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TWO-PARAMETER HUNT PROCESSES AND A
POTENTIAL THEORY

By G. MazzioTTo
Centre National d’Etudes des Télécommunications

A two-parameter Markov process X with regular trajectories is associated
to a pair of commuting Feller semigroups P' and P2 considered on the same
space E. A subsequent potential theory is developed with respect to an
operator % which is the product of the generators of P' and P?, respec-
tively. The definition of a harmonic function f on an open subset A is
expressed in terms of the hitting stopping line of A¢ by X and the stochastic
measure generated by f(X). A PDE problem in A with boundary conditions
on A€ is studied.

1. Introduction and preliminaries.

1.1. Introduction. Given a pair of semigroups P' and P? defined on two
distinct spaces E' and EZ2, respectively, the notions of bi-excessive or bi-
harmonic functions on the Cartesian product space E = E! X E? are well
known: see Cairoli (1966) and Walsh (1968). Moreover, these definitions may be
written out in terms of a two-parameter Markov process X, which is simply the
tensor product of arbitrary realizations X! and X? of the semigroups P' and
P2, respectively, as in Walsh (1981), Dynkin (1981) and also in Mazziotto (1985).
The generators of P' and P2, operating on functions defined on E! and E?,
respectively, extend trivially to commuting operators on functions of E, say £’
and #2. The Dirichlet problem associated to their product, £= %! X #2, is
studied in several recent publications, such as Dynkin (1981), Vanderbei (1983),
Doppel and Jacob (1983) or Jacob (1985), using various approaches. It concerns
the existence and the uniqueness of a function ¢ on E which is harmonic with
respect to % in a fixed open subset A C E, i.e., Lp =0 on A, and which is
equal to a given function f on the boundary dA. As pointed out in Dynkin (1981)
or Vanderbei (1983), the solutions of this problem are not unique in general; the
uniqueness requires, for instance, additional conditions on higher-order deriva-
tives of ¢ on JA, or regularity assumptions. Moreover, the domain A must have
a rather simple geometric shape.

Consider now a slightly different situation. Let A be the Laplacian operator
defined on functions on a Euclidean space E. Given a bounded subset A, the
biharmonic problem consists in solving the equation

A% = A(Ap) =0, on A,

subject to boundary conditions, such as ¢ and Ag are equal to fixed functions on
dA. This problem was treated by Has’minskii (1960) and Helms (1967), and the
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solution was expressed in terms of a (one-parameter) Brownian motion. A
discrete-time version of this problem is studied in Vanderbei (1984) by means of
a two-parameter process. It is clear that the operator A? is the product of two
commuting operators, defined on the same space E.

The preceding examples suggest studying the following general problem.
Given an open subset A of a l.c.d. (locally compact with a denumerable basis)
space E and a sufficiently smooth function f on E, does there exist a function ¢
on E such that (#'—p,I)- (£2—p,])e=0o0n A, and ¢ =f on A° (the
complementary set of A in E)? The operators ! and #? are assumed to be
the generators of two Feller semigroups on E, say P' and P? respectively, which
commute with each other. The real numbers p, and p, are taken both strictly
greater than zero, and I denotes the identity map on E. The case where p,
and/or p, are equal to zero could be treated similarly, under extra technical
assumptions which ensure the boundedness of various expressions.

The aim of this paper is to develop a potential theory, expressed in terms of a
two-parameter Markov process, which allows a stochastic representation of
solutions of the above problem. The organization is as follows.

After the preliminary definitions of Paragraph 1.2, we show in Section 2 that
the two one-parameter semigroups P! and P? associated to #' and £?
respectively, determine a two-parameter semigroup P. We prove by extending
the construction made in Blumenthal and Getoor (1968) that, if P enjoys
conditions analogous to the Feller conditions of the classical theory, then there
exists a realization X of P which is a two-parameter Markov process having
regular trajectories; for these reasons, it will be called a Hunt process. This result
extends those of Mazziotto (1985) and, partially, those of Michel (1979). In
Section 3, we state a notion of harmonicity with respect to the operator
(&' — p,I) - (£? - p,yI). The approach follows Dynkin (1965) or Meyer (1967)
in the classical theory. To this end, we introduce various elements of a potential
theory which recall and generalize notions encountered in Cairoli (1966, 1968),
Walsh (1968, 1981), Dynkin (1981), Vanderbei (1983) and Mazziotto (1985).
Finally, we exhibit a function which is harmonic in a given open subset A, and
equal to a smooth function f on the complementary set A€ This function is
written out in terms of a stochastic measure generated by the function f and the
Hunt process X, applied to the stochastic interval determined by the stopping
line, where X begins to hit A€ and the point at infinity. Unfortunately, we can
only answer the question of uniqueness for solutions when we know that they lie
in a set of smooth functions.

1.2. Preliminaries. For the main notions and basic definitions of the theory
of two-parameter processes used in this paper, we refer to the works of Cairoli
and Walsh (1975) and Wong and Zakai (1974). The two-parameter processes are

indexed by R2 or by its one-point compactification R2 = R2 U {c0}. This index
set is endowed with the partial order relation,

s=(s,8,) <t=(t,t,), ifandonlyifs, <¢ and s, <¢,,

with 0 = (0,0) < ¢t < o0 = (00, 0), V ¢.
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Given t € R%, set [0,¢] = {s: 0 < s < t} and [¢, 0] = {s: s > t}; these are
called closed intervals. The strict sense partial order,

s=(s;,8,) <t=(t,t,), ifandonlyifs, <t and s, < t,,

enables us to define open intervals in a similar manner. More generally, for any
set H C R2, we denote by [ H, o] the closure of the union over ¢ € H of all the
intervals [ ¢, o], and by début(H) or D(H) the lower boundary of [ H, oo ].

