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INEQUALITIES FOR MULTIVARIATE INFINITELY
DIVISIBLE PROCESSES

By LAWRENCE D. BROWN! AND YOSEF RINOTT?
Cornell University and Hebrew University

We describe a general class of multivariate infinitely divisible distribu-
tions and their related stochastic processes. Then we prove inequalities which
are the analogs of Slepian’s inequality for these distributions. These inequali-
ties are applied to the distributions of M/G/cx0 queues and of sample
cumulative distribution functions for independent multivariate random vari-
ables.

1. Introduction. In this paper we study conditions under which one or both
of the inequalities

(1.1a) P(X>e¢) < P(Y 2¢),
(1.1pb) PX<ec)<P(Y<e)

hold for all ¢ € R”, where X = (X,..., X,,), Y = (¥},...,Y,) are random vec-
tors in R™ whose distributions belong to a class of multivariate infinitely
divisible distributions, which we will describe.

Approximating monotone functions on R by linear combinations of indicator
functions of semiinfinite intervals, we see that (1.1a, b) are equivalent to

(1.1¢) B [To(X)} < B{ [To(%)

for any set of nondecreasing (nonincreasing) nonnegative functions ¢; on R,
provided the expectations exist. When X; ~ Y; (i.e,, X; and Y, have the same
marginal distribution) for i = 1,..., n, then each of the conditions (1.1a, b)
implies Cov(X;, X;) < Cov(Y;, Y,). Note that if both (1.1a, b) hold, then X; ~ Y,,
i=1,...,n, and it is natural to regard the components of Y as being more
positively dependent than the components of X.

For the normal distribution, Slepian’s (1962) inequality provides conditions
for both (1.1a) and (1.1b) to hold. For related inequalities and concepts of
dependence see, e.g., Lehmann (1966), Shaked (1982) and references therein.
Some notions of orderings by positive dependence can be found in Kimeldorf and
Sampson (1987) and Shaked and Tong (1985).
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We now proceed to discuss multivariate infinitely divisible distributions.

Consider a one-parameter family @,, ¢ > 0, of infinitely divisible probability
distributions, that is, a family whose characteristic functions @,(s) = [e* d@,(x)
can be expressed as ¢,(s) = [«(s)]* for some characteristic function «.

Examples of such families include the normal family N(pt, 06°t) with g,(s) =
[ers—o"s*/2]% the Poisson(At) family with g,(s) = [e™" D], the negative bi-
nomial family with ¢,(s) = [p/(1 — ge**)]* [see Feller (1968), page 261], the
gamma family with ¢,(s) =[1/(1 — iBs)]’, the Cauchy distribution with
@,(s) = [e7"*1]* and any other one-parameter family of stable distributions. The
compound Poisson family is defined by

o k
(1.2) Q= e MY (x:)

~— F,,
ko k! *

where F, denotes the k-fold convolution of some distribution F. @, represents
the distribution of the random sums U, + - -+ + Uy, where {(U;} are indepen-
dent with common distribution F and N(¢) is a Poisson(At) variable indepen-
dent of {U}. The corresponding characteristic function is [e**®~D]¢, where
p(s) is the characteristic function associated with F. The importance of this
family stems from the following classical result [the Lévy—Khintchine formula,
e.g., Doob (1953) and Feller (1971)].

Fact 1.0. The class of limits in distribution of sequences of compound
Poisson distributions and the class of infinitely divisible distributions are identi-
cal.

We consider the following construction of multivariate infinitely divisible
distributions. Let

o={A:Ac{l,...,n}} =20 andt= {t(A): ¢ # A €},

where t(A) >0 for all ¢ # A €«/. Let @,, >0, be a family of infinitely
divisible distributions and let {Z,, A € «} be independent random variables
with Z, distributed according to @, ). Define X = (Xj,..., X,,) by

(1.3) X,= Y Z,, i=1,...,n.
A:i€A

(The sum extends over A € & such that i € A)) We shall say that X has a
multivariate infinitely divisible distribution with parameter t = {#A), ¢ #
A € o/} based on the family @,. Note that for each i = 1,..., n, the distribution
of X; belongs to the family @,.

The multivariate Poisson distribution is an example of special interest. It
arises when in (1.3) the Z, are taken to be Poisson(#(A)) variables, that is,

P(Z,=k) =e ™™[t(A)]*/k!, k=0,1,....

In this case X; is a Poisson(I,. ;c 4#(A)) variable. This construction of
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multivariate Poisson and infinitely divisible distributions is discussed in Dwass
and Teicher (1957).

If X(t) is a stochastic process with independent stationary increments distrib-
uted according to @,, then (X(t,),..., X(t,)) has a multivariate infinitely divisi-
ble distribution with Z; ., = X(¢;) — X(¢;_)), j=1,...,n, t;=0.

