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EXTREMAL THEORY FOR STOCHASTIC PROCESSES'

By M. R. LEADBETTER AND HOLGER ROOTZEN

University of North Carolina at Chapel Hill and University
of Copenhagen

The purpose of this paper is to provide an overview of the asymptotic
distributional theory of extreme values for a wide class of dependent stochas-
tic sequences and continuous parameter processes. The theory contains the
standard classical extreme value results for maxima and extreme order
statistics as special cases but is richer on account of the diverse behavior
possible under dependence in both discrete and continuous time contexts.
Emphasis is placed on stationary cases but some departures from stationarity
are considered. Significant ideas and methods are described rather than
details, and, in particular, the nature and role of important underlying point
processes (such as exceedances and upcrossings) are emphasized. Applications
are given to particular classes of processes (e.g., normal, moving average) and
connections with related theory (such as convergence of sums) are indicated.
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1. Introduction: The classical theory of extremes

1.1. Scope and content of the paper. The purpose of this paper is to give a
“motivated overview” of the principal results in and related to the distributional
theory of extremes of stationary sequences and processes. In particular, we shall
be concerned with distributional properties of the maximum M, =
max({;, &, ..., §,) and other order statistics from stationary sequences {£;} as
n — oo and with corresponding results for continuous parameter processes. The
emphasis throughout will be on the motivation for and significant methods used
in obtaining the results. Full proofs will not generally be given—in many cases
the details of such proofs may be found in [66] or from the references cited
therein.

The results to be described may, in part, be regarded as extensions of the
classical theory of extremes of sequences of independent, identically distributed
(i.i.d.) random variables (r.v.’s), (cf. [561] and [49]). However, they constitute more
than just such an extension of the classical theory, since the dependent frame-
work provides a natural setting for the theory and one in which its essential
ideas and methods may be clearly exposed. In particular, it will be seen that the
central results may often be regarded as special cases of the convergence of
certain point processes—a view which may, of course, be taken in the classical
case but which is less needed there in view of the detailed i.i.d. assumptions. Our
discussion will emphasize the centrality of these underlying point process conver-
gence results.

As indicated in the table of contents, this paper is organized in three main
parts. This first introductory part contains central distributional results of the
classical i.i.d. theory and, in particular, the “extremal types theorem,” which
restricts the possible limiting distributions for maxima to essentially three
“different types.” We shall indicate only the general organization and main
features of the most recently available derivations of these results.

The second part of the paper concerns extremes of sequences—primarily (but
not always) assumed stationary and is largely based on point process methods. It
will be seen that the classical theory may be regarded as a special case of the
more general theory for dependent sequences—some results being identical and
others generalizing in interesting and nontrivial ways. For example, under weak
dependence restrictions, the general “type” of limiting distribution for the
maximum is the same as for an ii.d. sequence with the same marginal d.f.
(though the normalizing constants may change). However, the limiting distribu-
tions for other order statistics can be quite different from those under i.i.d.
assumptions.
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Some particular cases of special interest (e.g., normal sequences, moving
averages, Markov sequences) will be discussed in Part 2. Other aspects of the
theory (e.g., rates of convergence, multivariate extremes) are also briefly de-
scribed along with some interesting connections with convergence of sums.

In Part 3 attention is turned to continuous parameter processes. The theory
here may be made to rest on the sequence case by the simple device of regarding
the maximum of a process £(¢) up to, say time T = n, as the maximum of the
values of the sequence {; = sup{£(¢): i — 1 < ¢ < i} for 1 <i < n. Whereas this
is simple and obvious in principle, the details are more complicated and require
analogous but somewhat more intricate assumptions regarding the dependence
structure of the process. The point process approach is also very valuable
here—considering, for example, upcrossings of high levels in lieu of exceedances.
Again, a rather full and satisfying theory results and is applied, in particular, to
special cases such as normal and x2-processes. Properties of point processes of
local maxima may also be obtained, as will be briefly indicated.

It may be noted that the stationarity assumption, where made, primarily
provides for convenience and clarity, and that some departures from this will
either not alter the result, or will alter it in an interesting way that can be
determined. This will be evident, e.g., in discussion of normal sequences, where
extensions to useful nonstationary cases will be briefly mentioned. Finally, this
paper is not by any means intended as a complete review of all aspects of
extremal theory—a number of important topics are not referred to at all. Rather
it is our purpose to provide an overview of much of a developing area, which
includes but is more widely applicable than the classical theory, and is based on
the interplay of interesting mathematical techniques. In particular, we empha-
size recent results—especially those obtained since the publication of [66].

1.2. Classical extreme value theory. The principal concern of classical ex-
treme value theory is with asymptotic distributional properties of the maximum
M, = max(§,, §,,...,§,) from an iid. sequence {{;} as n — co. Whereas the
distribution function (d.f.) of M, may be written down exactly [P{M, < x} =
F"(x), where F is the d.f. of each ;], there is nevertheless virtue in obtaining
asymptotic distributions, which are less dependent on the precise form of F, i.e.,
relations of the form

(1.2.1) P{a,(M,-b,) <x} >, G(x), asn > o,

where G is a nondegenerate d.f. and a, > 0, b,, are normalizing constants.

The central result of classical extreme value theory, due in varying degrees of
generality to Fréchet [47], Fisher and Tippett [46] and Gnedenko [50], restricts
the class of possible limiting d.f.’s G in (1.2.1) to essentially three different types
as follows.

THEOREM 1.2.1 (Extremal types theorem). Let M, = max(§,, &,,...,§,),
where &, are i.i.d. If (1.2.1) holds for some constants a, > 0, b, and some
nondegenerate G, then G must have one of the following forms (in which x may
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be replaced by ax + b for any a > 0, b):
typel: G(x)=exp(—e*), —oo<x<o0,

0, x<0,

typeII: G(x) = {exp(—x_“), for some a > 0, x>0,

type III: G(x) = {exp(-(—x)a)’ for some « >0, x =<0,
1, x> 0.

Conversely, any such d.f. G may appear as a limit in (1.2.1) and in fact does so
when G is itself the d.f. of each §,.

It will be convenient to say that two nondegenerate d.f.’s G, and G, are of the
same type if G,(x) = Gy(ax + b) for some a > 0, b, and to refer to the equiv-
alence classes so determined as “types.” The use of “type” in the above theorem
is a slight abuse of this since types II and III really represent families of types
—one corresponding to each a« > 0. However, this abuse is convenient and it is
conventional to refer to “the three types” of limit. It should also be noted that
the three types may be incorporated into a single family, for example by writing
G (x)=exp{—(1 — ax)"/*}, —c0 <a < 00, ax <1, G, being interpreted as
lim,_, G (x) = exp(—e™*). (Such a parametrization was introduced by von
Mises.)

A straightforward proof of Theorem 1.2.1 is given in [66], Theorem 1.4.2, and
here we note only the fact that this consists of two parts—a division which is
most useful for later forms of the result. The first part is to show that the class
of limit laws G in (1.2.1) is precisely the class of max-stable d.f.’s. Specifically, a
d.f. G is called max-stable if for each n =1,2,..., the d.f. G" is of the same
type as G, i.e., if there exist constants a,, > 0, b, such that G*(a,x + b,) = G(x).

The second part of the proof of Theorem 1.2.1 is to identify the class of
max-stable d.f.’s with the type I, IT and III extreme value d.f.’s. This is a purely
function-analytic (nonprobabilistic) procedure and will apply verbatim in depen-
dent cases. A smooth proof due to de Haan (using inverse functions) may be
found in [66].

It is, of course, important to know which (if any) of the three types of limit
law applies when £, has a given d.f. F. Necessary and sufficient conditions are
known, involving only the behavior of the tail 1 — F(x) as x increases, for each
possible limit. For example, the criterion for a type II limit is simply that
1 — F(x) should be regularly varying with index —a, a > 0, as x — co. The
conditions for all three types may be found in [66], Theorem 1.6.2, together with
simple proofs of their sufficiency. The necessity is more complicated (though
perhaps also less important) but may be achieved by using methods of regular
variation (cf. [38] for a recent smooth treatment).