Given s, t € R2, we set s - t = s,t, + Sot, and |t| = t,t,. Let (2, &, P) be a
complete probability space; a two-parameter filtration is a family %=
(Z,; t € R2) of sub-o-fields of .7 which satisfies the following condition:

(F1) # isincreasing, ie, # C %, fors <t,and % 6 =«.

Moreover, % is said to be P-complete if, in addition to (F1), the following
conditions are fulfilled:

(F2) #, contains all the P-negligible sets of /.
(F3) # isright-continuous, i.e., V &: =N, ,%.

Given a filtration % satisfying (F1), (F2) and (F3), we define two one-parameter
filtrations #' = (£} v € R,) and F?%=(£% u € R,) by setting

VUGR+: %l= V ‘%u,v) and ‘%12= v ZU»“)'

veER, vER,

These one-parameter filtrations verify the usual conditions of the classical
theory [see Dellacherie and Meyer (1975)]. The filtration % hereafter considered
also enjoys the classical conditional independence property called (F4) in Cairoli
and Walsh (1975) or Wong and Zakai (1974):

(F4) For every t € R%, the o-fields #,' and %, are conditionally indepen-
dent given #,.

Every process X = (X,; t € R%) is implicitly assumed to be measurable; we
say that X is adapted to the filtration # (or #adapted) if, for any ¢ € R2 , the
random variable X, is % measurable. A process X is said to be a modification of
another process X’ if and only if, V t€ R%: X,= X/, P-as. We do not
distinguish two processes X and X’ such that P3 #: X, # X;) = 0.

On the product space @ X R2, the o-fields of, respectively, the predictable
sets, the optional sets and the progressively measurable sets are defined in

Merzbach (1980), Meyer (1981) and Bakry (1981), in the same way as in the

classical theory. Given a random set H C @ X R%, we extend similarly the

notions of stochastic intervals as [H, o], and of début, as D(H). Recall [see
Merzbach (1980)] that the début of a progressively measurable (resp. predictable)
set is what is called a stopping line (resp. predictable stopping line). A stepped
stopping line is a stopping line which has only a countable number of distinct
configurations in R2 when w runs over Q, each of them being composed of a
finite number of segments parallel to the coordinate axes, with all the summits in
the set D of the dyadic points in R2 [see Merzbach (1979)]. If L and L’ are
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arbitrary stopping lines, we say that L < L’ if and only if [L’, 0] C [ L, o0]; if
we identify each ¢t € R2 with the stopping line D(t), then this relation extends
the partial ordering of R2. It is proved in Bakry (1981) that a predictable
stopping line can be announced by an increasing sequence of stepped stopping
lines.

Let X = (X, t € R%) be a two-parameter process assumed to be integrable
and right-continuous in LY, o/, P). Let ¢ be the finitely additive algebra
generated by the elementary predictable sets of the type F X ]s, t], for F € &,
and s < t; the o-algebra generated by ¢ is the predictable o-field 2. Then we
define a finitely additive function, called Doleans function, u* on # by setting

pX(F x]s,t]) = E(lp- X, p),
where [ denotes the indicator function of F, and where
X1o,0= Xo + Xy = Xop, 1) — Xsyt)-

The process X will be said to be admissible [see Merzbach (1979), in other works,
the terminology is admissible quasimartingale, or sometimes semimartingale] if
and only if the function u* extends to some o-additive signed measure on 2,
again denoted by u*. Various conditions ensuring that a process is admissible can
be found in Merzbach (1979), Brennan (1979) and Meyer (1981).

A two-parameter process X is said to be a supermartingale if and only if

Vs,teR2,s<t: E(X)%) <X, as.
Moreover, we will say that X is of positive variation if
Vs,teR%,s<t: E(X]S’tllﬂ;) >0 as.

Let E be a locally compact space countable at infinity (l.c.d. space), and let 8
denote the point at infinity of the Alexandrov compactification E; = E U {8}.
In the sequel, any function defined on E is implicitly extended to E; by giving
the value zero at infinity. The space of all the Borel bounded (continuous
bounded) function on E (or Ej) is denoted by b(E) [resp. Cy( E)].

Given an arbitrary point ¢ € R2, consider the four following quadrants:
Ql={s:s>1),Qr={s:8>t,8,<t),@R={(s:s<t),Qf={s:s<t,
S, > t,). A function f from RZ2 into a topological space U is said to admit
quadrantal limits [see Bakry (1980)] if and only if

VteR2,Vi=1,...,4: liminf f(s) = limsup f(s);
SEQy; st s€EQy; st
f is said to be cad-lq if it admits quadrantal limits and is right-continuous, that
is to say,
VteR2: f(t) = lim f(s).

SsEQ;; s—t

2. Two-parameter Hunt processes. A two-parameter sub-Markov (resp.
Markov) semigroup P = (P; t € R2) on E (resp. Ej;) is a family, indexed by
R2, of kernels on E (resp. E;) such that

Vs,teR2:P,, =P -P,=P,-P, and P,= Identity.
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As usual, any sub-Markov semigroup N extends to some Markov semigroup P, as
follows:

VteR2: P(x; A) = N(x; ANE)+1,(8)(1 - NJ(x; E)), ifx€E,
=10,(8), ifx=28

for any x € E5 and anyA € &;.

In the sequel we do not distinguish between the sub-Markov semigroup N on
E and its Markov extension P on Ej.

Given a two-parameter semigroup P = (P; t < R2), we obtain two one-
parameter semigroups P! = (Pl; u € R,) and P? = (P2 v € R,) by setting

Vu,oeR,:P,=P,, and P?=PF,,,.
The semigroup property of P implies that P! and P? commute each other, i.e.,

VuveER, P.-P?=P!-P.=P, .