Note that the components of X defined by (1.3) are associated, that is,
E{ {(X)g(X)} = Ef(X)Eg(X) for any pair of coordinatewise nondecreasing (or
nonincreasing) functions f and g on R” [Harris (1960) and Esary, Proschan and
Walkup (1967)]. In particular

(1.4 B [16(%)) = T1E(8(X))

provided all ¢; are nonnegative and nondecreasing (or nonincreasing) functions
on R. ,
Our first result provides conditions for positive dependence ordering.

THEOREM 1.1. Let X and Y have multivariate infinitely divisible distribu-
tions with parameters t and t*, respectively, based on the same family Q,, and
suppose that for all B # ¢, B € o/, the following two conditions hold:

(1.5a) Y HA)< X #(A),
A:ADB A: ADB

(1.5b) Y A= Y tx(A).
A: ANB#¢ A: ANB#¢

Then for all ¢ € R",
(1.6a) P(X>¢) <P(Y =c),
(1.6b) P(X<e¢)<P(Y<ec).

The following one-sided stochastic comparison holds for nonnegative random
vectors.

THEOREM 1.2. Let X and Y be as in Theorem 1.1, based on a family Q,
having support on [0, o).

(i) Condition (1.5a) = condition (1.6a).

(ii) Conditions (1.5b) and (1.6b) are equivalent.

The following converse to (i) holds.

ProrosITION 13. For the compound Poisson family Q, of (1.2), if
P(U, > 0) > 0 and E{e*Y} < o for all a > 0, then (1.6a) = (1.5a).

A proof of Proposition 1.3 for the multivariate Poisson distribution was
contained in an earlier version of this paper. A simpler proof which covers the
compound Poisson case was subsequently given by Ellis (1988).
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REMARK 1.4. Theorems 1.1 and 1.2 clearly apply to the multivariate Poisson
case where P(Z, = k) = e "™[t(A)]*/k!, k=0,1,.... The relevance of in-
finite divisibility becomes apparent when one attempts to extend these results.
For example, consider Z, having a binomial distribution,

t(A)
k

where #(A) are nonnegative integers, and construct X as in (1.3). The binomial
distribution is not infinitely divisible and indeed in this case we have constructed
counterexamples to both theorems with n > 4. It can be verified by direct
calculation that for n < 3, Theorem 1.1 holds for binomial Z,’s and in fact it
holds for n < 3 whenever # A) is an integer and Z, is distributed as U, +
“++ + Uy, for all A € o, where {U;} are any iid variables. The same is true for
Theorem 1.2 provided the U,’s are nonnegative.

P(Z,=k) =( )p’“(l -p) P k=0,...,44),

REMARK 1.5 (An alternate representation). There are several alternate and
equivalent ways of representing multivariate infinitely divisible processes. Here
is one.

Let A be a (nonnegative) measure on R? and consider a Poisson point process
in R with intensity parameter A, that is, for any measurable set I' in R¢ the
random variable Ny, the number of process points in I, is Poisson with
parameter A(T'). Let T, i=1,...,n, be measurable sets in R? and define
X; = Nr. ThenX = (Xj,..., X,,) has a joint multivariate Poisson distribution as
previously defined. The parameter #(A) previously defined is related to A(:) by

(1.7) H(A) = 7\( Nr.- U Fi)-
icA €A
Let Y, = Nrp. be similarly defined with respect to a Poisson process with
parameter A*. Then (1.5a) becomes

(1.8) 7\( N ri) s}\*( N ri*), B+,

i€B i€B
and (1.5b) becomes

(1.9) A( U r,.) > A*( U ri*).

i€B i€B
[Use (1.7) to prove (1.8) and (1.9).] Conditions (1.8) and (1.9) together imply
MT) =A%T),i=1,...,n.

REMARK 1.6. Suppose the marginal distributions of X; and Y, are equal for
i=1,...,n. In the case n = 2 it then follows that conditions (1.5a) and (1.5b)
are equivalent. For the multivariate Poisson distribution one then sees from
Theorem 1.2 and Proposition 1.3 that the conditions (1.5a, b) and (1.6a, b) are all
equivalent. This pleasant state of affairs does not hold for n > 3. For example,
let #({1,2})) = t({1,3}) = t({2,3}) = 1 with #(-) =0 otherwise, and ¢*(1) =
t*(2) = t*(3) = t*({1,2,3}) = 1 with ¢*(-) = 0 otherwise. Then the marginal
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distributions are equal and (1.5a) and (1.6a) are true but not (1.5b) or (1.6b).
Reversing the roles of ¢ and ¢* yields an example where (1.5b) and (1.6b) are true
but not (1.5a) and (1.6a).

In Section 2 we prove Theorems 1.1 and 1.2 and some related results.