The following almost trivially proved result is also used in “domain of
attraction” determinations, and has important (and less trivially proved) exten-
sions to dependent cases.
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LEMMA 12.2. Let {u,, n> 1} be constantsand 0 < 7 < 0. If §,,&,,... are
i.i.d. with d.f. F, then

(1.2.2) P(M,<u,} >e,
if and only if
(1.2.3) n(l - F(u,)) - .

It may be noted that (1.2.1) is a special case of (1.2.2) using a linear
parametrization, by making identifications r = —log G(x), u, = a,'x + b,. Thus
a necessary and sufficient condition for the limit G is

n(1-Fla;%x +b,)) > —logG(x), asn— oo,

for each x and some a, > 0, b,. This explains the relevance of the tail 1 — F(x)
for domain of attraction criteria. Use of Lemma 1.2.2 also enables expressions to
be obtained for the normalizing constants a,, b, in terms of the (1 —n7")
percentile v, defined to satisfy F(y, —) <1 — n~' < F(y,). For example, in the
type II case, a,, b, may be taken to be a, = v, ', b, = 0. Of course, whereas 7,
may be determined (and hence a,, b, found) when F is known, the practical
problem lies in the estimation of those constants when the form of F is not
precisely known.

It is readily checked that a standard normal sequence belongs to the type I
domain with normalizing constants

a,= (2logn vz
(1.2.4) (2log n)

b, = (2log n)"* - 1(2log n)~"*(loglog n + log4m).

The exponential and log-normal distributions also have type I limits as does the
d.f. F(x) =1 — eV*, x < 0, with a finite right endpoint x = 0. The Pareto and
Cauchy distributions give type II limits, whereas the uniform distribution
belongs to the type III domain.

Not every d.f. F belongs to a domain of attraction at all. For example, this
occurs for the Poisson and geometric distributions—for which there is no
sequence {u,} such that (1.2.3) holds for 0 < 7 < co. This typically happens in
cases when the jumps of the d.f. do not decay sufficiently quickly relative to the
tail ([66], Theorem 1.7.13). However, it is also possible for there to be no limit
even if there is a sequence {u,} satisfying (1.2.3) for any 7—such as the d.f.
F(x)=1— e * 5"% an example due to von Mises.

We turn now, in this brief tour of classical results, to other extreme order
statistics, writing M‘® for the kth largest among the iid. &,...,§, with
common d.f. F. Suppose that M, = M) has the limiting distribution G as in
(1.2.1). By identifying u, = a,x + b,, 7= —log G(x), it follows that (1.2.3)
holds. Let S, be the number of exceedances of u, by &,,...,§,, i.e, the number
of i, 1 <i < n, such that £, > u,. Then S, is binomial with parameters (n,
p, =1 — F(u,)) and np, — 7 so that S, has a Poisson limit with mean 7. The
obvious equivalence of the events {M{¥ < u,} and {S, < k} leads directly to the
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relation
k—1

(1.2.5) Pla,(M® —b,) <x} > G(x) ¥ (—logG(x))°/s!.
s=0

Thus if the maximum M, has a limiting distribution G, then the kth largest
M® has a limiting distribution given by (1.2.5) (with the same normalizing
constants a,, b, as the maximum itself).

These results foreshadow a more detailed discussion of the exceedances and
related point processes, which will be taken up in the next section.

Finally, topics from the classical theory not dealt with in this part include (a)
rate of convergence results (considered in the dependent setting in Section 2.8),
(b) asymptotic distributions of minima (obtainable by simple transformations of
the results for maxima) and (c¢) asymptotic theory of variable rank order
statistics (cf. [99]).

1.3. Point processes associated with extremes. The above asymptotic Pois-
son property of the number of exceedances of u, satisfying (1.2.3) may be
generalized by considering the actual point process N, of exceedances of the
level u,. Specifically, N, consists of the point process on (0,1] formed by
normalizing the actual exceedance points by the factor 1/n, i.e., if i is the time
of an exceedance (§; > u,), then a point of N, is plotted at i/n. If E C (0,1],
then N, (E) denotes the number of such points in E, so that N (E) = #{i/n €
E:¢{>u,1<i<n}=#{ienk: §>u,l<i<n}. Theactual exceedance
points and the point process N, are illustrated in Figure 1.

For u, satisfying (1.2.3) it follows immediately as before that N, (I) -, N(I),
where N is a Poisson process on [0,1] with intensity = for each interval
I c [0,1]. By independence, corresponding convergence holds for joint distribu-
tions of N, (I)),..., N(I,) for disjoint intervals I,,..., I,. This is, in fact,
sufficient for convergence in distribution N, —; N (i.e., full weak convergence of
PN, ' to PN~!) of the point processes N, to N. This may be regarded as a
“fountainhead” result from which the asymptotic distributions for the maximum
and all extreme order statistics follow. The result may be extended ([66], Section
5.5) by considering the vector point process of exceedances of multiple levels, to
give joint asymptotic distributions of finite numbers of order statistics. For
example, if the maximum has the asymptotic distribution G given as in (1.2.1),
consideration of two levels leads to the asymptotic joint distribution of the first

oo ——yz
0 1

F1G. 1. Point process of exceedances. Upper: actual exceedance points; lower: the point process N,,.
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two order statistics MV (= M,,), M®:

(1.3.1) Pla,(M{ = b,) < x;, a (M~ b,) < x,)

- G(x,)(log G(x,) —log G(x,) + 1), asn — o0, x, > x,.

In general, consideration of r levels enables calculation of the asymptotic
joint distribution of r extreme order statistics. On the other hand, these results
for r =1,2,... may be summarized simultaneously in one theorem sometimes
referred to as a “complete” convergence result. This can be given quite a general
form (cf. [66], Theorem 5.7.1), which reduces to the following when the maximum
has a limiting distribution G [and writing x, = inf{x: G(x) > 0}]. This result
was first proved by Pickands [81].

THEOREM 1.3.1.  Suppose (1.2.1) holds for the i.i.d. sequence {£,}, and let N,
be the point process in the plane with points at (j/n, a £, — b,)). Then
N, — N’ on (0,0) X (x4, 00), where N’ is a Poisson process whose intensity
measure is the product of Lebesgue measure and that defined by the increasing
function log G(y).

In the i.i.d. case the previous theorem may be regarded as fundamental in
yielding all relevant asymptotic distributional properties. On the other hand,
when dependence is introduced the “partial” r-level results require somewhat
fewer assumptions than does the “complete” result. For ii.d. sequences the
proofs of both “r-level” and “complete” results rely on similar (though somewhat
more complicated) arguments to those already indicated for single level ex-
ceedances.

2. Extremes of sequences.

2.1. The extremal types theorem for stationary sequences. Obviously, some
form of dependence restriction is necessary to obtain an extremal types result
in dependent cases (since, e.g., one might take all £; to be equal with arbitrary
d.f., so that M, would also have this assigned d.f.). Loynes [72] first obtained
such a result under strong mixing [viz., sup{|P(A N B) — P(A)P(B)|: A €
o(é,...,¢,), Beo(éip bnitin---)y n=12,...} >0 as I > oo, where o( )
denotes the o-field generated by the indicated r.v.’s]. Weaker (distributional)
conditions will suffice and will be used here. The difference is not too important
for our present purposes since the main ideas of proof are essentially the same.
The main condition to be used [termed D(u,)] is defined with reference to a
sequence {u,} of constants in terms of the finite-dimensional d.f’s
F, . (%,...,%x,) =P <x,...,§ <x,} of the stationary sequence {£,}.

Writing F,  (u)=F, (4, u,...,u) define
F'il,...,ip,jl,...,jp»(un) - F'il,...,ip(un)F}l,...,jp»(un)|:

an’l=max{
1<i< -+ <P, <jp< -+ <jp,5n,j1—ipzl}.

Then D(u,) is said to hold if &, ; — O for some sequence /, = o(n).



438 M. R. LEADBETTER AND H. ROOTZEN

It is, incidentally, obviously possible to weaken the condition D(u,) very
slightly to involve “intervals” of consecutive integers. (See O’Brien [78] for the
details of such a procedure and for some advantages in application to periodic
Markov chains.)

The following result ([64], Lemma 2.1) is basic for the discussion of M, and
shows the form in which D(u,) entails approximate independence.

