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RANDOM TIME CHANGES FOR PROCESSES WITH RANDOM
BIRTH AND DEATH!

By H. Kasp1
Technion—Israel Institute of Technology and Cornell University

We study a random time change for stationary Markov processes (Y}, @)
with random birth and death. We use an increasing process, obtained from a
homogeneous random measure (HRM) as our clock. We construct a time
change that preserves both the stationarity and the Markov property. The
one-dimensional distribution of the time-changed process is the characteristic
measure v of the HRM, and its semigroup (ﬁ,) is a naturally defined
time-changed semigroup. Properties of » as an excessive measure for (B,) are
deduced from the behaviour of the HRM near the birth time. In the last
section we apply our results to a simple HRM and connect the study of Y
near the birth time to the classical Martin entrance boundary theory.

1. Introduction.

1.1. The classical case. Time change provides a powerful tool in the study of
Markov processes. Among other things, it is used to compare two Markov
processes that traverse the same path, but do so at different speeds, it enables
one to restrict the process to a subset of its state space and it provides the clock
(local time) for the study of excursions from a set.

In the classical setting one starts from a Markov process (X,, P) [t € [0, {),
X,=A for t>¢, where A is a cemetery point] with stationary transition
function and defines a new process of the same type by the formula X,(w) =
Xs(w), where (S,),  is an increasing process.

1.2. Processes with random birth and death. During recent years a great
deal of work has been done on Markov processes for which both the birth and
death times (denoted a and B, respectively) are random. An important class of
such processes is stationary processes (Y,, @), where the law @ is invariant under
the time-shift operator. If (P,) is the transition semigroup for such a process
(Y,, ), then the measure

(1.1) m(B) =Q(Y,€ B,a<t<p)

is (P,) excessive. It follows from a theorem of Kuznetsov [10] that the converse is
also true. Namely, given a transition semigroup (P,) and an excessive measure m
for it, there exists a unique process with random birth and death (i.e., a unique
Q) with one-dimensional distribution m and transition semigroup (P,).
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RANDOM TIME CHANGES 587

1.3. Time change. To introduce time change in this setting, we consider the
canonical realization of such a process on the space of paths W. We consider a
time change that preserves both the stationarity and the Markov property.
Toward this end, we need to introduce an extra random parameter r that has a
uniform distribution on the real line. We then produce an 1ncreasmg process

C(w, r) and we put Y(w r) = Y, (W), where (Y(w)) is the coordinate
process on W. Because of the choice of r, the law of (Y) is never o-finite.
Nevertheless, there exists a measure ¢ on W with the following properties:

@) Q is o-finite.
(ii) @ is invariant with respect to the time shifts (o) on W.
(iii) Under @ the coordinate process ¢ — w, is Markovian with stationary
transition function.
(iv) For every fixed ¢, the joint law of C, and Y is o-finite and factorizes to the
product of the Lebesgue measure on R and QonWn {a <t<pB).

1.4. Additive functionals and homogeneous random measures. 1In the classi-
cal case the process (S,) is obtained as the right-continuous inverse of a
continuous additive functional (A4,), i.e.,

(1.2) S, = inf{u: A, > ¢t}.

To construct C(w, r), we start with a diffuse homogeneous random measure
(HRM) B(dt); that is, a random measure B(w, ) on (R, #) concentrated on
(a, B), such that for any C € %,

(i) B(ow,C) = B(w,C + s),
(1.3) (i) w — B(w, C) is measurable with respect to the universal
’ completion of o{Y;: s € C},
(iii) for C = [a, b] C (&, B), B(w,C) < oo.

The process C(w, r) is the right-continuous inverse of the nondecreasing
process

(1.4) . B(w,r)=r+ fT‘(w)B(w, ds),

where T is an arbitrary random variable on W that satisfies « < T < .

The stated properties of the time change described previously are proved in
the next section. We then use the construction of the time change to establish
relations between the behaviour of a HRM B near a and properties of the
characteristic measure of B given by

(1.5) ve(f) =Q /[0 f(T)B(a).