In Section 3 we extend the results to infinitely divisible processes and obtain
inequalities for first passage times of such processes.

In Sections 4 and 5 we discuss applications. In Section 4 we show first that if
X(7;) counts the number of customers in service at time 7, in a M/G /0 queue,
then X = (X(m),..., X(,)) has a multivariate Poisson distribution. The impli-
cations of our results to this model are then studied. Related results regarding
circle covering probabilities and inequalities for M/G /o0 queues were recently
obtained by Huffer (1987).

In Section 5 we examine the distribution of a bivariate sample cumulative
distribution function (C.D.F.). An application of our main results shows that—in
an appropriate sense—the least associated C.D.F. is that corresponding to a
sample from the distribution uniformly distributed along the negative diagonal
of the unit square. A related asymptotic result appears in Adler and Brown
(1988).

2. Proofs and further results. The steps of the proofs of Theorems 1.1 and
1.2 are divided into several lemmas and remarks.

LEmMMA 2.1. Let X® and X® be a pair of independent vectors on R™ and
let YO and Y® be another such pair. If for all ¢ € R™, v = 1,2,

P(X® >¢) < P(Y® > ¢),
) (X > ¢) < P(Y® > o)

P(X™" <¢) < P(Y?” < ¢),
then for all ¢ € R™,

22) P(X® +X®>¢) < P(YD + YO > ¢),

P(X® + X® < ¢) < P(Y® + YO < ).

PrOOF. We can assume that X®,X® Y® Y@ are independent vectors
defined on the same probability space. Then,

P(X®V + X® > ¢) = E{P(X? 2 ¢ — X?X®?))
<E{P(Y"2c-X?X®?)} = P(Y? + X® > ¢)
=E{P(X® 2 ¢~ YOYD)} < E{P(Y® > ¢ - YO[YD))
=P(Y® + Y® > ¢). o

REMARK 2.2. In view of Fact 1.0 it suffices to prove Theorem 1.1 for the case
that the distributions of the variables {Z,, A € .o/} appearing in the construc-
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tion of (1.3) belong to a compound Poisson family, i.e., for all A € <,
(2.3) Zy=U + - +Uyyay  N(t(A)) ~ Poisson(At(A)).

{U;} have a common distribution F, and {U;} and { N(¢(A))} are all independent.
Indeed if the distributions of {Z,} in (1.3) belong to any family @,, they are, by
Fact 1.0, limits in distribution of variables constructed as in (2.3) [limits taken
over suitable sequences of F'’s and A’s, with {#(A)} fixed]. Thus any multivariate
infinitely divisible vector X is a limit in distribution of a sequence X of
multivariate infinitely divisible vectors based on compound Poisson families and
hence it suffices to consider this case.

LEMMA 2.3. Let X and Y satisfy the conditions of Theorem 1.1 and suppose
both X and Y are based on a compound Poisson family Q,, i.e., X is defined
by (1.3) where Z, are as in (2.3), Y is defined similarly with Z} =
U, + -+ +Uysrayy A€o, and (1.5a, b) hold. Define t(¢) =0, t*(¢) =
Y[t(A) — t*(A)] and N*(t*(¢)) ~ Poisson(At*(¢)). Then for all c € R™,

(2.4) P(X > ¢ AédN(t(A)) = 1) < P(Y > c| AXE‘,MN*(t*(A)) =‘1).

Proor. Condition (1.5b) with B = {1,...,n} implies ¢*(¢) > 0. Given
N(t) =X, ,N(t(A)) =1, we must have N(¢(A))=1 and Z, = U, for some
set A€/ and Z,=0 for any C €/, C # A. In view of (1.3), X;=U, if
i € A, zero otherwise. Consider now P(X > ¢), where ¢ = (c;,...,¢,) € R™ and
define B = {i: ¢; > 0} € «/. First assume B # ¢. Then X > ¢ iff A 2 B and
U, > max{c;, i € B} = v, and therefore

P(X > ¢c|N(¢t) =1)
(2.5) = Y P(N(t(A)) =1|N(¢t) =1)(1 — F(y7)),

A: ADB

where F denotes the distribution of U;.

The conditional distribution of {N(#(A)): A € &/} given N(¢) =1 is multi-
nomial involving a single experiment with 2" cells corresponding to the elements
of &, having cell probabilities {p(A), A € &/}, where

p(A) =¢(4A) AZ;(A) = P(N(t(A)) = 1IN(¢) = 1).

Therefore, by (2.5),
P(X > ¢|N(¢) =1)

> e(A)(1-F(y7))

(2'6) A: ADB
= T (a)a-Fy)| T ua).