LEMMA 2.1.1. Let {u,} be a sequence of constants and let D(u,) be satisfied
by the stationary sequence {£,}. Let {k, > 1} be constants such that k, = o(n) .
and [in the notation used before for D(u,)] k,l, = o(n), k,a, , — 0. Then

P(M,<u,} - P{M, <u,} >0, asn— oo,
wherer, = [n/k,].

The proof of this result is perhaps the key method in dependent extremal
theory. The type of argument was used first in this context by Loynes [72] but
was used earlier in dependent central limit theory (cf. [22]). The basic idea is to
divide the integers 1,2,..., n into &, “intervals” of length r,, and clip out small
(but expanding) intervals of length [, from the right-hand end of each. Then M,
is approximated by the largest submaximum over each remaining interval, the
submaxima having a degree of independence from D(u,), which allows the
conclusion to be obtained.

The extremal types theorem now follows simply from this result by showing
max stability of the limit G ([66], Theorem 3.3.3).

THEOREM 2.1.2 (Extremal types theorem for stationary sequences). Let {£,}
be a stationary sequence such that M, = max(§,, &,,..., £,) has a nondegener-
ate limiting distribution G as in (1.2.1). Suppose that D(u,,) holds for each u,, of
the form u, = x/a, + b,, for x with 0 < G(x) < 1. Then G is one of the three
classical extremal types.

2.2. The extremal index. Whereas the introduction of dependence into a
sequence can significantly affect various extremal properties, it does not, within
broad limits, affect the distributional type for the maximum. The purpose of this
section is to make that rough statement precise and to explore the explicit
changes brought by a dependence structure. This depends essentially on a single
parameter sometimes called the “extremal index” of the (stationary) sequence
{£.)-

Following Loynes [72], it will be convenient, for a given stationary sequence
{£,), to define the associated independent sequence (£} to be iid. with the
same df. F as £, and to write Mn = max(gl, 52, cee, fn), with M, =
max(§,, &, ..., £,) as before. As noted originally for strongly mixing sequences in
[72], if u, = u,(7) satisfies (1.2.3) for each 7, then any limit (function) for
P(M, < u,(7)) must be of the form e~ %" with fixed 6 € [0,1] rather than just
the function e~" given by (1.2.2) in the i.i.d. case.
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If P(M,, < u,()} > e % for each 7 > 0, with u,(r) satisfying (1.2.3), we say
that the stationary sequence {£,} has extremal index 6 (> 0). This definition
does not involve any dependence restriction on the sequence {¢,}. If, however,
{£,) is a stationary sequence with D{u,(7)} holding for each 7 >0 [u,(7)
satisfying (1.2.3)], it may be shown by Lemma 2.1.1 that there exist constants
0,0, 0 <6 <80 <1, such that limsup,, P{M, < u,(7)} = e,
liminf, ,  P{M, <u,(7)} = e ?" for each 7, so that if P{(M, < u,(r)} con-
verges for some 7 > 0, then 6’ = 6 and P{M,, < u,(7)} > e % for all > 0 and
{£,} has extremal index 6, 0 < 6 < 1. (See [64] for details.)

If P{M, < u,(7)} = e’ it is clear that 6 > 0. One might suspect that also
6 < 1 on the grounds that one feels intuitively that the maximum M, of i.i.d.
r.v.’s should be stochastically at least as large as M,, which would imply
e”" = lim P{M, < u,(r)} < lim P{M, < u,(7)} = e~ ?". In fact, it follows sim-
ply that § < 1 since

P(M, < u,(r)} =1- P{ Ote.> u,,(T»} > 1-nP{E, > u,(r)
=1-n[1 - F(u,(n))] ‘

—1—-17, asn— oo.
Since the left-hand side tends to e~?", it follows that e %" > 1 — r, which is only
possible for all > 0if § < 1.

Clearly, any i.i.d. sequence for which u,(7) may be chosen satisfying (1.2.3)
has extremal index 6 = 1. A stationary sequence {£,} satisfying D(u,(7)) for
each 7 > 0 also has extremal index 6 = 1 if

[n/k]
(2.2.1) limsupn Y, P{¢ >u,, §>u,} >0, ask > co.
n— oo Jj=2
For proof see [66], Theorem 3.4.1, where (2.2.1) is referred to as D'(u,,).

Many stationary sequences satisfy (2.2.1), including normal sequences with
covariance sequence {r,} satisfying the “Berman condition” r,log n — 0. Suffi-
cient conditions for values of § < 1 are given in [64], and an example with
0 = 1/2 appears later in this section. Examples can be found where the extremal
index is zero, or does not even exist. This obviously has some theoretical interest
but appears to occur in somewhat pathological cases and will not be pursued in
the present discussion.

It may be shown by obvious arguments ([64]) that if a stationary sequence
{§,} has extremal index 6 > 0, {v,} is any sequence of constants and p any
constant with 0 < p < 1, then P{M, < v,} — p if and only if P(M, < v,) - ¢’
(This result makes no assumption about dependence.) By taking v, = x/a, + b,
one then obtains the following important result.

THEOREM 2.2.1.  Let the stationary sequence {§,} have extremal index 6 > 0.
If Pla (M, - b,) <x} > G(x), then Pla (M, — b)) < x} - G%x) and con-
versely. That is Mn has an asymptotic distribution if and only if M, does, with
the power relation between the limits and the same normalizing constants.
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By way of comment, note that G is of the same type as G if one of them is of
extreme value type [e.g., [exp(—e *)]’ = exp[—e *"1%69)] and similarly for
types II and III]. If § = 1 the limits for M, and M, are precisely the same.
Indeed, for 0 < § < 1 the limits may also be taken to be the same by a simple
change of normalizing constants. '

The practical implication of this result is that often dependence in data does
not invalidate application of classical extreme value theory. Indeed, one may not
have to worry about the precise value of the extremal index since this only alters
parameters of the distribution, which usually must be estimated in any case.
Furthermore, if > 0, the fact that the distributional type under dependence is
the same as under independence means that the classical domain of attraction
criteria may be applied to the marginal d.f. of the terms to determine which type
applies.

The following simple example provides a case where § < 1 and will also be
useful later when the effects of the value of # on the clustering of exceedances
will be discussed.

ExampLE 2.2.2. Let 7,,7m,... be iid. with df. H and write §; =
max(n;, 1,,,)- Then (£} is stationary with d.f. F = H? and an easy calculation
shows that if u, () satisfies (1.2.3), then n[1 — H(u,(7))] = 7/2 and

P(M, < u,(r)} = P{max(n,,...,n,) < u, (1)} Pn,11 < u,(7)} = €772,
so that {£,} has extremal index § = 1/2.

Criteria for determining the extremal index are discussed in [64]. Finally, we
note that an interesting and informative approach to the relating of dependent
and i.i.d. cases has been given recently by O’Brien [78] (cf. also [91]). This is
based on the general result

P{M <u } _ F(u )nP(max(gz,53,...,£pn)su,,|£l>u,,) >0
n n n ’

which is shown in [78] to hold under weak dependence conditions, for a wide
variety of sequences {u,} and integers p, — co with p, = o(n).

2.3. Relevant point process concepts. In dealing with dependent cases, it will
be necessary to be somewhat more formal than previously in the use of point
process methods. Here we establish the notation and framework (substantially
following Kallenberg [63]) and review a few key concepts that will be needed.

In general, a point process is often defined on a locally compact second
countable (hence complete separable metric) space S, though here S will invari-
ably be a subset of the line or plane. Write & for the class of Borel sets on S and
# = #(S) for the bounded (i.e., relatively compact) sets in .. A point process ¢
on S is a random element in M = M(S), the space of locally finite [i.e., finite on
#(8S)] integer-valued measures on ¥, where M has the vague topology and
Borel o-field # = .#(S).

Write %= %(S) for the class of nonnegative #measurable functions, pf =
[fdu for pe M, fe%(S). The distribution P{~! of a point process £ is
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uniquely determined by the distributions of (£(1)),..., 4(1,)), k=1,2,...,I. €
T, it I is any semiring whose generated ring is #. The distribution of £ is also
uniquely determined by the Laplace transform L.(f) = Ee ¢ fe .

