
linear contraction principle. If (£,) is a sequence of symmetric independent real
g-integrable random variables, 0 < q < oo, then

||

for all symmetric finitely supported functions F: N* - X and S: N* > [-1,1],
where ¢’ depends only on the ¢ from (2.1).

A typical example of a Banach space satisfying the multilinear contraction
principle is a Banach lattice or, more generally, a Banach space with a local
unconditional structure, not containing [2’s uniformly [cf. Pisier (1978) and
Krakowiak and Szulga (1986b)].

3. Decoupling inequalities. The main result of this section gives a non-
symmetric counterpart of the de Acosta theorem (1985). The proof uses a
“Newton formula” borrowed from de Acosta’s paper.
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THEOREM 3.1. Let 0<g<p<2 (or 0<qg<oo if p=2) and k€ N.
There is a number a, > 0 depending only on (k, p,q) such that for every
X-valued finitely supported symmetric function F on N* one has

(3.1) ap WICF; ()31, < IKF; 0%, ..., 0531, < allKF; (8)*)]l,-

Proor. Right-hand side inequality: Applying the Mazur—Orlicz polarization
formula (1935) and using the stability assumption we obtain the inequalities

IKF,0%,...,0%)

1 -
— T (=DM (5,00 + - +8,08)")
k! 81...,8,€(0,1)

< a’'T|(F; (0)yd,

q

where
= X (84450
k! 8,...,8,€{0,1)

Left-hand side inequality: Define aj to be the smallest of all positive
numbers a such that

IKF; (8)*)1l, < all(F; 6., %),

for every finitely supported symmetric function F: N* — X. Clearly, a} = 1, so
let £ > 2. From stability assumption and the Fubini theorem we infer that

ICF; (8)*119" = 27%9"/7||(F; (8 + 8Y)*))|¢" .

k 7"

A EAORCE

i=0

<227k /P(F; (8)") 2 + 2 ke /P

E=1,, 1\ q* , L

< T (*) i 0% 09 g
i=1

< 2RCPCE; (8)g + 2R

=9~ka*/p

q

k-1 1 -
x T ((%)arar-.) 1R 0. 0905
kr=1\\1
Thus we obtain the estimate

. . . k—1 q
ira-ssomy s 'S (e

i=1

*

This assures that the constants aj'’s are finite whenever ¢ is chosen so that
1 — kqg*/p < 0. The theorem is proved for these g ’s. It suffices to show that the
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family
{(F: (0)*): Fe .afk}
satisfies MPZ(q). But we observe that
{(F:0,...,08%): F: € #,} € MPZ(q),

by the Hoffmann-Jergensen result (1972) and the Fubini theorem (cf. also
Remarks 1.1 and 1.2); hence the Lh.s. or r.h.s. inequality (3.1) valid just for one
g > 0 continues to hold for every g € (0, p). This is a straightforward corollary
of Proposition 2.1. The constant a}’ appearing then is a suitable modification of
a}. To complete the proof, we choose a, = max(a;, a;’). O

COROLLARY 3.2. Let 0<qg<p<2(or 0<qg< oo if p=2). There is a
number a, > 0 such that for all functions F € %, and all numbers n,,...,n;, €

{1,..., k},
_ k
(3:2)  ai'|(F; 0™, ..., 0"l < [IKF;(0) ")l < ayll(F; 0™,..., 87,
4. Symmetrization. Decoupling inequalities allow one to reduce some
aspects of strictly p-stable multiple integration to the study of series in indepen-
dent random variables. A reduction to the symmetric case is the topic of this

section. We assume p < 2 throughout because in the case p = 2 we already have
symmetric (Gaussian) random variables.