Conversely, the above formula allows us to define a two-parameter semigroup P
from two commuting one-parameter semigroups P! and P2

Let #! (resp. #?%) be the generator of the semigroup P! (resp. P?); we
denote by %! (resp. £?) the operator defined for r € R, as to be £ — rl
(resp. £2 — rI), where I is the identity operator. It can be easily checked
that, for any p = (p,, p,) € R2, ,S,”I}I and 5%,2; commute with each other. Then
we define the operator %, by setting

L, =% L2 =92 2.

The domain of the operator %, is the set (%)) of all the functions f on E,
such that (%} f)and £, 2($ » [ ) are well- defined functions which are identi-
cal and continuous on E;.

The two-parameter resolvent family associated with semigroup P = (P, t €
R2) is defined by setting

VpeR:, p>0,Vfeb(E):Uf= f e~P''P,fdt.
R?

Under additional integrability assumptions for P, this definition could also be
extended to some p belonging to the coordinate axes, as in the classical theory
for p = 0. We do not study such problems in this paper.

We shall say that the semigroup P is realized by a two-parameter Markov
process if there exists a measurable space (2, &) endowed with a family of
probability laws (P,; x € E;) and a two-parameter process X = (X,; ¢ € R%) on
(2, &) with values in Ej; such that

V€ E,Vfeb(E),VteR:: Pf(x) = E(f(X,),

where E (-) denotes the expectation with respect to P,.

Given a semigroup P, it is easy to obtain a coarse realization (2, A,(P,;
x € E;), X). As in the classical theory, the problem consists in finding a
realization where the space Q is not too large and the process X enjoys nice
regularity properties. The aim of this section is to generalize the construction
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made by Blumenthal and Getoor (1968) for a Hunt or a Standard process. The
extra assumptions needed for the two-parameter semigroup P are similar to the
Feller conditions of the one-parameter situation. More precisely, we shall con-
sider the following hypotheses:

(C1) For any ¢t € R2, the kernel P, maps the set Cy(E) into itself.
(C2) For any f € Cy(E), the functions (P,f; t € R2) converge uniformly
towards f when ¢ tends to zero.

REMARK 2.1. As in the classical theory, the above conditions can be ex-
pressed in terms of the resolvent. It can be proved exactly as in Blumenthal and
Getoor (1968), (1-9-4), that (C1) and (C2) imply the following conditions:

(C'1) For any p > 0, U, maps Cy(E) into C(E).
(C'2) For any f € C(E), |p|U,f converges uniformly towards f when p, and
D, both increase infinitely.

To beg'm with, let us construct a coarse realization of the semigroup P. We set
= (E5)®* and #°= (é" )R, the process defined by the coordinates is de-
noted by X = (X,; t € R%),and 6(0,; t € R2) is the usual translation semigroup
over Q. Let#° = (£, t € R%) be the natural filtration of the process X. Given
x € Ej, the probability P, is obtained by induction on the ﬁnite distributions.

For neN and forapa1rofsubd1v1s1ons of R,:0=u'<u?®< --- <u"and
0=10'< v < ... <" the probability P2~ o is defined on the measurable
space (E8 , é’g’" ) by settmg
- n
Ipxu ..... On(CLxl,l" n n = l:[ I}-_-'[ ,+1_u,(6lxj+1 k> xj k)
-1

1_[ '“ il 1i+1;x1,i)£x(dx1,1)’

where ¢, is the Dirac measure on x. It can be easily checked that, since the
semigroups P! and P? commute each other, we could have obtained the same
probability law by acting first with P2 and then with P!, or by choosing any
intermediate strategy. By the way, we get a projective family of probability laws
indexed over the double definite subdivisions of R,, which generates, as an
application of the Ionescu-Tulcea theorem [see Neveu (1964)], a Borel kernel
P = (P,; x € E;) of probability laws on (2, &/). By the definition, for every
x € E;: P (X, = x) = 1. The process X is said to be normal.

It is clear that (9, &,(P,; x € E;)) or (2, &,P) is a realization of the
two-parameter semigroup P. The process X of this realization verifies several
conditions which rely on already known Markov properties in the plane R2 .

Let x € E; be fixed. For each ¢t € R2, &%,* denotes the o-field generated by
Ny s 0%, and all the P -negligible sets of .«7. We also consider the o-field &%, *
or F* (resp. F,>* or F2>%) generated by U, cp F7 4 [resp.U,cr Zi 1]
The filtrations #* = (%5 t € R%), F1* = (F1% t€ R:)and F2* = (F,2%
t € R2) satisfy the axioms (F1), (F2) and (F3) of the two-parameter process
theory as developed by Cairoli and Walsh (1975) and Wong and Zakai (1974).
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Finally, for each t € R%, we put %, =N, ;%> For each x € E, #* is called
the P -augmentation of the filtration #°, and similarly, #= (%; t€ R2) is
called the (P,; x € E)-augmentation, or the P-augmentation of % °.

In fact, it immediately follows from the above construction that, for any
n € N, for any subdivision0 < u;, < .-+ <u,of R, for any v, h € R, and for
any Borel bounded function f on Ef,

Ex( f(Xul,v+h’ cees Xun,o+h)|-%,2’x)

= j;mf(xl"“’ xn)PI%(Clxl; Xul,v) e Pl%(l'ixn’ Xun,v)
and similarly,

E(f(Xyin s Xornu IFF)
= fE"f(xl""’xn)P}lz(dxl; Xv,ul) T Pilz((ixn’ Xv,u,,)’

These formulae show that the process X is 1-Markov and 2-Markov in the sense
of Korezlioglu, Lefort and Mazziotto (1981). It is proved in this reference
(Proposition 2.6) that, for any x € Ej, the filtration #* satisfies the axiom (F4)
of conditional independence. Moreover, the process X is Markov also in the
sense of Nualart and Sanz (1979) (Proposition 2.4 of the preceding reference).