From [12] it follows that v is o-finite at least when B is diffuse. It turns out
that v is the one-dimensional distribution of @ and it is therefore excessive for
the semigroup (P) of (w,, Q) [the same semlgroup appears in the classical setting
if we do a time change for (X,, P) using an additive functional A naturally
related to the HRM B]. It follows from our construction that if @ a.e. B(a, t] =
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oo for all ¢ > a, then g is invariant for (P), and if @ ae. B(a,t]—>0ast
decreases to a, then vy is purely excessive [i.e., [v5(dx)P,f(x) = 0 as t = oo if

vp(f) < o]

1.5. Applications to entrance spaces. The time change introduced here
enables one to connect the study of the behaviour of Y near a to the classical
theory of Martin entrance boundary, which is based on a Ray-Knight com-
pactification. Using a HRM that charges every subinterval of (a, 8) as our time
change clock, the behaviour near a of Y is equivalent to the behaviour near 0 of
a right process in a Ray topology. Many questions that arise from capacity
theory have very simple answers in terms of the time-changed process. We
explain the relation and collect some simple results in Section 3. The purpose of
that section is only to serve as an example for possible applications of time
changes on W. We therefore do not attempt to cover many aspects of capacity
theory and most of the (obvious) proofs are omitted.

1.6. Notation. We shall work in the setting considered by F1tzs1mmons and
Maisonneuve [2]. Our notation follows theirs.

(E, &)is a Lusin space. A apoint notin E, E, =EUA, § =6V A. Let W
be the space of functions w from R into E, that are E-valued and right-continu-
ous for ¢t € (a(w), B(w)) and are equal to A for ¢ outside (a(w), B(w)). Two
families of time shifts are introduced on W. The first, (o,), is defined by
ow(s) = w(t + s) (¢, s € R); the second, (7,), is related to birthing by

(1.6)

rw(s) =w(t+s), s>0,teR,

=A, s<0,teR.

Note that 6,00, = 0,,,, 7, = 7, ° 0,. As before, (Y,) is the coordinate process on
W. Let 9° = o{Y s € R} and ¥ = o(Y,: s < t}. Let (P,),,, be a Borel right
semigroup (in the sense of [4]) and (7,);cr be an entrance rule for it. Let @, be
the measure on (W, ¢°) with one-dimensional distribution, at time ¢, equal to »,,
and transition semigroup equal to (P,). The existence of such a measure follows
from Kuznetsov’s work [10], and we shall refer to it as the Kuznetsov measure
corresponding to (¥, P,). In the case »,= m, m is excessive for (P,) and Q
stands for @,. This is the stationary case considered in [2]. Let A be an excessive
function for (P,) satisfying »,{h = o0} = 0 for all £. We shall denote by @ the
Kuznetsov measure that corresponds to (v - h, P}*), where P/f = 1/h P,f - h on
E,={0<h< o0}

Let @ = {a =0, Y,, existsin E for £t > 0} U {[A]} (where for x € E,, [x] is
the constant path ¢ — x). For s > 0 let X, 6,,{ be the restrictions of Y, 7,
B V 0, respectively to 2, and let F°=%°|,, £°= 4, . Forx € E, P* is the
measure on (2, %) w1th one-dimensional dlstnbutlon at ¢ equal to Py(x, -) and
transition semigroup (P,). (2, #°, #.°,0,, X,, P*. x € E) is a Borel right pro-
cess. We let #* be the completion of #° with respect to [u(dx)P*, and
F=NF*' Z, is a similar completion of #° in ZF. The resolvent that corre-
sponds to (P;) is denoted (U?), . . For a o-algebra ", we let ¢ denote the
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H-measurable functions, and b>¢", )., /., be the bounded, nonnegative, strictly
positive measurable functions, respectively. We extend the definition of f € & to
E, by setting f(A) =0. g € Z is extended to R by setting g(+ o) = 0. For a
measure 4 on (E, &) and f € &, u(f) stands for [u(dx)f(x), whereas p - f is the
measure u(dx)f(x). By convention, Y, =4, X = A. We shall introduce
additional notation in the sequel as it becomes necessary.