A (general) Poisson process with intensity measure A has the Laplace trans-
form L.(f) = exp{—A(1 - e~ ')}, whereas a compound Poisson process has
Laplace transform

(2.3.1) Ly(f)=exp{ -1~ Lgof)},

where B is a positive integer-valued random variable with Laplace transform
Ly(t) = Ee~ At (No confusion should arise with this dual use of L.) This consists
of multiple events of (independent) sizes 8 located at the points of a Poisson
process having intensity measure A.

Convergence in distribution of a sequence {{,} of point processes to a point
process ¢ is, of course, simply weak convergence of P{,' to P¢~ ' It may be
shown (cf. [63]) that £, —, § if and only if L,(f) — Li(f) for every f € #, the
subclass of % consisting of the nonnegative continuous functions with compact
support. Point process convergence is also equivalent to convergence of finite-
dimensional distributions. Even more simply £, -, £ if and only if
Ea(L)see s £D) 2 (B, .., E(L), k= 1,2,...,[.€ T, where IC & is a
semiring such that £(dB) = 0 a.s. for each B € .7, and such that for any B € &,
¢ > 0, B may be covered by finitely many sets of . with diameter less than &
(cf. [63], Theorem 4.2). The results of Section 1.3 use the facts that semiclosed
intervals and rectangles form such classes.

2.4. Convergence of point processes associated with extremes. We return
now to the stationary sequence {{,} and consider point process convergence
results along the same lines as for the i.i.d. case in Section 1.3. The notation of
that and other previous sections will be used. In particular, N, will denote the
point process of exceedances on (0,1] as defined in Section 1.3, viz., N(E) =
#{i/n€ E: §{,>u,,1<ix< n}, for a given sequence of constants u,.

When {£{,} has extremal index § =1, the Poisson convergence result of
Section 1.3 for exceedances may be proved provided D(z,) holds. This leads
again to the classical form (1.2.5) for the asymptotic distributions of extreme
order statistics. Similarly, r-level convergence results hold under an r-level
version DJ(u,,) of D(u,,) (cf. [66], page 107), leading to the classical forms for the
asymptotic joint distributions of extreme order statistics when 6 = 1 [cf. (1.3.1)].
The “complete convergence” result Theorem 1.3.1 also holds giving again a
Poisson limit in the plane when 6 = 1 provided the multilevel conditions D,(u,,)
all hold. These results are described in [66]; here we indicate the new features
that arise when 0 < 6 < 1.

As noted in Section 2.2, cases when 6 < 1 occur when there is “high local
dependence” in the sequence so that one exceedance is likely to be followed by
others (see Example 2.2.2 as an illustration of this). The result is a clustering of
exceedances, leading to a compounding of events in the limiting point process.

To include cases where such clustering occurs (i.e., 0 < 8 < 1), we require a
modest strengthening of the D(u,,) condition (cf. [60]). Let %#/(u,) be the o-field
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generated by the events {{, < u,},i<s<j. Forl <l<n— 1 write
B, .= max{|P(A N B) — P(A)P(B)|:
(241) ™' P ) )

A€ B(u,), Be B (u,),1<k<n-1}.

Then the condition A(u,,) is said to hold if B, ; — 0 for some sequence I, with
I, = o(n). {B, ;} will be called the mixing coefficients for A. The condition A is,
of course, stronger than D but still significantly weaker than strong mixing.

The condition A will be applied through the following lemma, which is a
special case of [97], Equation I'.

LEMMA 2.4.1. Foreachnand 1 <l<n — luwritey, ;= |sup En{ — EnE{|,
where the supremum is taken over all m,{ measurable with respect to
B{(u,), B}, (u,), respectively, 0 <n, { <1,1<j<n-—1 Then B, ,<7v,,<
4B, ;, where B, , is the mixing coefficient for A given by (2.4.1). In particular,
{£,) satisfies Mu,,) if and only if v, , — O for some I, = o(n).

It will be convenient to have the following simple notion of clusters. Divide
the {§;} into successive groups (§,,...,§, ),(¢, +1,---, &2, ), ... Of I, consecutive
terms, where r, [= o(n)] is appropriately chosen. Then all exceedances of u,
within a group are regarded as forming a cluster. Note that since r, = o(n) the
positions of the members of a single cluster will coalesce after the time normal-
ization, giving nearly multiple points in the point process N, on (0,1]. The
following lemma (proved similarly to Lemma 2.1.1 but using Lemma 2.4.1—cf.
[60]) shows that the clusters are asymptotically independent.

LEMMA 24.2. Let 7>0 be constant and let A(u,) hold with u, =
u,(7) satisfying (2.2.1). Suppose {k,},{l,} are sequences of integers such that
k,l,/n—>0 and k,B,, — 0, where B, , is the mixing coefficient of A(u,).
Then, for each nonnegative continuous f on (0,1],

n
Eexp(— f(j/n)xn,,-)
j=1
(2.4.2) . "
~[[Eexp|- X f(j/n)xn,j) -0,
i=1 J=@-Dr,+1

where x, ; is the indicator L > u,y and r, = [n/k,].

The number of exceedances in the ith cluster is N (((i — )r,/n, ir,/n]) =
XV i1y, +1Xn,; @nd the cluster-size distribution is therefore conveniently de-
fined to be given by

rn rﬂ
(243)  mi) = P{ Y Xn s = i| X X, > o}, i=12,....
J=1 J=1

The following result of [60], giving sufficient conditions for N, to have a
compound Poisson limit, is proved by using Lemma 2.4.2 (cf. [60]).
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THEOREM 2.4.3. Let the stationary sequence {£,} have extremal index § > 0
and suppose that the conditions of Lemma 2.4.2 hold. If w,(i) [ defined by (2.4.3)]
has a limit =w(i) for each i = 1,2,..., then w is a probability distribution on
1,2,... and the exceedance point process N, converges in distribution to a
compound Poisson process N with Laplace transform

(2.4.4) Lo(f) = exp{—ﬂ'r / 1(1 -y e‘f(‘)ivr(i)) dt}.

i=1

The Laplace transform (2.4.4) is of the form (2.3.1) with the integer-valued r.v.
B satisfying P{B =i} = m(i) and intensity measure simply 67m, where m is
Lebesgue measure. That is, N consists of multiple events of size whose distribu-
tion is 7(i), located at the points of a Poisson process having intensity 7.

The following result, showing that the compound Poisson process is the only
possible limit for N, under the conditions A is proved along similar lines to
Theorem 2.4.3. (Full details may be found in [60].)

THEOREM 2.4.4. Suppose the condition A(u,) holds for u,, = u,(t) satisfying
(1.2.3) for a T > 0, for the stationary sequence {§;}. If N, converges in distribu-
tion to some point process N, then the limit must be a compound Poisson process
with Laplace transform (2.4.4), where « is some probability measure on {1,2, ...}
and § = —7 oglim,_, P(M, <u,7)} €[0,1). If 6+ 0, then =(i) =
lim 7,{i}, where =, is defined by (2.4.3) for r,=[n/k,]), k,(— o) being any
sequence chosen as in Lemma 2.4.2.

ExAMPLE 2.2.2 (continued). It is evident that the exceedances of u, by the
process £; = max(n;,1,,,) in Example 2.2.2 occur in (at least) pairs, since if
§,_1<u,but §;>u, thenn;,, > u, and hence §;,, > u,. It is readily seen by
direct evaluation that =,(2) — 1 and hence #(i) = 1 or 0 according as i = 2 or
i # 2. Thus the limiting point process N consists entirely of double events and
(2.4.4) gives Ly(f) = exp{—(7/2)[3(1 — e~ 2/®) dt}.

The most important application of the compound Poisson limit is to give the
asymptotic distribution of the kth largest value M(® of £,,..., &, when 6 < 1,
using the equivalence {M® < u, (1)} = {N,((0,1)) < &}.