In what follows, the realization of the semigroup P may be arbitrarily chosen,
say (R, &,P, X).

Given a Borel function f on Ej and given p € R2, we define a two-parameter
process J( p, ) on (R, &) by setting

Vte R?ﬁ J(P’ f)t = e_p.tf(Xt)’

with the convention that e ™' * = 0 and X = 4.
For p > 0 and g € b(E), set f = U,g. Then, straightforward computations
show that, for any x € E; and any t € R?%,

J(p,Ueg),= Ex(j;t w]e‘P'Sg(Xs)dSIé“'t" , P-as.

We easily deduce from this relation that the process JJ( p, U,g) is an admissible
quasimartingale, for any probability P, [see Meyer (1981), 2, Théoréme 3.1]. The
class of all the processes of the form J(p, U,g) with p > 0 and g € b(E) will
play a fundamental role in the sequel. One of the reasons for that lays in the
following result.

PROPOSITION 2.1.  Givenx € E;, g € b(E) andp > 0, the process J( p, U,g)
admits a P.-modification the trajectories of which are cad-lg functions on
R2 U {0}.

Proor. It is based on the important results of Millet and Sucheston (1981)
and Bakry (1980, 1981) which say that several kinds of two-parameter martingales
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admit cad-lq modifications. More precisely, we start from the following decom-
position of J( p, U,g):
I(p,Uyg), = A+ E(A, olFF) — B Ay oJF2) = B An, o #07),

00, 00 t
with
At=f ePg(X,)ds, Vte(R,U{w})
[0,¢]

The process A is continuous. Then the fact that the two last terms admit cad-lq
modifications follows from Bakry (1980), Theorémes 4c and 6; and for the second
term, it is the main result of Millet and Sucheston (1981). O

REMARK 2.2. Let us stress another important feature of the processes
J(p,U,g). For p > 0 and for any nonnegative Borel bounded function g, the
process J(p,U,g8) is a supermartingale. Then recall that for any law P, and for
any t € R2,

IPx(J(P,U;,g)t >0; inf J(p,Upg)s - 0) —0,

seDNlo, t]

where D is an arbitrary denumerable dense subset of R3 U {o0}.

The next theorem is the main result of this paragraph: It generalizes a
classical one under the Feller conditions (C1) and (C2).

THEOREM 2.1. If the two-parameter semigroup P satisfies the conditions
(C1) and (C2), then there exists a realization (2, &/, P, X) such that the process
X has all its trajectories cad-lg on RZ.

PrOOF. It is similar to the one of the classical theory, using the results of
Proposition 2.1 and Remark 2.1. In what follows, we extend the construction
made by Blumenthal and Getoor (1968), Section I-9-4, and we only reproduce the
parts which differ. Let us start from the coarse realization of P defined in what
precedes, say (2°, #° P°, X°).

Denote by A, the subset of Q° of all the functions w = (w(¢); t € R%) such
that, for any ¢ € D, the set {w(s); s € D N[0, ¢]} is bounded in E. By using
Remark 2.1, it can be proved exactly as in Blumenthal and Getoor (1968) that

Aye’ and P(A,) =1, Vx€eE,.

Now denote by A, the subset of Q° of all the functions & = (w(t); t € RY)
having a restriction to D with quadrantal limits at every point of R 2 The proof
that A, € #/° is in the same spirit as in Blumenthal and Getoor (1968), with
slight differences we stress below. )

Let d be some metric for E; and define for ¢ > 0, A(x, y) = 1if d(x, y) > ¢
and h(x, y) = 0if d(x, y) < e If U is a finite grid of R2 with n - n elements,
say U= {(u;v)); Uy < =++ <lUp, 0, < -+ <0y i, j=1,..., n}, consider the
set % of all the sequences z = {z(k) = (u(k), v(k)); k=1,...,2n} in U such
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that either (u(1), v(1)) = (uy, vy),..., u(k) = u(k + 1) and v(k) < v(k + 1), or
u(k) < u(k +1) and v(k) =v(k + 1),...,(u2n), v(2n)) = (u,, v,), either
(u(1l), v(1)) = (uy, v,),..., u(k) = u(k +1) and o(k) > o(k +1), or u(k)>
u(k + 1) and o(k) = v(k + 1),...,(u(2n), v(2n)) = (u,, v,). Define
2n
H(U)(w) = SUI;Z h(Xz(k—n("-‘)’ Xz(k)(w))’

2 =2
then H (U) is «°measurable. For each V c R2, define H(D) = sup H(U),
where the supremum is taken over all the finite grids of the above type which are
contained by D. If D is countable, then H/(D) is again in &/°. Therefore, the set
A’, defined by

0 0
A= N N {H,DN[0,m]) <o)
n=1m=1
is measurable. It remains to check that A, = A/,. It is clear that A, C A/,.
Conversely, A’, represents all the functions w the restriction of which to any
increasing or decreasing path in D is right- and left-limited at every point of R2.
It can be easily shown that this property also implies that the restriction of the
function w to D admits quadrantal limits at every point of R2, therefore
A’, € A,. This proves that A, € «°.