The definition of t*(¢) guarantees ¥, ,H(A) = X4 ,t*(A). Therefore the
inequality (2.4) now follows from (2.6) and (1.5a).
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In the case where B = ¢ we have ¢; <O forall i =1,...,n, and X > ¢ holds
iff U, > max{c;, i € A} = §(A), where as before A is the set where N(#(A)) = 1.
If A =¢ then X =0 > ¢ and we define §(¢) = — 0. Thus

(2.7) P(X>c|N(t)=1) = A}:dt(A)P(Ul > 8(A)) AE;(A).

To complete the proof of Lemma 2.3 assume with no loss of generality that
c;<cy< -++ <¢,<0. Then

2 t(A)P(U, = 8(4))

Aey
= Z t(A)P(Ul = cn) + E t(A)P(cn—l < Ul < cn)
Aes Aes: AcC{l,..., n—1}
+ .o+ Y t(A)P(c; < U, < ¢,) + t(¢)P(U, < c,).
Aes: Ac{1}

Clearly, (2.7) and the preceding decomposition are also valid for Y and #*.

This decompositicn and (2.7) imply (2.4) since ¥, c 48 A) = ¥, ,t*(A) and
Yacpt(A) <X, pt*(A). [To obtain this, note that it is equivalent to
YoracBt(A) S Xy,acnt™(A) + L4 4.0[H(A) — t*(A)], which reduces to
Ya: anc=ot(A) 2 L g, ancwot*(A), where C denotes the complement of B. The
latter inequality holds by (1.5b).] O

REMARK 2.4. Note that both conditions (1.5a, b) were used. If the U,’s are
nonnegative, however, the case B = ¢ need not be considered and (2.4) would
follow from (1.5a) alone. [When (1.5b) is not assumed we may have
Ya: axo[t*(A) — t(A)] = 0. In this case we define #(¢) to be the latter quantity
and t*(¢) = 0.]

LEMMA 2.5. Under the conditions of Lemma 2.3,
(2.8) P(x <ec| Y N(¢(A)) = 1) < P(Y <ec| Y N*(t*(A)) = 1)
Aey Aed
for all ¢ € R™.

PrROOF. Lemma 2.5 follows from Lemma 2.3 since
P(X <e¢|N(t)=1)=P(-X> —¢|N(¢) =1) < P(-Y = —¢|N(t) = 1)
= P(Y <¢|N(¢t) =1). |

LEMMA 2.6. Under the conditions of Lemma 2.3,

(2.9) p(x 2 ¢l T N(t(4)) = N) < P(Y 2 ¢ T N'((4)) = N),

(2.10) p(x <ol T N(i(4)) = N) < P(Y <ol T N'(#(4)) = N)

foranye € R®* and N =1,2,....
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Proor. We proceed by induction on N. For N =1 Lemmas 2.3 and 2.5
apply. Given ¥, . ,N(#(A)) = N(¢) = N the distribution of {N(#(A))} is multi-
nomial with N experiments. The conditional distribution of X|N(¢) = N can be
obtained as the convolution of two such conditional distributions with N
replaced by N — 1 and 1, respectively. The lemma now follows by induction and
Lemma 2.1. O

Proor oF THEOREM 1.1. In view of Remark 2.2, Theorem 1.1 follows from
Lemma 2.6 by unconditioning. O

PROOF OF THEOREM 1.2. The proof that (1.5a) = (1.6a) and (1.5b) = (1.6b)
is similar to that of Theorem 1.1, taking Remark 2.4 into consideration.

Next we show that (1.6b) = (1.5b). Let ¢ # B € o/ and definec = (c,, ..., c,)
by ¢; = 0if i € B and oo if i € B. (One may either interpret R” as [ — o0, ©0]” or
use an elementary limiting argument.) Then by (1.3),

P(X<e¢)=P(Z, =0forall Asuchthat AN B+ ¢).

We can assume that the representation (2.3) holds. Replacing the parameter A in
(2.3) by A[1 — P(U, = 0)], we can assume P(U, = 0) =0. The previous
probability then becomes P(N(#(A)) =0 for all A such that A N B # ¢) =
exp{ —AX4. anp«st(A)}. It is now clear that (1.6b) = (1.5b), except in the
trivial case that P(U, = 0) = 1 for the compound Poisson case. The argument
extends to infinitely divisible distributions by the approximation procedure of
Remark 2.2. O

Lemma 2.6 and simple modifications of the preceding and Ellis’ arguments
actually yield a stronger assertion, summarized in the following corollary.

