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A MINI-MAX VARIATIONAL FORMULA GIVING NECESSARY
AND SUFFICIENT CONDITIONS FOR RECURRENCE OR
TRANSIENCE OF MULTIDIMENSIONAL DIFFUSION
PROCESSES

By Ross G. PINSKY

Technion-Israel Institute of Technology

Let L=1v - av + b - V generate a diffusion process on R% An expres-
sion involving @ and & on 1 < |x| < n and two functions g and A, varied
over suitable domains, attains its mini-max value at A,. It is shown that
lim A, =0 or lim A, > 0 according to whether the process is recur-

n—oo''n n—o0''n
rent or transient.

1. Introduction. In this paper we develop an analytic criterion, specifically
a mini-max variational formula, which gives necessary and sufficient conditions
for transience or recurrence of multidimensional diffusion processes. Our result is
a generalization of a result of Ichihara [4] for reversible diffusions, that is,
diffusions with self-adjoint generators, which is based on the Dirichlet principle.
Ichihara considered a diffusion X(¢) in R? generated by L = 3V - av, where
a(x) is a positive definite d X d matrix at each x € R with smooth entries a, e
Let 7, = inf{t > 0: |X(¢)| = n} and let ¢,(x) = P(7, < 1,)for1 < |x| < n. Then
the process is recurrent if P(r, < o) = lim,_, ,¢,(x) = 1 for all x € R? satisfy-
ing |x| 21 and is transient otherwise. We have ¢,(x) =1 for |x| =1 and
¢,(x) = 0 for |x| = n, and by Itd’s formula, ¢, solves L¢, =0 for 1 < |x| < n.
Now consider the energy integral [2 _s(Véave) dx, where 3, = {x € R
|x| < j}. The classical Dirichlet prmc1ple states that

(1.1) A, = inf f (V¢av¢) dx
peWhi(s,-3,) 2
¢=1on 93,
¢=0o0n 9%,

is attained uniquely at ¢ = ¢,. From this and the preceding characterization of
recurrence, Ichihara was able to show quite easily that the process is recurrent or
transient according to whether lim, , A, = 0 or lim,, A, > 0. Ichihara then
took up the more difficult task of analyzing the preceding energy integral and
was able to obtain explicit sufficiency conditions for recurrence and for tran-
sience in terms of the matrix a, which compare favorably with the results of
Friedman and Khasminskii [2, 5], when these latter results are restricted to the
case of reversible diffusions. In fact, Ichihara’s method covers the general
self-adjoint case L = 1V - av + av@ - v for a smooth function @, since in this
case L can be written as L = 1e 2y - ae??y, and the factor e 2@ does not
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affect transience or recurrence. In this general reversible case, we have

1
A, = inf — (voave)e?? dx
peWi(3,-3) 275,-3,
¢=1lon 3=
(1.2) ¢=0on 32,1,

1
= — 2Q
2 fEn_EI(V%aV%)e d,

where Lé, =0in 2, — 2, ¢,=1o0n 9%, and ¢, =0o0n =, and
(1.3) lim A,=0 or lim A,>0

n—oo n— oo
according to whether the process is recurrent or transient.

In this paper we will obtain a result analogous to (1.2) and (1.3) for the general
non-self-adjoint diffusion generated by L = ;v -av + b- V. Our result de-
pends on a generalized Dirichlet principle for the non-self-adjoint operator L,
which we developed in [7] and which we now describe. In order to apply our
generalized Dirichlet principle, we require that the entries a;; of a and the
components b; of b be in CL¥R?). Let L=3v -av —b-v — v - b be the
formal adjoint to the operator L. With coefficients as before, there exists a
unique solution ¢, € C>*=, — =) to L$, = 0 for 1 < |x| < n with ¢, =1 on
32, and ¢, = 0 on 4Z,. For k € C>*(R?), there also exists a unique solution
(Sn e C**(Z,—- =) to f@n =0in 2, — 3, with 5,, =e?* on 9=, and ¢ =0o0n
d%,. (See [3], Theorem 6.14.) By Itd’s formula, ¢,(x) = P(7, < 7,). Our gener-
alized Dirichlet principle states that the mini-max variation '