The proof that P(A,) = 1,V x € E is again similar to the one of Blumenthal
and Getoor (1968). From conditions (Cl) and (C2), we have that for any
f € C(E), |p|U,f converges uniformly in Cy(E) towards f when p decreases to
zero. Then we can find a sequence {p,; n € N} in R%, and a countable dense
subset { f,; k£ € N} in Cy(E) such that the family {|p,|U, f;; n, k € N} is dense
in Cy(E) for the uniform convergence topology and separates the points of E.
Now let us prove that, for every i = 1,...,4, we have the inclusion

{EI teR2: liminf X,# limsup XS}
seEDNQy; s—t SeDNQ; s—t

c U {3 teR%:  liminf U, f(X,)# limsup U, fk(Xs)}.
n, k seDNQ; st seEDNQ}; s—t
In fact, if for an arbitrary ¢ € RZ, the set {X,; s€ D N Q}, s - ¢} has two
distinct adherent values, say X; and X;’, then there exists n, 2 such that
U, [(X{) # U, f(X/). Since U, f, is continuous, U, [(X{)and U, f(X/")
are adherent values of the set (U, fi(X,); s € D N @}, s — ¢}, then the above
inclusion follows. By Proposition 2.1, each set of the right-countable union is
negligible. Therefore, except eventually on some P -negligible set, the restriction
to D of the process X admits quadrantal limits at every point of RZ, i.e.,
P.(A,) =1,V x € E. The end of the proof is the same as in Blumenthal and
Getoor (1968), I-9-4: delete the complementary set of A, N A, in Q, replace X
by its limit in @. This leads to another realization of the semigroup P we may
identify with the canonical realization on the space € of the cad-1q function w
from R2 into E, such that w(s) =8 if s > ¢ and w(t) = 8, endowed with its
Borel o-field «/, where the coordinate process is still denoted by X, and where
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the probability laws P = (P,; x € E;) are defined as the images of the P?’s on
Q0. O

Until the end of the paper, the only realization of the two-parameter semi-
group P we will consider is the one constructed by Theorem 2.1; it will be
denoted by (92, &,P, X). The P-augmentation (resp. for every x € E, the
[P -augmentation) of the natural filtration of X is denoted by & (resp. &% *). Let
% (resp. €*) be the set of all the stopping points in R% U {c0 } with respect to the
filtration & (resp. F%).

The following result complements Theorem 2.1; it will justify the name of
two-parameter Hunt process for X. We make the convention that X = é.

THEOREM 2.2. Under the hypotheses of Theorem 2.1, the process X has the
strong Markov property with respect to stopping points, and is quasi-left
continuous in the following sense:

(i) For any %stopping point T and any %p-measurable R%-valued random
variable, for any f € b(E) and x € E,

Ex( f(XT+s)|3‘-T) = EXT( f(Xs)), P.-a.s.

(ii) For any increasing sequence of stopping points (T,; n € N) such that
T = lim T

lim XT,, =Xy, P-a.s, VxeE.
n— oo
The proof is exactly the same as in Blumenthal and Getoor (1968) (see I-8-11
and 1-9-4).

The lifetime of the two-parameter Markov process X is defined as being the
stopping line { which is the debut of the set {¢t € R2: X, = §}. From the
definition of {, it is clear that X, = 8 for every ¢ € [¢, oo[.

The following result is exactly the same as in Blumenthal and Getoor (1968)
(see I-9-3), and therefore its proof is omitted.

ProrosITION 2.2. If X is a Hunt process, then for each t the set A = {X_:
0 <s <t t<{)} is aimost surely bounded.

The next result shows that under additional assumptions, the Hunt realiza-
tion of P has continuous trajectories. It is a nontrivial generalization of a
classical result [see Blumenthal and Getoor (1968), I-9-10].

THEOREM 2.3. Given the Hunt realization of P, assume that, moreover, the
following condiiion holds:
For any compact set K C E and every € > 0,

1 .
li — P} E — B(«x, =0,
nea 0| 7 S92 max Pi(x, B - B(x, )

where B(x, €) denotes the open ball of center x and radius . Then, for any
x € E, the process X has P-a.s. all its trajectories continuous over [0, {[.
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PrROOF. Let us prove that for any fixed finite ¢, the Hunt process X is a.s.
continuous on [0, £] N [0, {[. Since the functions w € @ such that «w(¢) # 8, are
bounded over [0, ¢], we have

(t<tine= U {X,eK,Vse[o]),
neN

where {K,; n € N} is an increasing sequence of compact sets which covers E.
Thus, we only need to show that, for an arbitrary compact set X, the process
(X,; s < t)is a.s. continuous on the set {t < { and X, € K,V s < t}. There is no
loss of generality in assuming that ¢ = (1,1). Using the same argument as in
Mazziotto and Merzbach (1985), Proposition 3-6, we can see that the problem
reduces to verify that the restriction of (X,; s € [0,1]%) to any dyadic stepped
increasing (nonrandom) path z = (z,; u € [0,2]), (X,; u<[0,2]), is as. con-
tinuous. Namely, let z be an arbitrary increasing path from (0,0) to (1,1)
supported by the dyadic grid of order m: D,, = {(i2™™, j2™™); i, j € N}, for
m € N, parametrized by its length. Let K be an arbitrary compact set of E, let
¢ > 0 and for n > m, consider the inequalities

2n+1_1

U {d(szz-"’ Xz(/z“)z*") > e} n {Xs € K’ Vs< t})
k=0

P

x

2n+1_1

s kgo Ipx({d(szr"’ Xz<h+1)2~") > 8} n {szr" € K})

< X (Px({d( > S szz—"+(2-".o)) > 8}

N{2ge12n = 2y wi@ ) N {szz—n € K})
+ Px({d( lezz‘"’ lez2_"+(0,2—")) > E}

N A{Z(haner = Zrzni2-m) N {szz_,. € K}))
2n+1_1

I (E[ex,, (d(X0 Xorn) > )

IA

Zpo—n

{X € K; Z(hi1pn = 2pgn t (0’2—;»)}]
+ Ex[PXm_n{d(Xo, Xoom) > e);