2. The time change.

2.1. Preliminaries. In this section we restrict our attention to the stationary
case (W, Q,,), where m is excessive for (P,). Let B be a diffuse HRM.

It follows from [11] that there exists a unique continuous additive functional
(A,) on © that satisfies

(2.1) A,(tw) = B(w,(s,s + t]), on{a<s<p}.
Let S, be its right-continuous inverse as defined in (1.2) and
(2:2) P,i(x) = P(f(Xs,)).

Restricted to the fine support of A, X, = Xs, is a right process with semi-
group (F,).

2.2. Time change in a simple case. Unlike additive functionals on 2, which
are assumed to be equal to 0 at 0, HRMs may accumulate infinite mass around
a. Therefore the definition of a clock from a HRM requires some care. More care
is needed if one wishes to produce a stationary time-changed process. The case
where B(a, t]10 as | a is very similar to the classical case. It produces a neat
formula, as well as some intuition as to why (1.4) works in the general case. We
shall treat it here first.

(2.3) THEOREM. Suppose that Q,, a.e. lim,  ,B(a, t] = 0. Then there exists
an entrance law at 0, (n,), for (P,) so that vg(:) = [°n,(+) dt.

_(2.4) REMARK. It follows from [1] and (2.3) that »p is purely excessive for
(B)).

Proor. Let C, = inf{s: B(a, s] > t}. For every positive ¢, C, > « a.e. by our
assumptions. By the shift invariance of @,,,

Q,(C.€du, Y, €dx) = Q,(C,o0, € du, Y o0, € dx)
= Q,(C ed(u+s), Y, €dx).

It follows from a result of Getoor [6], that for each ¢ € (0, ), there exists a
measure (countable sum of finite measures) 5, on (E, &), so that

(2.6) Q.(C, € du, Y, € dx) = n,(dx) du.
Note that C,,, = C, + S, ° 15, on {C, < c0}. Since for £ >0, C, € (¢, B) Q,, ae.

(2.5)
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on {C, < o}, it follows from the strong Markov property at C, ([2]) that for
EE€ER, [€8,

27 Qu(8(C))i(Ye,,)) = @n(C. < 0, PO (g(C, + 8,)1(Xs,)))-
Applying (2.6) to (2.7), we obtain

[g(w) du [, (dx)f(x)

= fRdu Ln,(w)LLgpx(ss € dv, Xg € dy)g(u + v)f(y)
(2.8)

- [0 a0 1)
- fg(u)du/n,(dx)psf(x),

which implies that 9, = 'q,P § >0, t > 0. Defining n, = 0 for s < 0, (1), cr
is an entrance law at 0 for (B,). It follows from (2.7) and (2.8) that -

(2.9) () = Qu(C, €10,1), f(¥,))-
Hence (using Fubini’s theorem),

/(;Oo'ﬂs( f ) ds = Qm/(;w]‘{CsG[O,l)}f(YCs) ds,

which after the change of variable u = B(a, ] is equal to
Qu [ 1t0.0(#) 1 (Y,) B(d) = w5 ).

The o-finiteness of vz implies now that 7, is o-finite for all ¢ and our proof is
complete. O

Let Q be the Kuznetsov measure that corresponds to (n,) given previously
and B, and define II: W —» W by (Ilw), = Yo (w).

(2.10) THEOREM. For any A € %° lw=0y and g € %, that satisfies
Jg(t)dt =1,
QAN (B>1}) =Q,(II"(A)e(C)), ¢=0.
ProoF. It is enough to prove (2.10) for A of the form
A={w,€A,...,w, €A}, for0<¢t <t,< - <t,

For such A, the proof is a straightforward computation of the kind performed in
(2.21), and it is therefore omitted at this stage. O

(2.11) COROLLARY Let A€ 9° AcC {a=0}. Then Q, (II"Y(A) =0 if,
and only if, Q (A) =
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PROOF. Suppose Q (A)=0. Then @, (A N {B>1t}) =0 for all ¢, and for
any g €%, with /g(t) dt=1, Q11" 1(A)g(C )) = 0 for all ¢ This implies
that @,(I1"'(A), C, € R) = 0 for all £. But U, .¢(C, € R} = {B(R) > 0} (Q are
the rational numbers), and for w e {B(w,R) =0}, m(w)=[A]. Hence for
A C {a =0}, 77 (A) N {B[R) = 0} = & and Q,(I17(A)) = 0. The converse is
argued in the same manner. O

Let Q be the Kuznetsov measure that corresponds to (vg, P), and Q' =
o (Q ). Then (2.3) implies that

(2.12) 9, = f Q! dr.