THEOREM 2.4.5. Suppose that for each T > 0, A(u,) holds with u, = u,(t)
satisfying (1.2.3) and that N, (= N7) converges in distribution to some nontriv-
ial point process N (= N™) (which will occur, e.g., if the conditions of Theorem
2.4.3 hold). Assume that the maximum M, has the nondegenerate asymptotic
distribution G as given in (1.2.1). Then for each k = 1,2,...,

Pla,(MP - b,) < x}
k—1k—-1

> Gx)|1+ L X ((~logG(x)) /jt)a*(i)

Jj=1i=1

(2.4.5)
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[zero if G(x) = 0], where ©*/ is the j-fold convolution of the probability = =
lim 7,, m, being given as in Theorem 2.4.4.

Note that the form (2.4.5) differs from the (classical) case 6 = 1 [i.e., (1.2.5)],
by inclusion of the convolution terms. These arise since, e.g., the second largest
may be the second largest in the cluster where the maximum occurs or the
largest in some other cluster. This contrasts with the case 2 =1 for the
maximum itself involving only the relatively minor change (Theorem 2.2.1) of
replacing the classical limit by its §th power.

Finally, in this section we note that the “complete” convergence result,
Theorem 1.3.1, still holds giving a Poisson limit under appropriate conditions,
when {£,} has extremal index 1. However, as for the exceedance point process,
the limit may undergo “compounding” when 6 < 1.

The possible limiting forms for N, (defined as in Theorem 1.3.1) were dis-
cussed first by Mori [75] under strong mixing conditions. More recently, a
transparent derivation has been given by Hsing [57] under weaker conditions, of
A(u,) type but involving multiple levels u,(7;). A derivation similar. to that for
the exceedance process shows that any limit in distribution of N,, N’ say, must
have independent increments, be infinitely divisible and have certain stationarity
properties. These properties restrict the Laplace transform of N’ to a form that
can be readily determined (though requiring further notation). It is also possible
to give an illuminating “cluster representation,” which exhibits N’ as a Poisson
process in the plane together with a countable family of points with integer-
valued masses on vertical lines above and emanating from each Poisson point (cf.
[58]).

As noted in Section 1.3, results of this type summarize the relevant informa-
tion concerning asymptotic joint distributions of extreme order statistics, in
contrast to the individual marginal distributions obtained in Theorem 2.4.5.

2.5. Normal sequences: The comparison method. For stationary normal
sequences with covariances {r,}, the condition D(u,) holds—as also does the
sufficient condition (2.2.1) for the extremal index to be 1 provided the “Berman
condition” holds, viz.,

(2.5.1) r,logn - 0, asn — oo.

These results are simply proved by means of a widely used comparison
method, which, in particular, bounds the difference between two (standardized)
normal d.f’s by a convenient function of their covariances. This result—here
given in a general form ([66], page 81)—was essentially developed by Berman
[10] and Slepian [94].

THEOREM 2.5.1 (Normal comparison lemma). Suppose that &,,..., &, are
standard normal random variables with covariance matrix A' = (A};) and
N e-v» M, Similarly with covariance matrix A° = (A%), and let p;; =
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max(|Ay, |A%|). Then, for any real numbers u,, u,,...,u,,
P{¢i<u;,j=12,...,n} - P(n;<u;, j=1,2,...,n)}
-1 + -1/2
(2.5.2) < (27) r (A% =A%) (1-e2)
l<i<j<n

xexp| - (u? + u?)/(2(1 + o)),

where x*= max(x,0). Furthermore, replacing (A = A9 )" by the absolute
value on the right-hand side of (2.5.2) yields an upper bound for the absolute
value of the difference on the left-hand side.

By taking £;, £,... to be a stationary sequence of standardized normal r.v.’s
with covariance sequence {r,} and 7,1, ... to be ii.d. standard normal r.v.’s it
follows simply from the theorem that if sup,|r,| < 1, then for any real sequence

{ua),
(2.5.3)

n
F, .. i{u,) = ®(u,)| < Kn ¥ Injexp (—u2/(1 + |r))),
J=1
where F, ;, is the joint (normal) distribution of §ip---, €, and @ is the
standard normal d.f., i,...,i; being any choice of distinct integers from
1,2,...,n.

Now if n(1 — ®(u,)) is bounded and (2.5.1) holds, it can be shown (by some
routine calculation) that the right-hand side of (2.5.3) tends to zero as n — oo,
showing that P(¢; <u,,..., £, <u,} is approximately the same as it would be
if the r.v.’s were i.i.d. instead of being correlated.

One can clearly (by identifying i,,...,i, with 1,..., n) then show directly
that P{M, < u,} is approximately the same as for the ii.d. standard normal
sequence, leading to the following result of Berman [10]. This result may also be
proved from Theorem 2.2.1 by verifying the condition D(u,) and (2.2.1).

THEOREM 2.5.2. Let {{,} be a (standardized) stationary normal sequence
with covariances {r,} such that r,Jogn - 0 as n — oo. Then

Pla,(M, - b,) <x} - exp(—e™%),
where a,, b, are given by (1.2.4).

Thus if r,log n — 0, the maximum M, from the stationary normal sequence
has precisely the same asymptotic distribution as an i.i.d. normal sequence. The
same is true of the distributions of all extreme order statistics. Although a slight
weakening of (2.5.1) is possible, this condition is close to being necessary for
Theorem 2.5.2. Indeed, if r,logn —y >0 and u,=x/a,+ b, [with a,, b,
given by (1.2.4)], then the time normalized point processes of exceedances
converge in distribution to a certain doubly stochastic Poisson process. This
leads to the asymptotic distribution of the maximum given by the convolution of
a normal and type I extreme value distribution. (See [66], Section 6.5, for
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details.) Furthermore, Mittal and Ylvisaker [74] have shown that if r, |0 but
r,logn — co, then M, has an asymptotic normal distribution. Thus in these
“highly dependent” cases where D(u,) fails, the classical theory no longer
applies.

As noted previously, stationarity has been assumed in many of the results to
avoid the complications of notation and calculation, which a nonstationary
framework entails. For normal sequences, however, the sufficient correlation
conditions still remain quite simple in nonstationary cases. For example, the
following result holds.

THEOREM 2.5.3. Suppose that {£,} is a standardized normal sequence with
correlations r;; satisfying |r;;| < p,_; for i #j, where p, <1 for all n and
p,logn - 0 asn — 0. Letu,;, 1 <i<n, n=12,..., be constants such that
A, = min u,; > c(log n)'/? for some ¢ > 0. If for some v > 0, X7(1 — ®(u,,)) - 7,
then P(N;_,(§; < u,;)} = e " asn —> co.

Theorem 2.5.3 has a very useful corollary in the case where a sequence {7,,} is
obtained from a stationary normal sequence {£,} by adding a varying mean—such
as a seasonal component or trend. Calculations then show that the double
exponential limit for the maximum still holds, but the normalizing constant b,
can require an appropriate modification. Specifically, suppose that n, = £, + m,,
where {{;} is a standard (zero mean, unit variance) normal sequence (not
necessarily covariance stationary) and m; are added deterministic components
with the property that

(2.5.4) B, = max |m;] =o(logn)”?, asn - .
1<i<n

Under this condition it may be shown that a sequence of constants {m}} may
be found such that

12 1 ,
(2.5.5) - Y exp(a;“,(mi -mt) — E(mi -m¥)’| > 1, asn— oo,
i=1

in which a* = a, — loglog n/(2a,), with a, as in (1.2.4). With this notation, the
following result holds.

THEOREM 2.54. Let n,=§,+ m; as before, where {£,} is a standard
normal sequence with correlations r;; satisfying |r;,| < p;_; for i +j with
p, < 1 and p,log n — 0. Suppose that (2.5.4) holds and m}, satisfies (2.5.5). Then
Mn = maX("lp MNoseves nn) satisﬁes

P{an(Mn - bn - m:) =< x} - exp(—e‘x),
with a, and b, given by (1.2.4).
Thus the nonstationarity in the correlation structure has no effect on the

limit law, and that introduced by the added deterministic component is adjusted
for by the change of b, to (b, + m},). For details see [66], Chapter 6.
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Normal processes provide a widely used source of models for describing
physical phenomena, and it is gratifying that extremal theory applies so simply
to them. Another convenient source of models is, of course, Markov chains,
whose extremal behavior we discuss next.