NB) = - inf

gEWE(Z,~5))
g=e*on 33, g=00n 3%,
(dist(x, 3%,)) " 'g(x)eL®(Z, -3,

1 v \Y%
(1.4) X sup [—f (_g - a'lb)a(—g - a“‘b)g2dx
heW'2(3,-3, g?de) L2 52\ & g
h=kon 33,
1
-= (vh—a'b)a(vh - a‘lb)gzdx]
275,-3

is attained at the pair (g,,, &,,), where g, = (¢,$,)"/% and &, = 1log(¢,/9,), and
that

~

1 o
(k) = _ n
(1'5) An 2 Ln_zl(vq)navq)n) q)n dx‘

Note that an arbitrary function % appears in the variational formula (1.4).
Thus, in fact, we obtain a family of generalized Dirichlet principles indexed by k.
The function & plays the following role. If L is self-adjoint, that is a =16 = V@),
then the mini-max variational formula (1.4) reduces to the classical variational
formula (1.2) if and only if @ = k on dX,. Thus, for fixed &, the generalized
Dirichlet principle does not reduce to the classical one simultaneously for all
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self-adjoint L; however, given any @, it is always possible to pick an appropriate
k so that the generalized Dirichlet principle reduces to the classical one in the
case a” b = v@Q. To be a little more specific about this and to see more clearly
how (1.4) is related to (1.2), we can proceed as follows.

The supremum over all % in (1.4) is attained at A, which satisfies

/; s (th - a‘lb)qugzdx =0

for all ¢ € WL2(Z, — =) satisfying ¢ = 0 on 3Z,. Using this, it can be shown
that (1.4) reduces to

1 v
AF) = inf = (—g - vhg)
gEWNA(S,-3)) 27,-3\ &
g=e*on 43, g=00n 3%,
(1.6) (dist(x, 9%,)) " g(x) € L2(Z,— ;)

v
Xa(?g - th)g2 dx.

Now, the point is that A, has the property that Vh, is the projection in
L*=, - =,,g%dx) of a~'b onto the subspace of gradients vh which satisfy
h =k on 3Z,. Thus, in particular, if a~'b = v@, then in the case k£ = @, one
obtains VA, = vq independent of g and (1.6) becomes

. vE v8
(1.7) X@ = inf (— - vQ)a(— - VQ)gzdx.
geWh3(2,-3)) 2,-5\ & 8
g=e9on 9%, g=00n 33,

Making the change of variables ¢ = ge~9, reduces (1.7) to (1.2).

As noted in [7], if we wish, we may convert the mini-max principle (1.3) to the
minimum principle

AP = inf
8€ W1'2(2n_21)
g=e* on 3%, g=0on 33,
(dist(x, 3%,,)) " 'g(x) € L*(Z,~ =)

1 vg vg

1.8 X inf - — —a%|al— —a"'b|g?dx -

( ) 2=(21,.++,2,) [2/2;:_21( 8 ) ( g )g
v-(g%2)=0in D

+L(%(zaz) + 2(b - avk))g2dx].

We will replace the classical Dirichlet principle (1.2) by (1.4) and (1.5).
However, the conclusion of (1.3) with A, replaced by A% does not follow so
readily from (1.4) and (1.5) as (1.3) did from (1.2) in the self-adjoint case. That
this conclusion does in fact hold is the main result of this paper.

THEOREM 1. Let L=13v -av + bV be the generator of a diffusion
process in R? where a(x) is a positive definite d X d matrix at each x € R
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Assume the entries a,; of a and the components b; of b are in CL*(R?). For
ke C*%R? an arbztrary fixed function, define )\(k) by (1.4) [or (1.8)]. Then
(1.9) lim X®» =0 or lim A®¥ >0

according to whether the process is recurrent or transient. Furthermore, in the
reversible case, that is, the case a™'b = v@, (1.4), (1.5) and (1.9) reduce to (1.2)
and (1.3) for all k satisfying k = Q on 9Z,.

Before we prove Theorem 1, we give an application.

THEOREM 2. Let L=1v -av +avQ v + b- v, where @ € CLX(R?)
and a and b are as in Theorem 1. Let Ly = 3V - av + av@Q - vV and assume
that d > 2.

() If v - (e?2b) = 0 and the reversible process generated by L, is transient,
then the process generated by L is also transient.

(i) If v - (e??b) = 0 for all x and v - (e29b) # 0, then the process gener-
ated by L is transient.