We may think of Q arising from B and Q,, in the following manner. To get a
nondecreasing process (B,) from B, we introduce a parameter r, uniformly
distributed in R, and define B, = r. For t > a, B,=r + B(a, t], and for { < a,
B,=r. If C(w,r) is the nght-contlnuous inverse of (B,), then r= 1nf{u
C > — o0} is the birth time of the time-changed process. The law governing it,
after its birth at r, is Q’ This procedure works only when B does not
accumulate infinite mass near a. Using, however, the translation invariance of
the Lebesgue measure, it is easy to see that defining B, = r at any s € (o, B) will
produce the same effect. This is exactly (1.4) and, as we shall see, produces the
required time change for all HRMs.

2.3. The general case. Let A be the Lebesgue measure on R and define
(2.13) (W,4,P,) =(W,9™,Q,,) X (R, #,1\),

where 9™ 1is the @, completlon of 9° Let T be an arbitrary ™ random
variable taking values in (a, B). For each (w,r) € W define B,(w, r) by (1.4)
[where we remember that if ¢ > T(w) the integral is equal to — B(w,[T(w), tD]
For t € R, we let

(2.14) C(w,r) =inf{u: B(w,r) >t}, infd = +oo,
(2'15) Yt(w’ r) = YC,(w, r)(w)'

(2.16) PROPOSITION. Letf € &, and g € #, with N(g) < . Then
(2.17) P,(f(Y¥,)&(C)) = vs( )M &)
In particular, the left-hand side of (2.17) is independent of ¢.

Proor. For ¢ > 0 define on W,

U(w) = inf{u > 0: B(w,[0,u]) > ¢}, infd = o,
2.18
(2.18) _(w) =sup{u < 0: B(w,[u,0]) >¢t}, sup@ = —oo,
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and note that for v € R,
v+ U(ow) = inf{u > v: B(w,[v, u]) > ¢},
v+ U_,(ow) = sup{u < v: B(w,[u,v]) > t}.
By the definition of P,,, the left-hand side of (2.17) is equal to
J, @nldw) [ &(Ci(w, 7)) (Yo, (w)) dr-

Fix w € W and let v = T(w),
[£(Cw, ) i(Yo,u,n(w)) dr

(2.19)

= f g(ljt—roov+v)f(YU,_,°ov) dr

re(—o,t)

+ g(l]t—roov+ U)f(YU,_,oov) dr

relt, o)

ue(0, o

gU, 00, + v)f(YUuo 0,) du
)

+ g(U_,°0,+0)f(Y, oa,)du.
ue(0, o) “
In the first term we now use the change of variable u = B(o,,[0, t]), and in the
second u = B(o,,[ —¢,0]). The last expression is equal to

[fue(o B]g(u + 0)f(Y,)B(du)|°0, + fue(a 0]g(u + 0)f(Y,)B(du)|e o,

= g(w)f(Y,)B(du) + [ g(u)f(Y,)B(du)
(v, B(w)) (a(w), v]

= [ g(u)f(Y,(w))B(w, du).

a(w)

Integrating with respect to @,,, the result follows. O

In particular, we note that for g = 1, ,),
(2.20) Po(10,(C)F(F;)) = vs(f).