2.6. Regenerative and Markov sequences. Most limit results for Markov
chains are intimately tied to the theory of regenerative processes. For extreme
values, this has been used in [2] and [10], some further references on extremes of
Markov chains being [12], [78] and [91]. The “classical” case, exemplified by the
GI/G/1 queue, is when a recurrent atom exists. However, recently regeneration
techniques have been extended, in [6], [7] and [77], to show that any Harris
recurrent chain {7,} on a general state space is regenerative or 1-dependent
regenerative (concepts to be defined later), and to give effective criteria for
regeneration. Furthermore, clearly a function &, = f({,) of a (1-dependent)
regenerative sequence is (1-dependent) regenerative. An example where this
added generality is useful is given by ARMA( p, ¢)-processes. They are naturally
considered as functions of a Markov chain in R, for d = max(p,1) + ¢ and can
be shown to be 1-dependent regenerative under weak conditions but usually not
to be regenerative (cf. [91]).

Regenerative and 1-dependent regenerative sequences are strongly mixing,
and hence the theory from Sections 2.1-2.4 applies; in particular, the extremal
types theorem and the compound Poisson limit for exceedances hold. However,
this can also be obtained directly, and the direct approach gives some added
insight also into the results for general stationary sequences. In the present
section this will be briefly outlined, along with some results directly tailored to
Markov chains.

A sequence {£,: t=1,2,...} is regenerative if there exist integer-valued
random variables 0 < S, < S, < ---, which divide the sequence into “cycles”

co=1{£:0<n<8)}, c={,S=<n<§S]},
co=1{§,:8,<n<8},...,

which are independent and such that, in addition, ¢, ¢,,... follow the same
probability law. Then {S,} is a renewal process, i.e., Ty =S,, T, = S, — S,,
T,=S,—8,,... are independent and T}, T,,... have the same distribution. We
shall here assume that m = ET, < oo and that the distribution of 7, is aperiodic,
i.e., that the only integer for which P(T| € {d,2d,...}) =1 is d =1. The
sequence {£,} is 1-dependent regenerative if there exists a renewal process {S,}
as before, which makes c,, ¢;,... 1-dependent (i.e., cycles separated by at least
one cycle are independent) and ¢, ¢,, ... stationary.

Suppose now that {{,: n = 0,1,...} is a stationary regenerative sequence, let
$o=max{{;: 0<i<S)}, {=max{{;: S;<i<S}, {r=max{{;: S <i<
S,},... be the cycle maxima and define », = inf(k > 1: S, > ¢}. By the law of
large numbers »,/t - 1/m as. and M, = max{{,,...,£,} is easily approxi-
mated by max{{;,...,{, }, which then in turn can be approximated by
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max{{y,..., §{,/mj}- Since $1, &5, - - - are iid., this can be shown to lead to

(2.6.1) sup|P(M, <x) — G*(x)| >0, asn— oo,
X

with G(x) = P({, < x)'/™, see, e.g., [9] and [91]. Since G is a d.f. it follows at
once that the extremal types theorem holds for {£,}, and criteria for domains of
attraction are obtained by applying the criteria for i.i.d. variables to G(x).

In particular, it follows from (2.6.1) and Lemma 1.2.2 that

(2.6.2) P(M,<u,)—>e™" asn— oo,

if and only if n(1 — G(u,)) — 1. As in Section 2.2 let £, £,,... be the associated
independent sequence, which has the same marginal d.f. F as 51, £,, ... and write
M, = max(£,...,£). If, in addition, n(l — F(u,)) = nP(¢ > u,) = >0,
then P(M,<u,)—> e " and {£,} hence has extremal index 6 = 7,/r. Since
1 - G(u,) ~ P(§, > u,)/m, this can be formulated as follows. If there exists
a sequence {u,} such that n(1 — F(uz,)) > 7> 0 and

P(gl > un)/m

(269) P(¢ > u,)

-60>0,

then {£,} has extremal index . In the same way it can be seen that conversely if
{£,) has extremal index § > 0, then for any 7 > 0 there exists a sequence {u,,},
which satisfies n(1 — F(u,)) — 7 and (2.6.3). However, it should be noted that
there are examples of regenerative sequences {£,} that satisfy (2.6.2), even for
u,=u,x)=x/a,+ b, for all x, but for which (P({; > u,)/m)/P(¢ > u,)
does not converge, and hence the extremal index does not exist, even if this is not
expected to occur in cases of practical interest.

A counterpart to the compound Poisson limit theorem 2.4.3 for the exceedance
point process N,, given by N(E) = #{i/n € E: §, > u,}, is also easy to obtain
for stationary regenerative sequences. Let N, be the point process on (0,1],
which has points of multiplicity v, = #{¢t: §{,>u,, S;_, <t <S;} at i/n for
each i for which v; > 0, i.e, N, is defined by N,(E) =L, ,, c gY;- Then {y;}32, is
an i.i.d. sequence, and if (2.6.2) holds so that nP(y, > 0) = nP({, > u,) = 1m
and if

(2.6.4) 7,(i) = P(y, = ily, > 0) > #(i), asn — oo,

for all i for some {7(i); i = 1,2,...}, then it follows at once that N, converges in
distribution to a compound Poisson process N’ with Laplace transform L .( f) =
exp{ —nmfi(l — T2 e~ /®x(i)) dt}. By definition, a nonzero y; corresponds to a
cluster of v, exceedances of u, by & for S;_; <t <S;, and since S;/i > m as
i — oo, there is hence a cluster of y; points located approximately at mi/n in
N,. Hence for an interval E, N,(E) is approximated by N(m™'E) (for m™'E =
{x: mx € E}) and asymptotically N,(E) should have the same distribution as
N’(m™'E). This argument can easily be extended and made strmgent to give the
following result of [91] (cf. also [92]).
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THEOREM 2.6.1. Let {£,: n=0,1,...} be a stationary aperiodic regenerative
sequence with m < oo and let {u,} be constants such that
nP(y, > 0)/m = nP(§, > u,)/m > 1

and (2.6.4) holds. Then N, converges in distribution to a compound Poisson
process N with Laplace transform (2.4.4), i.e.,

Ly(f) = exp{ —n fo 1(1 - ée-mﬁw(i)) dt}.

These results may also be extended to 1-dependent regenerative sequences,
however with some extra complexity. Here we mention that the criterion (2.6.3)
for the extremal index to be @ then is replaced (cf. [91]) by

P(§1 = Uys §2 > un)/m
P(g'l > un)

In [91], (2.6.5) is further used to find conditions for # = 1 for a function
£, = f(n,) of a Markov chain on a general state space. This result is expressed
directly in terms of the transition probabilities P(x) = P(f(n,) > u,ln, = x) =
P(¢, > u,yn = x) as follows.

(2.6.5) - 4.

THEOREM 2.6.2. Let {n,} be a stationary regenerative Markov chain with
the cycle length T, aperiodic and satisfying ET{ < oo for some o« > 1. If
u, = u,(t) satisfies (1.2.3) for some v > 0 and

E(P,(n,)")n'**/* >0, asn— oo,
for some s > 1 with1/a + 1/s < 1, then {£,} has extremal index 0 = 1.

We also refer to [91], Theorem 4.1, and [78], Theorem 2.1, for additional
results on the extremal index and compound Poisson convergence, for general
distributionally mixing sequences, in a form that is particularly convenient for
applications to Markov chains. Finally, the restriction that the Markov chain (or
regenerative sequence) is started with the stationary initial distribution is not
essential. All the results hold for arbitrary initial distributions, provided only
that

P($, > max{{,...,$,}) =0, ask - .

2.7. Moving averages. -Here, a stationary sequence {£,} is a moving average

if it can be written in the form
o0

(2.7.1) &= Y ¢ty t=0,%1,...,
1=—00

where {{,} is an i.i.d. sequence (the “noise sequence”) and {c;} is a sequence of
constants (the “weights”) and where the sums are assumed to converge with
probability 1. If a stationary normal sequence has a spectral density—this holds,
e.g., if Lr2 < oo, it can be represented in a nonunique way, as a moving average
with normally distributed {’s. Furthermore, (2.7.1) includes the ARMA-processes
(which satisfy a finite linear difference equation in the {’s and hence also are
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multidimensional Markov chains), which are extensively used in time-series
analysis. Thus, in particular, some of the themes from Sections 2.5 and 2.6 will be
taken up again here, but from a slightly different point of view.