(X, .<€K; Zpingn = Zpgn t (2_",0)}])

Zpo—n

< 2"*' max sup Pj-.(x, E — B(x, ¢)).
i=1,2x€K
It follows from the condition of the theorem that the last bound can be chosen as
small as we want for n sufficiently great and for arbitrary e. This proves that the
process (X, ; 0 < u < 2) is a.s. continuous. Therefore, we get that for any dyadic
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increasing path z in [0,1]%, the restriction of the process X to z is a.s.
continuous. To achieve the proof, recall that it is shown in Mazziotto and
Szpirglas (1981) that the set of the discontinuities of a cad-lq process is a.s.
composed of a countable number of vertical and horizontal (random) segments.
Therefore necessarily, there exists at least one stepped increasing (nonrandom)
path which intersects these segments with a nonzero probability, as soon as this
set of discontinuities is nonevanescent. That would be in contradiction with
what precedes; thus this set of discontinuities must be evanescent. This com-
pletes the proof. O

3. A potential theory for two-parameter semigroups. In this section, we
express by means of the two-parameter Hunt process various elements for a
potential theory associated to two-parameter semigroups. In the first part, we
extend several definitions already given by Cairoli (1966) and by the author in
Mazziotto (1985). Then we introduce a notion of harmonicity which generalizes
those studied in Dynkin (1981) or in Vanderbei (1983) and in Jacob (1985). The
main difference lies in the fact that we do not have to work with product spaces
and with two processes, and that the sets where a function is harmonic may have
general shapes.

Given a Borel set A C Ej, let us define the first hitting line of A by the
process X after an arbitrary point ¢, as being the debut of the random set
{s€R%: s>t X, € A}, denoted by T and also by T, for ¢=0. By the
definition, T} is a stopping line. It is easy to verify the relation

VteR2:t+ T,00,=T,
and, moreover,
Ti=D{t) vV T,, ontheset {t < T,}.

According to the zero—one law, the set {T = D(0)} = {0 > T,}, which belongs
to %,, is of PP.-probability zero or one, for all x € E. As in the classical theory,
the point x is said to be irregular (resp. regular) for A if P(T, = D(0)) = O [resp.
P.(Tf = D(0)) = 1]. It is clear that, if A is open, then every point of A is regular
for A.

The following definitions of excessive functions are similar to those given in
Cairoli (1966, 1968) for tensor products of one-parameter semigroups and in
Mazziotto (1985) for bi-Markov processes.

DEFINITION 3.1. Let p € R% be fixed, and let f be a nonnegative Borel
function on E. f is said to be p-excessive (with respect to the two-parameter
semigroup P) if and only if

() V¢eR2: e PBf <f,

(i) (P, f; t € R2) converges pointwise towards f when ¢ tends to zero.

f is said to be p-excessive with positive variation if and only if it is p-excessive
and, moreover, it satisfies

(iii) Vie=(¢,t)<R::

f+eP'Pf—ePhPlf— e PRPlf>0.
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The functions f such that f= U,g for some nonnegative g € b(E) are
p-excessive with positive variation; even if g is arbitrary, it may happen that f
is p-excessive [see Mazziotto (1985)]. These functions f will be called p-poten-
tials in the sequel. As it was noticed in Cairoli (1968), the minimum of two
p-excessive functions with positive variations does not enjoy, in general, the same
property.

As in the classical theory, and as in Mazziotto (1985) for bi-Markov processes,
the p-excessive functions can be approximated by means of p-potentials.

PRrROPOSITION 3.1. For p > 0, any p-excessive function f is the limit of a
nondecreasing sequence of p-potentials (U,g"; n € N). Moreover, if f is p-exces-
stve with positive variation, then the g"’s can be chosen nonnegative.

Proor. See Mazziotto (1985), Proposition 2.2.1. O

Recall that in Section 2, we have associated to any p € RZ and f € b(E),
the two-parameter process J( p, f) defined by

ViteR2: J(p,f),=eP4%(X,) and J(p,f), =0

It is clear that, if f is p-excessive (resp. with positive variation), then J(p, f) is
a nonnegative supermartingale (resp. with positive variation) for any probability
P.. Now, we denote by p?/ the finitely additive Doleans function, on the
algebra of elementary predictable sets 7, associated to the process J(p, f) and
the probability [P, as in Section 1; for any pair of stepped stopping lines L and
L’ such that L < L’, we have [see Merzbach (1979)]

"";f:,’f(]L’ LI]) = J(p, f)L - J(p7 f)L"

Moreover, if J(p, f) is an admissible process with respect to P,, then p?/
extends to a o-additive measure on the predictable o-field 2, also noted u?/.
This is the case if f is a p-potential, say f = U,g, with p > 0, namely for any
pair of stopping lines L and L’ such that L < L’, we have

w20 =B [, | e ar)
1L, L]
Unfortunately, this property does not generalize to all the p-excessive functions:
It may be some function f such that J(p, f) is not an admissible process. For
p-excessive functions with positive variation, we may refer to the discussion
made in Meyer (1981), Chapter 2.3.
For these reasons, we distinguish the following class of p-excessive functions.

DEFINITION 3.2. Given p € R%, a Borel bounded function f is said to be
p-admissible if and only if the Doleans function p?'/ on ¢ extends to a bounded
o-additive measure on the predictable o-field 2, for any x € E;.

The next notion is widely inspired from those of harmonic operators of the
classical theory [in what follows we mainly refer to Meyer (1967)], but its domain
of definition is restricted to the admissible functions.
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DEFINITION 3.3. Given p € R2 and A a Borel subset of Ej;, the harmonic
operator HZ associates to the admissible function f, the function H%f defined
by

VxeE: Hyf(x) = —p2 (114, o),
where T, is the first hitting line of A by the process X.