(2.21) ProrosiTiON. For g,,...,8,€ %, with Mg;) < ©, fi,-.-, [, €EE,
and —o0 <t <t,< .-+ <t,< o0,

Pm( iﬁ[lgi(ct,-)fi(zi))
@) - Qu[aOnP| [Talt+ s, )X, ,)|Ba)

= /R g,(t) dt fE fl(x)vB(dx)Px( L_[nlzgi(t + st,._tl)fi(xs,,__,l)).
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ProOF. The second equality follows easily from the first and the definition
of vg. For the first we note that for i > 1,

Ct,-(w’ r) = Ctl(w’ r) + S, TC,l(w,r)(w)

and
Yt,-(w» r)= Xs,i_,l° TC,l(w,r)(w)’

Repeating now the argument that led to (2.16), we obtain
n
2 Ie(c)1(%,)
i

B =
= Q. [ &(t)fi(Y) [Tt + S,-qom) il Xs, o ) B(),
o i=
which, by the strong Markov property, yields the first equality in (2.22). O
(2.23) COROLLARY. The measure vy is excessive for (B,).

PrROOF. Put g =1y ,), f €&, in (2.22). Then for s > 0,
Pm(lE(Yt)f(th+s)g(Ct+s)) < Pm( f(th+s)g(Ct+s))’
and the result follows. O

(2.24) COROLLARY. Let f,,...,f, €&, and g € Z, with N(g) < oo. Then
foralll1 <i<n,

Pm( fl(Y~t1) T fn(?t,l)g(cti)) = Pm(g(ctl)fl(Ytl) e fn(Ytn))

Proor. Follows from the second equality of (2.22) using the translation
invariance of the Lebesgue measure. O

Let Q be the Kuznetsov measure that corresponds to (vg, P) Define
mw-w by (Hw)t Y,(0). Then it follows from (2.22) and (2.24) that

(2.25) THEOREM. For A € 9° andg e %,
P,(1171(4)g(C)) = M(8)@,(A; « <t <B).

(2.26) REMARK. It had been pointed out to me by the referee that the time
change given previously is the analog of an old result in the theory of flows ([3]
and the references therein). Indeed, let (2, %,6,, P) be a flow [P o-finite
6,(P) = P] and (B,) a CAF over the flow; that is,

(i) t = B, is nondecreasing and continuous,
(ii) B,,;=B,+ B,;°0, t€R, s >0, and
(iii) B, = + o0 as t = + oo, respectively.
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Let P be the Palm measure of B,
(2.27) B(A) = Pflleat dB, Aew,

and (C, ) the rlght-contmuous inverse of B. Then for §, = bc,, 6(P) = P so that
(Q, #, 6, P)is a new flow. In our context (2.25) can be 1nterpreted as

(2.28) Q,,B| (a<0<py = Palm measure of B under Q,,,.

Things are complicated here because we are not assuming (iii), which is the
reason for the presence of a and B in (2.28). Since our B is a measure, C, is only
defined on W, and even there is not necessarily finite. The (o,) invariance of Q
is in essence the analog of f,(P)= P. Indeed, by (2.25), this invariance is
equivalent to the following: For A,,...,A, €8, g€ %, with Ag) < oo,
—0 <t <t,< - <t, < oo, s>0andteIR

P, (Y, €4,....Y, €4, 8(C)) = BT, € 4,,.... T, € A, 8(C,1 ).

Let A = {w: lim,, ,B(w,(a, t]) = 0}. The set A is o, invariant and belongs to
g (where 9, = (A€ 9™ AN {a<t} €Y forall t € R}). It.was proved
by Dynkin [1] that

my(f) = Qu(A% f(X,))
are (P,) excessive measures and that @, = Q,, + @,

For an excessive measure n, we denote by »% the characteristic measure of B
relative to @,,.

(2.29)

(2.30) THEOREM. vfi, i = 1,2, are the (13t) purely excessive and invariant
parts of v}, respectively.

ProoOF. The fact that »71 is purely excessive for (13t) follows directly from
(2.3). We only need to show that »J is invariant, and then use the fact that the
decomposition of an excessive measure into its invariant and purely excessive
parts is unique.