CoROLLARY 2.7. Let {N(t(A)), A € &} be multinomial with N experi-
ments and cell probabilities t(A), i.e, PN, {N((A) = k,}) =
NI, [t(A)]*/k,, ks> 0 integers, L o ks =N, and define Z, =
U, + -+ + Uyyay with U, iid independent of {N(t(A))}, and X as in (1.3). Let
Y be constructed similarly with parameters t*(A), L 4 c ,4(A) = L 4 *(A) = 1.
If (1.5a, b) are satisfied, then (1.6a, b) are satisfied. If both X and Y are
nonnegative variables, then (1.5a) = (1.6a) and (1.5b) < (1.6b); if E{e*"'} < oo
for all a > 0, then (1.6a) = (1.5a) [we assume P(U, = 0) < 1)].

REMARK 2.8. A slight modification of the proof of Theorem 1.1 shows that
we can replace (1.6a, b) in Theorem 1.1 by strict inequalities, i.e., P(X > e) <
P(Y>¢) and PX<c)<P(Y <c), where X>¢ (X <e¢) means X;> ¢
(Xi < ci)’ i= 1,...,n.

3. Infinitely divisible processes. A stochastic process X(7) € R®, 1> 0,
with stationary independent increments, such that for each fixed 7, X(7) has a
multivariate infinitely divisible distribution with parameter Tt = {7#(A), ¢ #
A € %/} based on a family @,, will be called a multivariate infinitely divisible
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process (with parameter t based on @,). When X(7) is multivariate Poisson with
parameter 7t for each fixed 7, the process will be called a multivariate Poisson
process.

We first prove a preliminary result which is useful also for ordinary multi-
variate infinitely divisible random variables.

LEmMA 3.1. Let X, Y have multivariate infinitely divisible distributions with
parameters t and t* respectively, based on the same family @, Let D=
(iseeerip) €. Then X = (X;...X;) and Y= (Y,,-.., Y, ) have multi-
variate infinitely divisible dzstrtbutzons based on Q, with parameters t and ¥,
defined in (3.1). If t,t* satisfy (1.5a) [respectively, (1.5b)], then so do t and t*.

PrOOF. For A C {1,..., m} define ¢(A) = {i;: j € A}. Let

ZA = )y Zp.
B2c(A)
(B—c(A)ND=¢
The family {Z,: A c {1,.. m}} of independent infinitely divisible random

variables based on Q, deﬁnes X according to (1.3) for j = 1,..., m. Hence
{X Jj=1,...,m}is multlvarlate infinitely divisible with parameters

(3.1) A = ¥ «B)
B2c(A)
(B—c(A))ND=¢

£*(+) is similarly defined, and the remainder of the lemma follows easily. O

LEMMA 3.2. Let X(7) and Y(7) be multivariate infinitely divisible processes
with parameters t and t*, respectively, based on the same family Q,. Then L for
any m, 0 <1, < o0 andmtegersl<zj<n j=1,...,m, the vectors X =
(Xi(1)y oy X (1)), Y = (Y (my), ... Y, (7,,)) have multwariate infinitely divisi-
ble dzstrzbutzons with parameters denoted by 8= {8(A): ¢ +AC{l,...,m}}
and 8* = {§*(A): ¢ # A C {1,..., m}}, which will be determined later.

The following implications obtain:

Condition (1.5a) implies

(3.2a) Y 5(A4)< Y s(A).
ADB ADB
Condition (1.5b) implies
(3.2b) Y (A= Y 5%A)
ANB+¢ ANB+#¢

forall BC {1,...,m}, B # ¢.[(1.5a) or (1.5b) is assumed for all B C {(1,..., n},
B # ¢].

Proor. Consider the random vector { X;;} in R"”‘ defined by {X;;} = {X,(;):
l1<i<n,1<j<m},where0=1<7, < --- - Note that { X, } contains
all the components of X. For sets A C {G,J)1<i < n,1 <j < m} of the form
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A=AX{j,j+1,...,m), where ¢ # A €./, let
(3.3) s(4) = (15— 5,_)t(A);

otherwise let s(A) = 0. It is then easy to check that {X;;} is multivariate
infinitely divisible with parameter s(-). It follows from Lemma 3.1 that X is also
multivariate infinitely divisible with parameter § which can be determined from
(3.1) and (3.3). {Y;;} and Y are similarly determined with parameters s*(+) and
§*, respectively.

Suppose Condition (1.5a) holds. Let B € {(i, j):1<i<n,1<j<m), B# ¢
and define Cp={i: 1<i<n, 3 j, 1<j<m, (i, j) € B} and jz= inf(;:
1<j<m;3i,1<i<n,(i, )€ B)}. Then, under (1.5a),

(3.4) Y s(A)=m X tC)<m, ¥ t*(C)= ¥ s*(A).

A2B C2Cy C2Cy ADB
Similarly, let Cp ;= {i: 1 <i <n,3 k>, (i, k) € B}. Then, under (1.5b),
Y s(4)=Y(p-n,) X #C)
ANB+¢ Jj=1 CNCy, ;#¢
(3.5)

2L (-5 T @)= T (4

CNCy ;#¢ ANB+¢

Lemma 3.1 together with (3.4) and (3.5) verifies (3.2a) and (3.2b). O
The next result follows from Theorems 1.1 and 1.2 and Lemma 3.2.