The operator HY is linear and maps the vector space of the admissible
functions into the set of the Borel functions. In the classical theory, if the
function f is p-excessive and A is open, then HZf is also the less p-excessive
majorant of f over A [see Meyer (1967)], and HZf is also called the p-reduite of
f over A. It is not clear that such a characterization holds in the present
situation. However, we have the following result in that direction.

PROPOSITION 3.2. Let A be a Borel set, and for p > 0, let f = U,g be a
p-potential. Then the following assertions hold.

(i) HRf(x) = f(x), for any pomt x which is regular for A.
(ii) If f has positive variation, i.e., g > 0, then the function H% f is p-exces-
sive.

The proof is based on the following lemma.

LEMMA 3.1.  Let A be a Borel set, arnd for p > 0 let f = U,g be a p-potential.
Then, for any stopping point 1 € € and for any x € E, the following relation
holds:

COHIX) < B[ e ru(x,) doz.
[TX, ]

The proof of the lemma is a straightforward application of the Markov

property when 7 has a constant value, and of the strong Markov property of

Proposition 2.2 when 7 is a stopping point.

ProoF oF PROPOSITION 3.2. (i) Let x be such that P (T, = D(0)) = 1. Then
1) - |
: J

(ii) For ¢t € R2, let us compute e P ‘P,HZf. From Lemma 3.1, we have for
any x € E,

e-p~Sg(Xs)ds) - Upg(x) = f(x).

A>»®©

e PHEf(x) = E( I ]e-p~8g(xs>ds).

T4,

Since g > 0 and T > T,, we obtain

e ”'PH}f(x) < HR f(x).
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Moreover, since T/ decreases to T, when ¢ decreases to zero, we also have
lim, , e P 'P,HZ f(x) = H% f(x). This completes the proof. O

Given p € R%, a Borel set A and a p-potential f, we consider the process
J(p, H{f ) and the Doleans function p? #i/ on £ associated to any probability
P,. In what follows, we study the behavior of J( p, HZf ) before X hits A.

PROPOSITION 3.3. Letp € R%, A a Borel subset of E5 and f a p-potential.
For any stepped stopping line L and for any x such that P(L < T,) =1, it
holds that

p2#i(fo, L]) = 0.

ProoF. It is well known [see Merzbach (1979)] that for an arbitrary stepped
stopping line, we have

peHRI([0, L]) = E(J(p, HYf),) — HEf(x)
and

I(p, B3f), = [ J(p, HEF), dAf,

where A’ is the optional process with an integrable variation defined by

Recall that in the proof of Proposition 3.2 we got, for a p-potential f = U,8, the
identity for any ¢,

P = B[ e u(X,) a)
[T£, ]
Therefore, the following relations hold:

E(J(p, H§f),) = E. LzJ(p,Hzf),dAf)

-E|[ e-""Hzf(X,)dAf)
R2

+

2
e

-E|[ E( L. w]e-P'Sg(Xs)ds%) dA%)

= Ex jl;%—jl;i e_p'sg(-Xs)u{SZTAt} dsdA{‘)

—_ —p-S L
Let us compute separately the term

I(s, L) = /';2“{327}) dAf.
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For a stepped stopping line, we have
!
-1
A{' = Z (_1) "{tzLi}’
i=1
where the collection of random points (L;; i = 1,..., /) denotes the summits of

the line L(! is also random, but a.s. finite). We now use the fact that L < T,. It
follows that L; < T,,V i = 1,..., . From this, we deduce that

Vi=1,...,1: Tk = T, v D(L,).

Thus, we obtain another expression for I(s, L),

l l
-1 -1
I(s, L) = Z (_1) “{szTALi} = Z (_1) u(szTA;szD(L,-)}
i=1 i=1

l
-1
= u{szTA} Z (_1) “(szD(L,-)} = "{szTA;szL)
i=1

= {saTA)'

Finally, coming back to the main expression, we get

Ex(J(p’ HEf )L) = Ex(/';z e_p.sg(Xs)n(szTA} ds | = H; f(x),

+

and therefore,
p2Hi([o, L]) = 0. o

At this stage, we may introduce our definition of harmonicity; it will be seen
further that it generalizes the already known notions.

DEFINITION 3.4. Let p > 0 and let A be a Borel subset of Ej, then a Borel
function f on Ej is said to be p-harmonic on A if and only if for any stepped
stopping line L and for any x such that L < T}, P,-a.s.

w2 ([0, L) = 0.

Using this definition, we deduce from Proposition 3.3 that the function HZ.f,
where f= U,g is a p-potential and A° is the complementary set of A, is
p-harmonic on the set A.

In order to connect this definition with already known notions of harmonicity,
we need some more assumptions on the process X and on the functions f and g.
Recall that Theorem 2.2 stated conditions on the semigroup P ensuring that X
is continuous.

PRrOPOSITION 3.4. For p > 0, let f = U,g be a p-potential and let A be a
Borel subset of Eg. Then:
(i) If g is null over the set A, then f is p-harmonic on A.

Assume, in addition, that the process X is continuous and that the set A is open.
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Then:
(ii) If f is p-harmonic on A, then f and HX:f coincide.
Assume, in addition, that the function g is continuous. Then:
(iii) If f is p-harmonic on A, then g is null over A.

PrOOF. (i) Consider an arbitrary stepped stopping line L. For x such that
L < T,., P,-as., we also have P(X, € A; t < L) = 1. Therefore, the function
(t > e Pg(X,); 0 <t<L)is identically zero P,-a.s., and it follows that

b (0L = B[ | e ar| o

This proves that f is p-harmonic on A.