Let t>0and f €é&,,

(2.31) f (dx)P f(x) = m2(1[0 1)(C )IE( )f(YHu))’

for any u € R. But P, ae. B, = —oo, and therefore P, a.e. on {(Y,,. € E),
Y € E. Applying (2 24), the nght hand side of (2.31) is equal to

sz( f(yvt+u)1[0,1)(ct+u)) = sz( f )’
and the result follows. O
(2.32) REMARK. If A isnot a continuous additive functional (or equivalently

if B is not diffuse), but the sizes of its jumps are functions of X at the time of
the jump, one can replace the jumps by exponential random variables (as was
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done, for example, in [9]). The time-changed process by the inverse of this
modified clock is still Markovian and our results carry to that case with almost
no changes.

2.4. The conservative case.

(2.33) THEOREM. If m is a conservative excessive measure, then Q,(0 <
B(—o0,t] < ) =0 forallt € R and vy is invcriant for (P,).

The elegant proof that follows is due to the referee. It replaces a longer proof
based on ergodic theory.

Proor. If @,(0 < B(—co, t] < o0) > 0 for some ¢, then the intrinsic time
([2) S = inf{¢: B(—oo,t) > ¢} satisfies @,(S € R) > 0 for ¢ > 0 sufficiently
small. This, by (5.8)(ii) of [2], contradicts the fact that m is conservative. Let A
be as defined in (2. 29) Then it follows that A = {w: B(w,R) = 0} and so
vt = 0 and vg2 = vg is invariant for (B).O

3. An application to entrance boundary. In this section we apply our
time change to a HRM of the form B(dt) = g(Y,) dt, with g strictly positive and
such that B(a, B) < c. We are, therefore, in the framework of the simple case of
2.2. Our clock (B,) is strictly increasing and continuous in (a, 8). It enables us to
study the behaviour of Y near a via the classical Martin boundary theory, using
a Ray—Knight compactification. We shall use the Ray topology defined in [7] for
transient processes. We sketch its details here.

3.1. Ray-Knight compactification and the entrance space. Let m be a (P,)
dissipative excessive measure. Let / € &,, with m(l) < o0 and D = {Ul < «o}.
The set D¢ is finely open and m(D¢) = 0. Hence it is m-polar. The process X,
restricted to D, is a transient Borel right process in the sense of [5]. We may,
therefore, assume (without loss of generality) that D = E. It follows from [5]
that there exists a ¢ € & satisfying m(q) < 00,0 < g <1 and h = Uq < 1. Set
Vi(x) = 1/h(x)Uq - f(x). V is the 0 potential of a process Z obtained from X,
first by an h-path transform using A and then by a time change by the
right-continuous inverse of the additive functional dA, = q/h(X,) dt. We denote
by (V) the resolvent corresponding to this process, and by (Q,) its semigroup.
Since V1, = 15, the semigroup R, = e'Q, satisfies R1; = 15. Denote by
(W7), ., its resolvent. Let R be the Ray cone generated by (W), E the
corresponding Ray—nght compactification of E and (W’) the corresponding
Ray resolvent. E is Borel in E. Define V* = W'*” and let X = (Xt, Q) be the
Ray process on E with resolvent (V7). Denote its semigroup by (Q,) Forx € E
and f € &, Vf(x) = V’f_(x). Let B be the set of branch points of X and E” the
points regular for E in E. Set F = E" N B€. The process X restricted to F is a
Borel right process in the Ray topology. It was proved by Getoor and Glover [7]
that for any dissipative n with n(g) < oo, there exists a finite measure A on
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(F, ) (& being the trace of & on F) so that
—f
(3.1) n(f)= fFA(dx)VE(x).

The following simple observation and (3.1) identify F as the Martin entrance
space.

(3.2) PROPOSITION. Let m(f) = Vi/q(x). Then for x € F, m(f) is a
minimal excessive measure.

Proor. By its construction, m ( f ) is (P,) excessive and satisfies m (q) = 1.
Suppose m, = m; + m, where both m,, m, are excessive. Since m (q) < «©
both m,(q) and my(q) are finite. It follows that there exist finite measures
Ay, A, so that

_f )
m(f)= fF‘}\i(dx)VE(x), i=1,2.