In fact, if in the preceding conditions we replace e*?b by (av@ + b) and replace
L, by 1v - av, then the conclusion continues to hold.

From Theorem 2, we immediately obtain the following

COROLLARY. Let L = 3A + b - v, where b is as in Theorem 2.

@) If d = 3, then v - b(x) > 0 for all x is a sufficient condition for tran-
sience.

() If d=2, then v - b(x) =0 for all x and v -b# 0 is a sufficient
condition for transience.

ProoF oF THEOREM 2. First we note that the final statement of the theorem
follows by writing L = ;v - av + b, where b = av@ + b and by setting Q@=0.
Now apply the first part of the theorem to L with b and @ in place of b and Q.

To prove (i) and (ii), let £ = @ and consider_ A@ given by (1.4). Note that the
b which appears there must be replaced by b = av@ + b. Picking h = @, we
obtain

1 vg vg
X@ > inf| — -V — -V
m [24"_21( g Q)a( g 70

(1.10) "
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where » is the outward unit normal to 2, — =, at 92, and where the infimum is
calculated over all g € Wh%(Z, — =,) which satisfy g =e? on 9=, and g =0
on 9Z,. [The condition (dist(x, 3Z,)) 'g(x) € L*(Z, — =,) can be dropped
once we have fixed an A to use for all g.] Now the last term on the right-hand
side of (1.10) satisfies — 3 /(b - ») e*@do = [3V - (??b) dx. Thus from (1.10) we
have

(1.11)
+ = (v-b+ 2va)g2dx] + f v - (e29b) dx.
-3 =

We first prove case (i). In this case, (1.11) reduces to
1 \v/ v
(1.12) ND > inf[—f (_g - VQ)a(——g - VQ)g2 dx]
23, -3, g

Now the right-hand side of (1.12) is exactly (1.7) which, as mentioned, reduces to
(1.2), that is, to the A, corresponding to the generator e??L,. By assumption, the
process corresponding to L, (or equally e29L,) is transient; thus A =
lim,_, A, > 0. From (1.12) it follows that lim, , A9 > A > 0, and by Theo-
rem 1, the process is transient.

We now consider case (ii). We note that of course there was no reason in
particular to use d3; as the inner boundary in the preceding theory; everything
goes through just as Well if we use 0=, for arbitrary p > 0. Thus consider (1.11)
with =, replaced by Z,. By assumptlon Vv - (e29b) # 0. Thus, for large enough
p, the term [5 v - ( esz) dx is strictly positive. Thus, for n > p, it follows that
LA - (€29b) do > 0 and consequently lim,_, , A9 > 0. By Theorem 1,
the process is transient. O

2. Proof of Theorem 1. As a first step in the proof, we need to analyze the
function ¢, which solves Lgbn =0in 3, — =, with ¢, = ¢®* on 9=, and ¢, =0
on dZ,. To do this, let X(t) be the d1ﬁ'us1on generated by L = iVeav —b-v
with correspondlng probability measure P and expectation E on paths
starting at x € R%. Let o, = 1nf{t > 0: |X(¢)] = n}). By Itd’s formula,
o (X(t)exp(— [4V - b)(X(s)) ds) is a P-local martingale for x € 2, — =, and
thus, forany t>0and x € 2, — Z,,

é.(x) = Eg(X(t A oy A on))exp(— [ - B)(R(s)) ds).
We now prove that

lim E,6,(X(t Ao, Ao ))exp( j(;t/\a‘/\o"(v - b)(X(s)) ds)

t— o0

(2.1)
= Ax¢7n()f(ol/\on))exp( fol "(v - b)(X(s)) ds )
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thus giving us the representation
~ A 2 0y N
(22)  §(x) = B EOexp( - [*(v - b)(X(s)) i 0, < 5,)-
0
To prove (2.1), we write

llm E.$,(X(t A o, A 0,))ex ( MG‘M v - b)(X(s)) ds)

= lim Ex(qbn(X(o1 A o, eXp( Ao

t— o0

B)(R(s)) ds s o1 A o, <
+hmE(¢n(X(t) exp( fot(v b)(X(s)) ) t<ol/\on)
= £.4,(R(a, A 0))esp - [*" (v - b)(X(s)) ds