(ii) Since the process X is continuous and A° is closed, the set {¢t € R%:
X, € A°) is predictable. It follows [see Merzbach (1980) and Bakry (1981)] that
the stopping line 7,. is predictable, and then announcable. Moreover, it is
proved in Bakry (1981), Théoréme 14, that there exists a sequence (L,; n € N)
of stepped stopping lines which announce T,.. For such a stopping line L, we
have from Definition 3.4 that p?-/([0, L]) = 0. Since f is a p-potential, p?/ is a
o-additive measure; hence, pu? ([0, T,.[) = 0. This proves that, for every x,

f(x) = ”"g' f([Oa 00]) = Mf, f([TACa OO]) = chf(x)

(iii) We first assume that g has a constant sign on A. Let x € A be fixed.
Since A is open and g(X) is a continuous two-parameter process, we have
P(T,. # D(0)) = 1. As in (ii), there exists a sequence (L,; n € N) of stepped
stopping lines which announce T,.. Therefore, one can find a stepped stopping
line L such that P,(L # D(0)) > 0 and P(L < T,.) = 1. By the definition of the
p-harmonicity, we get

w2 ([0, L]) = E( /[ L]e-peg(X,)dt) ~o.

Thus, the continuous process (g(X,); t€[0,L]) is P,-as. identically null.
Combining these two results, we obtain that g(x) = 0. Now, if g is arbitrary, we
replace the set A by either the set A N {g > 0} or the set A N {g < 0}, and we
repeat the above proof. O

PROPOSITION 3.5. For p > 0, let f = U,g be a p-potential with g € b(E),
and let A be a Borel subset of E. Then, for any x € E fixed, for any stopping
point 7 such that P(r € T,) = 1 and which can be announced by a sequence of
stopping points (7,; n € N) satisfying 7, < T,, V n and lim, .7, =1, the
following equality holds, P -a.s.:

lim e ? "H2f(X, ) = e P "f(X,).
neN "

ProoF. For x € E, consider 7 and a sequence (7,; n € N) satisfying the
above conditions. Since 7, < T}, it holds that

Ti»=D(t,) VvV T,, Pr-as, VneN.
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From Lemma 3.1, we have V n,

e P HEf(X, ) = Ex(/

e ig(X,) W)
[Tjr, o]

Using the preceding identity, we get
e HRf(X,) = E( [ Veamy e 8(X,) dsl7, )
n [TA’w] n n
For each n € N U {0}, writing 7, for 7, set
M, = I oo, P %8(X,)ds.
[, e E(X)

The sequence (M,; n € N) converges a.s. towards M_, and is uniformly bounded.
Thus, it follows [see Dellacherie and Meyer (1975), V-Théoréme 45] that

lim e~? HZf(X, )= lim E(M,/%, )

V7).

neN

=Ex / "{szv}e_p.sg(Xs)ds
[TA’°°]

Since P, (7 € T,) = 1, this last expression can also be written as

vz)
neN "

E|[ ea(X,)ds
[r,00]

= Ex(e‘p~‘rUpg(X,,.)| \Y 5‘:")
neN
Since the function f= U,g is continuous and the process X is quasi-left
continuous, we have
lim e ?™f(X,)=e"?"f(X,) as.
n—oo
This implies that e ? "f(X,) is measurable with respect to the o-field V, .y .
Finally, we get P,-a.s.,
lim e”"HEf(X,) = e Pi(X,),

n—oo

and this completes the proof. O

To conclude this paper, let us consider the problem stated in Section 1.1,
under the hypothesis that X is continuous.

Given p > 0, an open subset A C E, and a function f which is the p-poten-
tial of a continuous function g: f = U,g, find a function ¢ such that

¢ is p-harmonic on A,

¢ = f on the interior of A€,

for almost all x € JA, there exists a sequence (x,; n € N) in A such that
(x,, 9(x,); n € N) converges towards (x, f(x)).
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In the classical Dirichlet problem [see Dynkin (1965)] the boundary condition
is only

¢=f, on dA.

As pointed out in Helms (1967), Dynkin (1981) or Vanderbei (1983), the problem
involving a fourth-order differential operator needs to be some well-posed supple-
mentary conditions on the derivatives of ¢ at dA.

In this paper we have replaced these conditions by a stronger one, which says
that

¢ = U,g, on A°with g continuous on E.

By Proposition 3.3, the function ¢ defined as ¢ = HZ.f is p-harmonic on A.
Moreover, by Proposition 3.2, ¢ = f on the set of the regular points of A¢. The
set A being open, this is a fortiori true for the set of the interior points of A°. As
in the proof of Proposition 3.4, the stopping line T, is predictable and is
announced by a sequence (L,; n € N) of stopping lines. Therefore, for any
stopping point 7 which belongs a.s. to T}, there exists a sequence (7,; n € N) of
stopping points which announces 7 in the sense of Proposition 3.5 [for each n,
the stopping point 7, can be defined as the intersection of the stopping line L,
and of the optional increasing path which goes through r; see Walsh (1981)].
Denote by B the subset of dA made of the points x such that there exists no
sequence., (x,; n € N) in A such that (x,, ¢(x,); n € N) converges towards
(%, f(x)). Then, by Proposition 3.5, we get that for any stopping point r which
belongs P -a.s. to Tye: P(X, € B) = 0, for any fixed y € E. This is the meaning
we give to the expression “for almost all x € dA.”

Moreover, if we are able to show that the function ¢ = H2.f is the p-poten-
tial of some continuous bounded function, then, by Proposition 3.4, we have

(£'-pI)- (£2—p,I)p=0, onA.
Since ¢ is continuous on E, we also have from Proposition 3.4 that
¢=1f, ondA,

and ¢ is the unique p-potential verifying the above conditions.
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