THEOREM 3.3. Under the conditions of Lemma 3.2, suppose

(3.6) Y tHA)< Y t(A) forall¢ + Be,
A: ADB A: ADB
(3.7) Y HA)= Y t*(A) forallBe .
A: ANB#¢ A: ADB#¢
Then (with X, Y as defined in Lemma 3.2)
(3.8) PX=c)<P(Y=¢),
(3.9) PX<c)<P(¥ <ec).

If X(7) and Y(7) are nonnegative processes, then (3.6) = (3.8) and (3.7) = (3.9).
Inequalities for first passage times are contained in the following result.
THEOREM 3.4. Let X(7) be a nonnegative multivariate infinitely divisible

process with parameter t based on Q,. Define the first passage time TX =
(TO,..., TX) by T = inf{r: X,(1) > b;}, by,..., b, fixed constants.
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Let Y(7) be another such process with parameter t*. Then

(3.10) Y H4A)< Y t*(A) forallB+¢,Besd
A: ADB A: ADB
implies
(3.11) P(T® <¢) < P(TY <¢) forallc e R”
and
(3.12) Y (A= Y t*(A) forallBex
A: ANB+#£¢ A: ANB#¢
implies
(3.13) P(T® >¢) < P(TY) >¢) forallec € R",

where T > ¢ means T, > ¢;,, i = 1,..., n. ,

If X(7) and Y(r) are multivariate Poisson processes and TX), T™ are first
passage times for b, = --- = b, = 1, then (3.12) and (3.13) are equivalent.

PROOF. (3.10) = (3.11): »
P(T® <¢) = P(X((c) 2 b,i=1,...,n) <P(Y(c) 2 b,i=1,...,n)
(by Theorem 3.3)
= P(TY < ¢).
(3.12) = (3.13) by a similar argument.

(3.13) = (3.12) for X, Y multivariate Poisson because for the choice c; = 1 if
i € B and 0 otherwise, we have

PT™ > ¢) = exp{— i t(A)}. o
:ANB#¢

Note that when X(7) is a multivariate Poisson process, then for b= ... =
b, = 1 we have that T® is distributed as min ,, ;. ,V,, where V, are indepen-
dent exponential variables with expectation 1/#(A), A € &. The distribution of
T then corresponds to the multivariate exponential distribution of Marshall
and Olkin (1967); see also Esary and Marshall (1974).

4. The M/ G/  queue. Inthe M/G /0 queue, customers arrive according
to a Poisson process with parameter A, the service time is distributed according
to some general distribution denoted by F and there is an infinite number of
servers. Let X(7) denote the number of customers in service at time 7.

PRrOPOSITION 4.1. The joint distribution of (X(t),..., X(r,)), 0 < ™ <
“++ <, is multivariate Poisson with parameter {t(A))} defined for sets of the
form A= {k, k+1,...,1} by
(41)  t({k,...,1}) = )\fk [F(r31 — u) — F(r,— u)] du, k<l
Te-1
and {(A) = 0 for sets A that do not consist of consecutive numbers. [In (4.1)
observe the natural conventions 7, = 0, 7, , = c0 and F(co — u) = F(o0) = 1.]
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Proor. For A= {k,k+1,...,1} let Z, denote the number of customers
who entered the system during the time interval (7,_,, 7,) and whose service
terminated during (7, 7,,;). Then Z, has the Poisson distribution with parame-
ter equal to A(7, — 7,_;)p, where p denotes the conditional probability, given
that an individual customer arrives during (7,_,, 7,), that his service terminates
during (7, 7., ;). We have

p=(n=m) " [" [Flries = w) = F(ri = w)] d,

k=1,...,n,l=1,...,n
and

X("’k)= Z E Z(i--~j}‘

l1<i<k k<j<n

In this representation of X(7,), X;. ;. aZ; ..., represents customers entering
during (7;_;, 7;). Proposition 4.1 follows by combining the preceding calculations.
]

ProPoSITION 4.2. Let X(7) be as before and let Y(r) be another such
process with arrival rate y and service time distribution G. Fix 7, < --- <1,
Then

(42) P(X(7)=cp..., X(1) 2 ¢,) < P(Y(py) 2 ¢y,..., ¥(7,) > ¢,)
forall ¢ = (¢cy,...,c,) if and only if

(4.3) A/Tj [1 = F(u)] duszTj [1-G(u)]du foralll <i<j<n.
On the other hand,

(44) P(X(7)<ecp,-.., X(1) <¢,) <P(Y(7) <¢c,...,Y(1,) < ¢)

forall c = (cy,...,c,) if
AT - F@)duzy [T - G(w) du
0 0

foralll <i<j<n.