+ lim £, 5,(2(0)exs( - [(v - 5)(R(s) ds)i £ <0, A gy,

by the monotone convergence theorem and the fact that ¢, > 0 on 42, U 3%,
To complete the proof, we will show that

No= Jim 4108 £ 6,(X(O)exn( - ['(5 - 0)(R(s)) s s £ < 0, 10, <0

A result of Donsker and Varadhan [1] shows that A, is related to the spectrum
of the operator L — v - b on =, — 2, with the Dlnchlet boundary condition on
02, and dZ, by the formula A, = sup(Re(spec(L v -b).Nowl -v - b=
L and the operators L and L on =, — =, with the Dirichlet boundary condition
on dZ, and d =, have the same spectrum since they are adjoints of one another.
It is Well known that the spectrum of L is negative and bounded away from
zero; thus A, < 0. (Actually, what is happening is the following. By the
Donsker—Varadhan theory,

Ao = inf I(p) -
0 peP(R%) [ ( ) fz
supp(p)cZ,— 3,

(v Dy,
where I( p) is the I-function for X(t) Using the explicit representation of the
I-function [7], one can show that f(p) — Jz,-2(V - b)dp = I(pn), where I(u) is
the I-function for X(¢). Thus we obtain A, 1nf”E P(R%), suppp =, —=1(1+) which,
by [1], is equal to sup(Re(spec(L))).)

Now define ¢,(x) = qbn(x) 0 for |x| > n. From (2. 2) one sees that ¢ ,(x) is
positive for 1 < |x| < n and that qbn(x) is monotone increasing in n for each
x € R With this fact, one direction of the proof may be proved easily. Assume
that lim A% = 0; hence by (1.5)

n—->o00 "'n

. b,
(2.3) lim f (ve,ave,)—dx = 0.
noo /s, -3 P
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We will demonstrate recurrence by proving that ¢,(x) = lim,, _, , ¢,(x) = 1 for
|x| > 1. Fix N > 1 and note that sup, , y.,inf, _ ;< x $(x) > 0. This, together
with (2.3) and the fact that 0 < ¢, < 1, gives us

(2.4) lim |V, dx = 0.

n—o0 ZN—ZI

We also have by the bounded convergence theorem

(2.5) im [ |6, — 2 dx =0.
n—o0 Y3y -3,

From (2.4) and (2.5), it follows easily that ¢, — ¢ strongly in W-4(Z, — =)
and that v¢, = 0 ae. in 2, — =,. Consequently, by elliptic regularity, since
¢.(x) =1 for |x| = 1, we have ¢ (x) =1for 1 < |x| < N, where N is arbitrary.

The proof of the other direction is considerably more involved. Assume
recurrence, that is, ¢ (x) =lim,_, ¢,(x) =1 for |x| > 1. We must show that
lim 7\(’“) =lim,_3/s 3 (V¢nav¢n)¢,,/¢n dx = 0. Our first step is to show

n—»oo n

that in the recurrent case

(2.6) sup sup ¢,(x) < oo forall r> 1.
n>11<|x|<r

The recurrence assumption guarantees the existence of a unique (up to multipli-
cation by a positive constant) invariant o-finite measure with strictly positive
density 0(x) for the process X(¢). The strict positivity follows from the uniform
ellipticity of L. By the smoothness of the coefficients, 6(x) € C?%(R?%) and 6
solves L8 = 0. The result of (2 1) holds just as well for 8 as for qb,,, hence, similar
to (2.2), we obtain 8(x) = E,0(X(s, A 6,))exp(— Jenon(w - b)(X(s)) ds). Then,
from (2.2), we have for 1 < |x| < r,

u(x) < ( sup e )8, (exp - [(9 - 0)(H(s)) dsi 0, <,

ly|=1

< ( inf 0(y))_ ( sup ezk(’))Ekﬂ(X(ol A a,))

lyl=1 ly|=1

Xexp(/oa‘/\a"(v - b)(X(s)) ds)