LEMMA 4.1. Let 0 < g <p < 2. There are constants C,,C, such that for
every finite sequence (x;) C X one has

C(Zlxl?)”” <|Ta(6- g1, < 27| Zxs8], < 2/7°C| Zxi(6, - 6)],

Proor. We have to show only the r.h.s. inequality since the remaining ones
are obvious (cf. Remark 1.2). It is clear for p > 1 and g > 1, hence for all ¢ < p
it can be deduced from the Marcinkiewicz—Paley-Zygmund condition. In the
case of p < 1 there is a number ¢’ > 0 such that

IIZxﬂj"q < (E(Zule)jll)q)l/q < c'(Z”xj“P)l/p <cCi!t

When p = 1, then 6, = ﬁj + a;, where the gj’s are symmetric Cauchy-distributed
random variables. Hence by (1.2)

|Zx6], = Zx,(8 + o) |, < | Zx8], + 1l Xl
1 _
FIEx(8-8)], + 1aic| Ex,(6 - 6})],

1
(5 + e 12 (6 - a1,

which completes the proof. O

ij(oj - 011)
J q

IA
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COROLLARY 4.2. Let 0 < q < p < 2. There are constants C{,C4,Cy > 0 such

that for every symmetric finitely supported function F: N* —» X and an arbitrary
choice of ny,...,n, € {1,..., k} one has

(ZnF(lk)nP) < ICF: 0™, 7)),
< CIKF: 0™, 07|, < Cyll(F; 0™, ..., 8™,
where §' dentoes a symmetrization of 0, i = 1,..., k.
Proor. We apply Lemma 4.1, Corollary 3.2 and the Fubini theorem. How-

ever, the first of the inequalities needs some comment. We may assume all
ny,..., n, are distinct. Define F;: N*~! — X by the formula

F}(ik—l) = F(ik—l’ ])’ ik—l € Nk_l’

and recall the following version of the Hoider inequality:

(E(glsjlp)w)vp > (g(Em,-l")”/")l/q, (&) < L®).

We may thus proceed as follows:
q ) 1/q

C(E(g«IKF}; 0. .,’ek—1>”p)¢1/p)l/q

(E|(F; 0Y,...,0%)9)"7 = (E

., 0% ek

p/q P
> C(Z(E||<F,-; 0,..., 05 1y)7) ) :
J
where C is a suitable constant. We finish the proof by iterating the above

procedure. O

Now we recall some geometric properties useful for our purposes [cf. Maurey
and Pisier (1976)]. A Banach space X is said to be of stable type p,0 < p < 2, if
for some ¢ > 0 and ¢ € (0, p),

(4.1) | 2,6, < (T, 1?),

for every finite sequence (x;) C X. In view of Lemma 4.1 one may replace the 6;'s
by 0 s in (4.1). This definition can be easily extended for Fréchet spaces X w1th
homogeneous norms. L (X), r> p, will be a typical example in the sequel.
Notice that

(i) every X is of stable type p < 1;
(i) LX), r > p, is of stable type p whenever X is so.
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A Banach space X is said to be of cotype 2 if there area ¢ >0anda g > 0
such that

(i) < o| Zxse ),

for every finite sequence (x;) C X.

LEMMA 43. Let 0<p<2 0<g<p (0<g<ooif p=2). Let X be of
stable type p. Then there is a ¢ > 0 such that for every symmetric finitely
supported function F: N* — X one has

IKF; 0™,...,08™)||, < C

’

q

1/p
| ZICE; 0, 0y
J

for an arbitrary choice of integers n,,...,n, € {1,..., k}, where F: N*~! —» X
is defined by

F}(ik—l) =F(ik—1a ])a ik—lGINk_l’ jGN-
Proor. It is an immediate consequence of Corollary 3.2 and Lemma 4.1. O

5. The product p-stable measure and a multiple strictly p-stable in-
tegral. Let T € [0, ) and %, be the ring of bounded Borel subsets of [0, o).
Let 7 be the ring spanned by symmetric subsets A, X -+ x4, [0, T]%,
A, € %, (e, A X --- XA, remains invariant under permutations of its fac-
tors) such that A; N A; = & whenever i # j. Denote by FI the vector space of
all finite rank %/-measurable functions on [0, T']*.

Let u be a positive measure on #([0, T']) that is finite on %, and denote by u*
its k-tuple product. A strictly p-stable random measure, 0 < p < 2, is a map M:
#([0,T]) — Ly(Q, &, P;R) such that M(A,), M(A,),... are independent ran-
dom variables whenever A,, A,,... are disjoint Borel sets from [0, T'] and in this
case M(U;A;) =YX ;M(A,) as. The characteristic function is given by the for-
mula

exp(—p(A)|t1°(1 - if(A) tan( pm/2) sgn t)), ifp+#1,

Eexp(itM(A)) = {exp(—M(A)ltl +ia(A)t), if p=1.