(4.5)

Conversely, if (4.4) holds for all ¢ = (cy,..., c,), then
(4.6) x/”(l — F(u))duzv[ (1 - G(u))du foralll<j<n.
0 0

PrOOF. (4.2) & (4.3). For t(A) of (4.1) and B € &/ whose smallest and
largest elements are i and j, respectively, we have

Y {A)= L Ltrn) = ¥ SN [Frs - u) — Flg, - u)] du

A: ADB v=1p=j v=1p=j “T-1

A/O"'[l — F(r; — u)] du = A/_[l — F(u)] du.

The first assertion of the proposition now follows from Theorem 1.2 and
Proposition 1.3.
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(4.5) = (4.4) and (4.4) = (4.6). Let
B={jis- e Jn}> 1<j;< - <j.<n, j,=0.

Then
L A=Y ¥ tr...,p)
A: ANB#¢ k=1 j,_,<v<j,<p
(4.7) = f‘,}\f”‘ (1 - F(7, — u))du

k= Tik-1

3

= ZA]* (1 - F(u)) du.

That (4.5) = (4.4) now follows from Theorem 1.2. That (4.4) = (4.6) also follows
from Theorem 1.2 and (4.7) with m = 1. O

The queue X(-) converges to a stationary process if (and only if) oo >
fudF(u) = (1 — F(u)) du. Let X(-) denote this s process. Then for any fixed
0<m< - w (X(1y +8),..., X(1, + 5)) > (X(Tl), X(r,)) in distribu-
tion as s - 0. Consequently (X( 1-1), X(7,)) is a multlvariate Poisson vari-
able. The following is an immediate consequence of Proposition 4.2.

COROLLARY 4.3. Let X(7) and Y(r) be the stationary versions of the processes
in Proposition 4.2. Fix 0 <7 < --- <1, Then X and Y satisfy (4.2) for all ¢ if
and only if

(4.8) }\foo [l—F(u)]dusyfoo [1-F(u)] du foralll <i<j<n.

If

(4.9) xjo“"(1—p(u))du2y/0°°(1 — G(u)) du

and

(4.10) A/O”"""(l — F(u))du > yfo”"’"u - G(u))du, 1l<i<j<n,

then they satisfy (4.4). Conversely, (4.4) = (4.9) and if equality holds in (4.9),
then (4.4) = (4.10).

REMARK 4.4. (a) It is easy to conclude from Proposition 4.2 that (4.2) holds
forallcand all0 <7, < --- <1, if and only if
(4.11) A1 - F(u)) <y(1 — G(u)) forall u> 0.
On the other hand (4.4) holds for all ¢ and all 0 <7, < --- < r_if and only if

(4.12) )\ff(l — F(u))du > y/f(l — G(u))du forall r > 0.

(b) Note that (4.11) and (4.12) cannot simultaneously be valid unless A(1 —
F(u)) = (1 — G(u)) for all u > 0. In this case the two processes are identical;



INFINITELY DIVISIBLE PROCESSES 655

hence there is no nontrivial situation where both (4.2) and (4.4) hold for all ¢ and
alo<m < -+ <7,

(c) For the stationary processes X and Y, (4.2) holds for all ¢ and all
0<m7 < -+ <um,if and only if

(4.13) }\[0(1 ~ F(u))du < 'yj;w(l - G(u)) du.

(4.4) holds for X,Y for all c and all 0 <7, < --- <, if (49) and (4.12) are
valid. If equality holds in (4.9), then (4.12) is also a necessary condition for (4.4)
tohold foralleand all0 <7 < -+ <7,

(d) When A = y and [udF(u) = [§° udG(u) < o0, then (4. 12) and (4.13) are
equivalent, familiar conditions. Consequently, there are many pairs of processes
X and Y whose stationary versions X and Y are not identical and satisfy both
(4.2) and (4.4).

(e) Passing to the limit (as n — oco) shows that (4.11) = P(X(7) >
c(1)) < P(Y(1) = ¢(7)) for any function c¢: (0,00) — [0,0) and (4.12) =

P(X(7) < ¢(7)) < P(Y(7) < c(7)) for any function c(-) with analogous results
for X and Y.

Closely related results on stationary M /G/c queues and related processes
were obtained recently by Huffer (1987). For example, Huffer’s Theorem 1.1d is
equivalent to the assertion concerning (4.11) for the processes X and Y in our
Remark 4.4e.