The extremal behavior of {£,} depends on both the weights and the two tails
of the marginal d.f. of the noise variables in an intricate and interesting way. To
reduce the amount of detail, we shall only describe the asymptotic distribution
of the maxima, for the case of nonnegative c¢;’s. The general case involves some
extra complexity, since then an extreme negative noise variable, which is multi-
plied by a negative c;, may contribute to a large £,-value. In addition to this, the
references cited later prove point process convergence and give rather detailed
information on the sample path behavior near extremes, including the clustering
that occurs when the extremal index is less than one. Here we will only exhibit
the limiting form of the sample paths near extreme values without going into
technicalities, referring to [86], [89] and [36] for further details.

In cases when (1.2.1) holds, i.e., when

(2.7.2) P{a,(M,-b,) <x} »,G(x), asn— oo,

the asymptotic behavior of the maximum is specified by the constants a, > 0, b,
and the d.f. G. However, this involves an arbitrary choice, since if a,, b, are
replaced by a’, b, where a,/a,, = a > 0 and a,(b, — b,) — b, then (2.7.2) still
holds, but with G(x) replaced by G(ax + b). In the sequel we will keep the G’s
fixed, as the standard d.f’s displayed in Theorem 1.2.1 and hence describe
extremal behavior by a,, b, and the type of G.

Extremal behavior of the moving average {£,} can be put into perspective by
comparing with extremes of the noise sequence and of the associated i.i.d.
sequence {£,} with the same marginal d.f. (£,). Specifically, for M, =

max{{y,...,{,} and M, = {£,...,£,) there are norming constants d,, 4, > 0
and b,, b, such that for the cases we consider here,

(2.7.3) P{a,(M,-b,) <x} - G(x)

and

(2.7.4) P{a,(M,-b,) <x} - G(x),

with the same G as in (2.7.2), and we shall indicate the relations between the
different norming constants.

The articles by Rootzén [86] and Davis and Resnick [36] are concerned with
noise variables that are in the domain of attraction of the type II extreme value
distribution, or, equivalently, when the noise variables have a regularly varying
tail,

(2.7.5) P($y>x) =x"°L(x),

with @ > 0 and L slowly varying at infinity. Hence, using the prescription
for norming constants given after Lemma 1.2.2, if vy, satisfies P({, <7v,) <
1 - 1/n < P({, < v,), so that v, is roughly of the order n'/*, then (2.7.3) holds,

with
dn = ‘Yn_11 En = 07

G(x) =exp(—x7%), x>0.
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Let c¢,= max{c; i =0, £1,...}. Then also (2.7.2) is satisfied, with
— 0’

n

(2.7.6)
G(x) = exp(—x%).

This is elegantly proved in [36], by first noting that complete Poisson conver-
gence of extremes of the {-sequence is immediate (cf. Section 1.3) and then
obtaining the corresponding result for the £’s by a “continuous mapping” and
approximation argument. [36] uses some summability assumptions on the ¢;’s,
and for convenience that ¢; =0 for i = —1, —2,... . However, it seems clear
that the results hold without any restrictions beyond the assumption that the
sums in (2.7.1) converge (cf. [86]).

An intuitive explanation of (2.7.6) is that when the tails of the noise variables
decrease slowly, as in (2.7.5), then the extreme noise values are very much larger
than the typical ones, and that hence the maximal £-value asymptotically is
achieved when the largest {,-value is multiplied by the largest weight c . This, of
course, agrees with (2.7.6), since the norming constants there are the same as
those that apply to max{c,{,,...,c.¢{,). These heuristic arguments also easily
lead to the following form of the normalized sample path £, /¢, near an
extreme value at, say, the time point 7; asymptotically, this ratio has the same
distribution as the function y, given by
(2.7.7) y,=Uc_,,
where U is a certain random variable which takes values in the set
{...1/c_,1/¢cy,1/cy,... }. Thus, except for a random height, sample paths near
extremes are asymptotically deterministic.

The special case of (2.7.5) when the noise variables are stable (or “sum-
stable,” as opposed to max-stable) was studied first in [86]. It has the appealing
- feature that then also the moving average, and indeed all linear functions of the
noise variables, are jointly stable. For such variables, it is easily seen that (2.7.4)
holds, with

é,= (Zcf‘)l/adn, f,n =0,
G(x) = exp{—x7%},
and hence also that the extremal index is ¢% /¢, for the case of nonnegative c’s
discussed here. Although not considered in [36], this can be shown to hold also
for the general case (2.7.5), provided the sums involved are convergent.
The other class of moving averages, which has been studied in [89], is specified

by
(2.7.8) P(¢,> x) ~ Kx%™*", asx — oo,
where K, p > 0 and a are constants. Again it follows, using Lemma 1.2.2, that
(2.7.3) holds, with

a, = p(logn)' """,

b, = (logn)"? + p~'((a/p)loglog n + log K )(log n)?71,

G(x) = exp{ —e™*}.
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Thus the center of the distribution of M, tends to infinity roughly as (log n)"/?,
and the “scale parameter” a;, is of the order (log n)"/?~", which shows that for
p > 1 the distribution of M, becomes more and more concentrated as n — o,
and that it becomes lncreasmgly spread out for 0 < p < 1, whereas the order of
the scale does not change for p = 1. As we shall see, the same holds for M
and M,.

The case when (2.7.8) holds with p = 1 leads to intermediate behavior, and we
will only discuss the remaining cases. For 0 < p < 1 again a large ¢-value is
caused by just one large noise variable, in a similar way to the behavior when
(2.7.5) holds. However, the nonzero I;n-terms cause some extra complications.
Thus (2.7.2) holds with

a,=ci'd,, b,=c.b,
G(x) = exp{—e™"},

in analogy with (2.7.6), but, writing & for the number of i’s with ¢; = c,, the
appropriate version of (2.7.4) involves

4,=cid,  b,=c.(b,+ (logk)/a,),
G(x) = exp{ —e™*}.

Also the asymptotic form of the sample path £, /£, near an extreme value at 7
is similar. For k2 = 1 it is given by the deterministic function

Ye=c_,/cy,
whereas in the general case it is a random translate of this.

The case when (2.7.8) holds with p > 1 is more intricate, since then an
extreme £-value is caused by many moderately large noise variables in conjunc-
tion, and since extremal behavior is determined by the constant ||c||, = (Z|c;|9)"/?
and the function

(2.7.9) ¥ = X ic??/lellg,
12

with ¢ = (1 — 1/p)~ .. In fact, the normalized sample path §, . /¢, near an
extreme at 7 asymptotically has the deterministic form (2.7.9), and (2.7.2) and
(2.7.4) hold, with

a, = dn = ”C“;ldn’ bn. = bn’

G(x) = exp{ —e *}.

Here b, = 5 is not determined by (2.7.8) alone; except for finite moving
averages, it is also influenced by the center of the distribution of the {’s.
However, it is roughly of the order ||c|, b,, but still a,|(b, — llell, b,)| may, in
general, tend to infinity. It, of course, follows at once from (27 10) that the
extremal index is one for p > 1.

For p = g =2, which includes the normal case, (2.7.9) is the correlation
function and |||, is proportlonal to the standard deviation, in agreement with
Section 2.5. However, it is interesting to note that for p # 2 covariances seem to
have little bearing on extremes.

(2.7.10)
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The results for the case (2.7.8) use the assumption that |¢;| = 0(|i| ™), for
some 7 > max(1,2/q), and for p > 1 in addition a number of smoothness
restrictions on the distribution of the noise variables. These are mainly used in
the derivations of the behavior of the tail of £, = Xc,{_;, which for p > 1 is the
main difficulty (cf. [90]). It is fairly easy to see that D(u,) holds for all the
moving averages considered here, and the results above for p > 1 are obtained
along the lines set out in Section 2.2 by verifying (2.2.1). For 0 < p < 1, i.e, in
the cases when § may be less than one, the proofs use ad hoc methods, closely
related to the heuristic arguments given previously.