We refer to Prekopa (1956,/1957) for the properties and study of even more
general random measures. For our purposes, it suffices to notice that the
skewness set function B(-) takes values in [—1,1] and, by the definition of the

random measure and (1.1), »(A) = B(A)u(A) is a signed measure on # with
finite variation on %,. Since v is absolutely continuous with respect to g, by the
Radon-Nikodym theorem there is a p-integrable function S: R — [—1,1] such
that

v(A) = /A s(x)u(dx), A€ g,
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or, in other WOI'dS,
B A) = ! X)W dx Ae B
( ) ( 4) /s( ) ( ), 0

Clearly, the latter relation characterizes skewness functions of strictly p-stable
random measures.

In the case when p = 1 axiomatic properties of the random measure require «
to be a signed measure with finite variation. Therefore the general assumption
(1.2) is well motivated and this allows us to apply the results for strictly 1-stable
random multilinear forms to the random integrals.

Let M',..., M* be independent copies of M. For a set ¢ = {n,,...,n,} C
{1,..., k} we define a product random measure M_ by the formula

M,(A, X -+ XA,) =M"(A,)) - M™(A,), A X -+ XA, € ¢,
and a linear operator I,: &#f - L (X)) by putting
Io(]'B) = Mo(B)’ B eykT’

and extending the definition over the whole .#,F by linear operations. Clearly,

M, becomes a finitely additive L -valued vector measure.

Let M, denote the measure derived from M, by symmetrization of its factors,
M,(A; X -+ XAy) = (M™ = M™)(A,) -+ (M"™ = M™)(A,),
A X - XA, e FL,

where (M', i = 1,..., k) is an independent copy of (M, i = 1,..., k). We define
I, analogously. Now, the results of previous sections can be rephrased in terms of
the vector measure M, and the operator I,.

PROPOSITION 5.1. Let 0 <p <2,0<gq <p.
(i) There is a constant a > 0 such that
a WL )lg <L)l < @l L),
a ! IMy(B)ll, < |M,(B)ll, < al|M,(B)ll,

for every f € # and B € ¢[.
(ii) If 0 < p < 2, then there is a ¢ > 0 such that

”f”Lp([O,T]";X) <c|L(f )”q’ fes.
(i) If X is of stable type p, then there is a ¢ > 0 such that
I( f )”q < ||l ( fl)”Lq(Lp([O,T]; X))

where o' C {1,...,k— 1} and f' is the function on [0,T1*"! valued in
L,([0,T]; X) defined by the formula

(8ot )(@E) =f(t, s tyrr t), tiyeesty_1, t€[0,T].
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PROOF. Omitted.

COROLLARY 5.2. If X is of stable type p andp < r < oo, then
(i) L)l < ew(00, T I (£ )l iyr, g0, 73 x5

(i) LA, < e(10 T DY) 1 Fll Lo, 71 0

for every f € #[L.

Proor. (i) Follows immediately. (ii) An inductive argument can be applied
by remark (ii) following (4.1). O

REMARK 5.3. Though the case p = 2 is omitted in Proposition 5.1(ii), we
obtain an analogous inequality for a Gaussian random measure assuming X is of
cotype 2.

THEOREM 5.4. Let 0 < p < 2. Then M, extends to an L -valued o-additive
vector measure on the o-field BT spanned by ¢f, 0<qg<p (0<q < oo if
P = 2). Moreover, the semivariation |M,|, satisfies the following estimate: For
everyr>p (r>pif p=2) thereis a C > 0 such that

(5.1) CT(sH(A))"7" < IM,|(4) < C(n*(4))"",
for every A € #F.