Let A=A, + A,. Then for every f € &,, Vf(x) = [eN(dx)Vf(x). Since E is
absorbing for X and F c E’, it follows that the same equality holds for f € #.
Since X restricted to F is a Borel right process, this is possible only if
A(-) = &,(+), where ¢, is the Dirac measure with mass at x, and our assertion is
proved. O

3.2. The time change. As we have seen, at the base of the definition of the
Ray topology, there is a (classical) time change. We shall now perform a similar
time change on W.

(3.3) LEMMA. With q and h as before, the HRM B(dt) = q/h(Y,) dt satisfies
B(a, B) < 0 Q! a.e.

ProOOF. The proof is a simple computation. For m invariant, it is easy to
show that for any u € R,

AN q -
Qi [* () ds ()] = 2m(q) < o.
This implies that @” a.e. on {8 > u), B(a, ) < . Hence

Q,’,’,(rLeJQ{B > 7, Ba, B) = o} ] =0,

from which the result follows immediately. If m is purely excessive and (p,) is its
corresponding entrance law (at 0), then

Q| [ 50 dt) = m(a),

and again the result is immediate. O
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Let (7,) be the entrance law defined in (2.3), this time relative to Q! and B.
(3.4) THEOREM. Let m = [,A(dx)m, [with m, and A as in (3.1)]. Then
n(f) = [Md0)@(i(X,)).

ProOF. The measure m - q is the characteristic measure of B relative to Q:.
Hence for f € &,,

moq(f>=f0°°nt(f>dt.

By our assumptions, it is also equal to

IM@)Vi() = [ °°[ JMax)@( f(Xt))] ds.

Since both 7,( f ) and [A(dx)@*( f(X,)) are entrance laws for the right semigroup
(P}) [with S, = (A™1),, A defined in (3.1)], and they integrate to the same (Br
excessive measure, they must be equal. O .

Denote by 29 the space of all functions from (0, o) into E U A that are
right-continuous in the original and the Ray topologies. Arguments similar to
those used in 11.8 of [4] will prove that 2% has full Q,’,’ measure, and that for
x € F, Q% has @ outer measure 1. Theorem (3.4) implies that, when restricted
to the events in the natural o-algebra on @9, Q7 = [,\(dx)Q".

3.3. Applications. Many results that deal with the behaviour of Y near «
are now a simple consequence of the previous discussion. We collect some
examples.

(1) If m(f) < oo and m(g) < oo, then @, a.e.

| = % converges as t | & (Theorem 7.2 of Dynkin [1]).
We note that
_ Vi/a(Y))
© Ve/a(Y)’

and since for all /€ & with m(l) < o0, x - VI(x) is excessive for @), Z,
converges @ a.e. as ¢ | 0. By the time-change result, the same is true Q! ae. as
t| a. Since h € &, ,, the same is true @,, a.e. (by 5.4 of [1]).

If m = m,, is minimal excessive, then Q,’,‘ = ¢(x)Q*, and Z, converges to

Vi/a(x) _ m(f)
Ve/a(x) m(g)’

again a result proved in [1], using a different technique. One may also start from
Theorem 7.2 of [1], use a time change and obtain the Getoor—Glover representa-
tion (3.1).

ast— a,
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(i) The Riesz decomposition of m. m is a potential if, and only if,
A(F — E) = 0 [7]. Translated to the behaviour near a, m is a potential if, and
only if, p — lim, Y, € E for a.e. w, where p — lim is the limit in the Ray
distance. This condition is, a fortiori, equivalent to the Fitzsimmons and Maison-
neuve [2] condition w € 2, for a.e. w (page 323 of [2]) (a direct proof that the
two sets of conditions are equivalent is not too difficult).

(iii) The balayage of m on B, denoted R zm, was defined in [2] by

Rym(f) = Q.(Tp<t, f(Y,)),

where Ty = inf{¢t € R: Y, € B}. It is an excessive measure. It is equal to m if,
and only if, Tp = @, @,, a.e. This condition holds if, and only if, A is con-
centrated on B"—the points regular for B with respect to X.

(iv) The minimal excessive measures (m,), . » are either invariant or purely
excessive. The following uses (2.30) to identify them.