5. Bivariate cumulative distribution functions. Let V,,..., Vy be inde-
pendent identically distributed random variables in R? with cumulative distri-
bution function F(») = P(V < »). Their sample cumulative distribution function
is Fy(v) = N~Y{number of i o V; < »}, » € R%

Note that for »,,...,», € R% N(Fy(»,),..., Fy(v,)) is multivariate multi-
nomial as in Corollary 2.7 [with U, = 1 in (2.3)]. Its parameters are described by
(1.7) with T, = {»: » <»;} and A the distribution of V. Let W,,..., Wy be a
second set of independent variables in R¢ with cumulative distribution function
G and sample cumulative distribution function G .

PrOPOSITION 5.1. LetS € R% andm: S — R Suppose that F(v) = G(m(»)).
@) If for every {v,,...,v,} CS, n=1,2,...,

(5.1) P(W<m(v),j=1,...,n) < P(V<y, j=1,..,n),

then for any c: [0,1] - [0,1],

(5.2) P(Gy(8) = c(G(8))V 8 m(S)) < P(Fy(») 2 c(F(v))VrveS).
(i) If for every {v,,...,v,} C RY,

(5.3) P(W < m(v,)forsomej =1,...,n) > P(V < vforsomej =1,...,n),

then for any c: [0,1] - [0,1],

(5.4) P(Gy(0) < c(G(8))V 8 € m(S)) < P(Fy(»r) < c(F(»))VrveS).
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ProoF. Fix »,,...,7, € R% Then (Fy(»,),..., Fy(»,)) is multivariate multi-
nomial as mentioned earlier and so is (Gy(m(»,)),...,Gy(m(v,))). It then
follows from (1.8) and Corollary 2.7 that (5.1) implies

P(GN(m(Vj)) > Cj; j= 1,..-, n) < P(FN(VJ) > Cj, j= 1,...,n).
Letting n — oo and choosing an appropriate dense sequence »,,v,,... and
¢; = c(F(v;)) yields (5.2) since F(v) = G(m(»)). The same arguments show that
(6.3) = (64). 0

REMARK 5.2. Note that
P(Gn(0) = c(G(8))V 6 € R?) < P(Gyn(8) = c(G(8)) V 6 € m(S))
and, if S = {»: 0 < F(») < 1}, then either

P(Fy(v) 2 e(F(»)) ¥ » €8) = P(Fy(v) 2 ¢(F(»)) Vv €RY) > 0
or

P(GN(O) >c(G(B))vee IRd) = P(FN(V) >c(F(»))Vrve IR"’) =0.

There are analogous assertions for the quantities appearing in (5.4).

Let d = 2. Let F be any given continuous cumulative distribution function.
Define G by

(5.5) G((6,,6,))=(6,+6,—1)", 0<86,,0,<1.

(W, whose distribution is G, is uniformly distributed along the counterdiagonal
line in [0,1]%, {(6,,0,): 6, + 6, =1, 0 < 6,,0, < 1}.) It is shown in Adler and
Brown [(1986), equation (3.7)] that there is a map m: {»: 0 < F(») <1} —
{6: 0 < G(6) < 1} (onto) such that G(m(»)) = F(v) and for any »,, », € R2,

(5.6) P(W<m(v), j=1,2) <P(V<y, j= 1,2).

PROPOSITION 5.3. For any distribution F on R? and any c: [0,1] - [0,1],
(5.7) P(Gy(0) = c(G(0))V 8 € R?) < P(Fy(v) = ¢(F(»)) V » € R?),
(5.8) P(Gy(0) < c(G(0))V 6 €R?) < P(Fy(r) < c(F(v)) V » € R?).

PROOF. Assume that F is continuous. Let »,,..., », € R® with 0 < F(»,) < 1,
J=1,...,n to avoid trivialities. Suppose, without loss of generality, »,, =
min {»;,} and »,, = min {»;,}. Then

{(mv<v,j=1,..,n)={rv<r,v<v,).

Hence, (5.6) = (5.1) = (5.2) = (5.7) because of Remark 5.2. A similar argument
shows that (5.3) holds, implying (5.4) and (5.8).

If F is not continuous, then there is a continuous cumulative distribution
function F’, say, and a map m’: R? - R? (into) such that F(v) = F'(m'(»)).
Hence Fy(v) = Fy(m'(v)) and the validity of (5.7) for F follows from the
previously established validity of (5.7) for F’. O
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REMARK 5.4. Proposition 5.3 implies in particular that

P( sup {VN (Fy(t) - F(¢))} > cN) < P( sup {VN (Gy(t) — G(t))} > cN).

ter? teR?

Adler and Brown (1986) proved a variation of this result involving the limiting
Gaussian process W(t) = lim _, VN (Fy(t) — F(t)).

Proposition 5.3 is applied in Adler and Brown (1988) to derive hypothesis tests
and confidence bands for bivariate cumulative distribution functions.

Acknowledgments. We wish to thank Samuel Karlin and Ingram Olkin for
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