ProOOF. Let r > p (or r > p if p = 2). We deduce immediately from Proposi-
tion 5.1 (combined with Remark 5.3 when p = 2) applied for X = R that there is
a C > 0 such that

(5.2) CY(pH(A))” < IM(A)], < C(p*(A))"",

for every A € #F. Equation (5.2) continues to hold on the field 7 spanned by
%y - In fact, if A = U A, for an increasing family (A,) C €[, then (M,(A))); is a
Cauchy sequence in L, by (5.2). Hence the limit

M,(A) = imM,(4,)

exists in L, and (5.2) remains true for A.

In order to replace the norm ||M,(A)||, by the semivariation |M,|(A) we
need to apply a contraction principle exactly as is formulated in Proposition 2.2.
A routine procedure may be found, e.g., in Diestel and Uhl (1977), Proposition
11, page 4.

Once (5.1) is valid on €, in the last step we use the Caratheodory—
Hahn-Kluvanek extension theorem [cf. e.g., Diestel and Uhl (1977), page 27]
with obvious modifications in case p < 1. This completes the proof. O
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Now we can follow the usual definition of the integral with respect to a vector
measure. If f € # is a simple function of the form f =Y B, then we put

fodMo = YxM(BnB), B,Bec A

A ZT-measurable function f valued in X issaid to be M -integrable[ f € L,,(X),

in short] if there is a sequence ( f,) € % that converges to f in measure p* and
such that for every B € %7,

(+) [ e, = tim [ f, am,

exists in L(X) or, equivalently [cf. Proposition 2.1(ii)], in L(X) for each

q € (0, p). ‘
We infer immediately from Corollary 5.2 and Remark 5.3 that

Ly (X)c L,(X), whenever0<p <32,
Ly (X) S Ly(X), provided X is of cotype 2 and p = 2,
U L(X) c Ly, (X), provided X is of stable type p. ‘
r>p
Further, Proposition 5.1 yields
LM,(X) = LM,(X)-
For a large class of Banach spaces we can simplify the definition of M, -integra-

bility by applying the multilinear contraction principle.

THEOREM 5.5. Let X be a Banach space that satisfies the multilinear
contraction principle. Then a B]-measurable function f on [0, T1* which takes
values in X is M integrable if and only if there exists a sequence (f,) C
such that

(1) f, = f in measure p*,
(2) (I,(f,), n € N) is a Cauchy sequence in L,(X).

Proor. The “only if” part follows immediately so we shall prove the “if”
part only. So let f,(f,) be as desired. We deduce from Proposition 2.2 and

Corollary 4.2 that there is a constant a > 0 such that for every A € ¢7 and
every pair (g, g’) of functions from %7 the following inequality is valid:

gaM} — | g'dMm}
A A

<a|l(g) — L&),

Further, it carries over for every A € €7 with a slight modification of the
constant

|[zamt— [gamt] < @+ DUie) - LM, A<
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We observe now that for every B € T,

inf 8(g,A) =0,
Aedl

where

q

8(g, A) =H fB gdM} — fA gdM}

Therefore for fixed integers n, m and B € BT we obtain the estimate

“/Bf,,de—fomdM:

<

fB(fn—fm)de—L(fn—fm)de

q

+‘][4an£—[4me5

< 8(fo = fms A) + (a + DIL(f,) = L(f)llg-

Then we take infimum over all A € %, T and we get the concluding inequality

Hence ([zf, dMF) is a Cauchy sequence provided (I,( f,)) is so, which satisfies
the definition of M_ -integrability. O

q

fonde—/Bfmde

< (a+ DIL(f,) = L(fa)llg-

COMMENTS. Let M be an arbitrary independently scattered random mea-
sure. Suppose that a multiple integral

ff f(s1,-.05 8,)M(ds,) - - - M(ds,)
[0,T]

has already been constructed in a reasonable way at least for bounded functions
f on [0, T]% Then our procedure of the previous section could be reversed in
order to derive a vector measure

MHA) = [ [1,M(ds,) --- M(ds,)

valued in L, or in L -space provided appropriate moments of M exist. We refer
to Kwapieh and Woyczyhski (1986, 1987) for a construction of a double stochas-
tic integral with respect to a symmetric M. However, at this moment such a
general approach does not work in case k2 > 2 for nonsymmetric M.
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plete proofs in the first version of this paper as well as for other helpful criticism.
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