(3.5) THEOREM. The excessive measure m = m, is purely excessive if, and
only if, @ a.s. lim,_, o [th/q(X,) ds = 0, otherwzse it is invariant.

PrOOF. We note that m - h is purely excessive (invariant) for (P?) if, and
only if, m is purely excessive (invariant) for (P,). (W, Q) is obtained from
(W, Q o) by the inverse time change via C(dt) = h/q(Y) dt. m - h will there-
fore be purely excessive if, and only if, lim,  C(a, £] = 0, Q o €. This happens
if, and only if, lim, ,C(0,¢]=0 Qh a.e. By (34) thls is equivalent to
Q- (hmuofoh/q(X )ds=0)=1.0

Let A = {lim,,,/¢h/q(X,) ds = 0}. For any x € F, Q“(A) = O or 1. Let

36 = {x:@%(4) = 0},

( ) ) F = FIL‘.

Then m;= [pMdx)m, and m, = fF A(dx)m, are the invariant and purely
excessive parts of m, respectlvely

(v) In [8] Getoor and Steffens define a set B € & to be m-cotransient if @,
a.e. Tg > —co. For m = [pA(dx)m,, B is m-cotransient if, and only if, A(B" N
F)=o0.

One may obtain expressions for the co-capacities and co-capacitary measures
defined in [8] in terms of the measure A and (@), ;. The results are what one
would expect them to be. Since we do not attempt to expand on capacity theory
in this paper, we leave such computations to the interested reader.

Acknowledgments. Professor E. B. Dynkin has helped me in writing the
present version of this paper. It is my pleasure to thank him for his sound advice
and for his generosity with both his time and knowledge. I would also like to
thank J. B. Mitro for her helpful comments on an earlier version of this paper,
and the referee for his many helpful suggestions.



[1]
(21
(3]
(4]
(5]
(6]
t7]
(8]
(9]
[10]
[11]

[12]

RANDOM TIME CHANGES 599

REFERENCES

DynNKIN, E. B. (1980). Minimal excessive measures and functions. Trans. Amer. Math. Soc.
258 217-244.

FITzsiMMONS, P. J. and MAISONNEUVE, B. (1986). Excessive measures and Markov processes
with random birth and death. Probab. Theory Related Fields 72 319-336.

GEMAN, D. and HorowITz, J. (1973). Remarks on Palm measures. Ann. Inst. H. Poincaré
Sect. B 3 215-232.

GETOOR, R. K. (1975). Markov Processes: Ray Processes and Right Processes. Lecture Notes
in Math. 440. Springer, Berlin.

GETOOR, R. K. (1980). Transience and recurrence of Markov processes. Séminaire de Prob-
abilités XIV 1978/1979. Lecture Notes in Math. 784 397-410. Springer, Berlin.

GETOOR, R. K. (1987). Measures that are translation invariant in one coordinate. In Seminar
on Stochastic Processes 1986 31-34. Birkhiuser, Boston.

GETOOR, R. K. and GLOVER, J. (1984). Riesz decompositions in Markov process theory. Trans.
Amer. Math. Soc. 285 107-132.

GETOOR, R. K. and STEFFENS, J. (1986). Capacity theory without duality. Probab. Theory
Related Fields 13 415-445.

Kaspr, H. (1983). Excursions of Markov processes: An approach via Markov additive processes.
Z. Wahrsch. verw. Gebiete 64 251-268.

KuzNETSov, S. E. (1973). Construction of Markov processes with random times of birth and
death. Theory Probab. Appl. 18 571-575.

MiITRo, J. B. (1979). Dual Markov functionals: Applications of a useful auxiliary process. Z.
Wahrsch. verw. Gebiete 48 97-114.

REvuz, D. (1978). Mesures associees aux fonctionelles additive de Markov. 1. Trans. Amer.
Math. Soc. 148 501-531.

DEPARTMENT OF INDUSTRIAL AND
MANAGEMENT ENGINEERING

TECHNION—ISRAEL INSTITUTE OF TECHNOLOGY

Harra 32000

ISRAEL