-1
= ( inf 0(y)) (sup e2k(y))0(x).
lyl=1 y|=1
Now (2.6) follows from (2.7). It should be mentioned that both (2.6) and the
positivity of ¢,(x) and its monotonicity in n, which followed as consequences of
(2.2), can be obtained by nonprobabilistic arguments using a generalized maxi-
mum principle for operators with negative spectrum bounded away from zero.
Define L, =L + a(V¢,/¢,) - V and its formal adjoint L =I -
AVe,/9,) -V = V - (a(V,/9,)). One may verify that Ln(log b,) =
L(v¢,ave,)/$? and that L (¢,6,) = 0. Now let ¢ be a C*-function satisfying
y=0on|x|=1,¢=1for|x| >2and0 <y < 1for |x| > 1. Let v, = L (¢ $,$,).
Note that vy, = 0 for |x| > 2.
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We now come to the key identity

1 é,
- ny d = 1 - 1 .
(2.8) 5 fzn_zl(V%qubn) ¢nxp dx fzn—zlyn og ¢, dx LZ_ZIYn og ¢, dx

This is verified as follows. Since

1 v¢,ave,

L,(log¢,) = 5 e

we have
_ o dx = 6, WL, (log ¢,) dx
EL’!_EI(V%CLV%) ¢n\l/ = Ln_zl¢n¢n¢ (log ¢,
= f (log ¢n)l~/n( qb,,ql;,,xp) + boundary terms
2n_zl

= f ¥,log ¢, dx + boundary terms.
S, -3

All but one of the boundary terms that arise in the preceding integration by
parts clearly vanish. The remaining boundary integral is

lim [ y4,(log 4,).ave, do,
e—>0Y93

where », is the outward unit normal to 2, _, on 9=, _,. To show that this limit is
zero, it is enough to show that V¢, - », < 0 and v¢, - », < 0 on 9Z,. For ¢,, this
is the Hopf maximum principle. For q§n (recall that L has the zero-order term
—V - b), this follows from a generalized version of the Hopf maximum principle
which can be deduced from Theorem 10 in [8], Theorem 6.15 in [3] and the fact
that Re(o(L)) = Re(a(L)) < 0.

We have
- - - o~ . - v, -
Yo = Lo(¥9,9,) = 0.9, L,0 + ¥L,(6,,) + |V - b+ V - a )w,, .
+vyav(é,s,)
o - vyave, Vo, v .

+(Vyave,)s, + (vyave,)s,
= ¢, Lv + (V¥avé,)e,,
where, as before, [ = 3V -av — b v. Thus we may rewrite the right-hand
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side of (2.8) as

[ valogd.dx= [ od(loge)Lyde+ [ (vyavd,)s,logs,ds
2,-3 -3, 2-3;

(29) = [, odallogs)Lydr~ [ 9d,(loge,)v - avy ds
: =3 =3

— [ _(vvave)dlogd,dx — [ _(V¥ave,)d, dr,
5,3, -3

where we have used the fact that ¢, = 1 on 9=, and vy = 0 on 9=,. Now (2.8)
gives us

1
AP = (V¢naV¢n)& dx

275,-3, P
(2.10)

1 $n :
<= ve,ave,)— dx + 108 ¢, dx.
2 ), (Feave) [, wloge
By assumption, lim,,_, ., log ¢,(x) = 0 for |x| > 1 and by (2.6), ¢, is bounded

independent of n on 2, — =,. It is also clear that
(2.11) inf inf ¢,(x)= inf ¢,(x)>0 forn,> 2.
x€3,-3

n>nyx€X,-3,
From these facts and from (2.9), we obtain
lim y,logp, dx = — lim f
(2.12) now I3, -3, n—oo /3,
X ($,l0g , + ¢,) dx.

In order to show that lim, _, , A = 0, it suffices from (2.6) and (2.10)—(2.12)
to show that lim,_, f 22_21|V¢n|2 dx = 0, or equivalently, that

(vyave,)
3,

(2.13) lim [ 2(<7p,,)2cbc -0,

where p, = 1 — ¢,,. Thus, to complete the proof, we will prove (2.13). Fix m > 2
and let n > m. Since p, € C(Z,, — 2,) and Lp,=01in Z,, — =, with p, = 0 on
dZ,, it follows from standard elliptic regularity results about boundary behavior
of solutions that |vp,(x)| < csup,,_,,p,(y) for some ¢ > 0 and for 1 < |x| < 2.
Since p,(y) decreases monotonically to zero, it follows from Dini’s theorem that
lim, ,  |Vp,(x)| =0 for all 1 < |x| < 2. Now (2.13) follows from this and the
bounded convergence theorem. O
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