Finally, it should be mentioned that Finster [45] obtains some related results
using autoregressive representations of the processes and Chernick [25] provides
an example with qualitatively different behavior.

2.8. Rates of convergence. Rates of convergence for the distribution of the
maximum have mainly been studied for i.i.d. variables. In the present section we
briefly review this work, discussing in turn pointwise rates, uniform convergence
of d.f.’s, so-called “penultimate” approximations, uniform convergence over the
class of all sets and “large deviation” type results. Although generalizations seem
straightforward, the only dependent sequences that have been considered are the
normal ones. The quite precise results available for this case are discussed at the
end of the section. A useful general observation, which applies to ii.d. and
dependent cases with extremal index # = 1, is that once rates of convergence of
the maximum have been found, then it is typically quite easy to find similar
rates for kth order statistics.

For i.i.d. random variables and a given «,,, the error P(M, < u,) — e~ " in the
approximation (1.2.2) is easy to compute directly, since then P(M, < u,) =
F™(u,), where F is the common d.f. of the variables. Furthermore, if F is
continuous one can always make the difference zero for any n, v > 0 [by taking
u, = F~(e™/™)]. However, often u,, is determined from other considerations,
e.g., in (1.2.1) it is chosen as u, = u,(x)=x/a,+ b, and correspondingly
7 = 7(x) = —log G(x). Then the behavior of the approximation error

A (x) = P(M, < u,(x)) — e7™®,
perhéps over a range of x-values, and, in particular, of
d,(a,, b,) = sup|A,(x)| = sup|P(a,(M, - b,) < x) — G(x)|

is less immediate. If (1.2.1) is used as an approximation or, more importantly, if
it motivates statistical procedures when a,, b, have to be estimated, interest
centers on which rate of decrease is attainable when the “best” a,, b, are used,
i.e., on

d,= inf d,(a,b)= inf sup|P{a(M,—b)<x}— G(x)|.
a>0,b a>0,b ,
It is easy to give examples of distributions F for which d, tends to zero

arbitrarily slowly, and to any exponential rate there is an F that achieves this
rate. However, faster than exponential decrease of d, implies that F is max-



454 M. R. LEADBETTER AND H. ROOTZEN

stable, and then d, = 0 for all n ([8] and [88]). Also different standard distribu-
tions give quite different rates, e.g., for the normal distribution d,, is of the order
1/log n, whereas for the uniform and exponential distributions the order is 1/n.

Let 7, = 7(x) = n(1 — F(u,(x))). In the sequel we will usually, for brevity,
delete the explicit dependence on x. An obvious approach to analyzing A,
[= A,(x)] in the ii.d. case is to introduce

N=Q-1/n)"—e ™, A,=e™—e",
so that
(2.81)  |A,l =|F(u,)" —e"|=|(1 = 7,/n)" — e7"| < |A,] + |A%].
Here 0 < 7, < n, and for such values the satisfying uniform bound
(2.8.2) Al <n M a+nt)e?

is derived by Hall and Wellner [55]. Furthermore, for fixed =, by Taylor’s
formula

(2.8.3) AT ~ e |7, — 1],

as 7, — 7. However, (2.8.3) is only uniform for 7, — r = 7,(x) — 7(x) in intervals
that are bounded from below, and to bound d, a further argument has to be
added. Often this runs as follows; (2.8.2) and (2.8.3) give sharp estimates of
Sup, . 4|A,(x)| for any a > x,, where x, is the left-hand endpoint of the d.f. G,
and then also for sup, .., |A,(x)| if x, is taken to converge to x, suitably slowly.
Combining this with

(2.8.4) sup |A,(x)| < max{F"(x,/a, + b,),G(x,)}

x<x,

leads to a bound for d,(a,, b,), and then, by varying a,, b,, to bounds for d,.
This approach is used, with some variations, by Hall and Wellner [55], Davis
[33], Cohen [26] and [27] and Leadbetter, Lindgren and Rootzén [66]. Here the
bounds corresponding to (2.8.2) and (2.8.3) are asymptotically sharp, but there is
a possibility that A, and A, can at least partially cancel. However, this happens
only if 7, = 7 — 72/(2n) + o(1/n), and hence in fairly special cases, as is readily
seen (cf. Davis [33]).

A number of papers, some of the later references being Cohen [26] and [27],
Smith [95] and Resnick [84], have introduced conditions that permit more
explicit bounds than (2.8.1)-(2.8.4) to be calculated. Their approach is to take
some set of conditions for attraction to an extreme value distribution, typically
involving convergence of some quantity related to the tail of F, and show that if
this holds at a specific rate then d,(a,, b,) converges at a corresponding rate. In
this a set of simple sufficient conditions due to von Mises [98] (cf. [66], page 16)
have been particularly useful. There are many possible versions of such condi-
tions, and hence many partially overlapping results have been obtained. As a
typical example, we cite the following result of Resnick [84].
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Suppose F is differentiable and that there exists a continuous function g that
tends monotonically to zero and satisfies
xF'(x)
F(x)(—log F(x))

(2.8.5) af <g(x), x>0,

for some a > 0. Then, if a, is chosen to satisfy —log F(a,') = n"},

sup |F™(x/a,) — exp{ —x~*}| < 0.2701g(a; ) /(« — g(a; '),

x=>1
for n such that g(a,') < a. Here (2.8.5) is a slight variation of von Mises’
condition for attraction to the type II extreme value distribution, and the proof
is somewhat different from the method outlined previously, the main ingredient
being an estimate of —log(—log F(x)). Resnick also obtains a somewhat more
complicated bound for the supremum d,(a,,0) over all x.

For ii.d. variables bounds on the rate of convergence of the maximum
automatically lead to bounds for the rate of convergence also of kth largest
values. This follows as in (1.2.5), by using any of the known bounds for the
difference between the binomial and Poisson distributions, since S, is binomial
with parameters n, 7,/n (see, e.g., [66], Section 2.4).

The normal case, briefly mentioned above, of course, has attracted special
attention. Straightforward calculations show that for a,, b, given by (1.2.4)

A,(x) ~ [exp(—e‘x)e"‘(loglog n)Z]/(1610g n), asn— o,

and in Hall [53] it is shown that for i.i.d. normal variables there are constants
0 < ¢; < ¢y <3suchthat c¢;/logn < d, < cy/logn for n > 3, i.e, the best rate
of convergence is of the disconcertingly slow order 1/logn. However, this is
partially offset by the fact that d, is, nevertheless, fairly small for small n, e.g.,
for n < 10,000 it compares well with the error in the normal approximation to
the binomial distribution.

In their pioneering paper [46], Fisher and Tippett had already noticed the
slow convergence rate for the normal case, and suggested improved “penulti-
mate” approximations. The idea is that since the type I extreme value d.f. can be
approximated arbitrarily well by type II (or type III) d.f.s, if a d.f. can be
approximated by a type I d.f., the same error can (in the limit) be achieved by a
type II (or III) d.f., and there is always a possibility they can do better. This has
been further developed by Cohen [26] and [27], who, in particular, shows that a
penultimate approximation of the maximum of normal random variables by a
type II extreme value d.f. improves the rate of convergence to 1/(log n)% The
disadvantage with this approach is that the exponent « in the approximating d.f.
then has to be chosen differently for different values of n. A related approach is
to consider a function |M,,|® instead of M, itself. This is pursued in Hall [54] and
Haldane and Jayakar [52] and gives the rate of convergence 1/(log n)? for a = 2,
whereas other values of a lead to the same order 1/logn as for M, itself.
Numerical computations show that these approximations also do better for small
and moderate values of n, as could be expected.
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A further statistically relevant question is to find rates of uniform conver-

gence, i.e., to bound
d,= inf sup|P(a(M,—-b)e€ B) - G(B)|,
a>0,b pegp

where % denotes the Borel sets in R, and G(B) is the probability that a random
variable with d.f. G belongs to B. The obvious approach is to bound the
difference between the density (which is assumed to exist) of a(M,, — b) and G'.
Let G'(x) = G(x)y(x), so that y(x) = e™*, ax~*~' and a(—x)*"" for the type I,
II and III extreme value distributions, respectively. Since (for i.i.d. variables),

d/dx P{a,(M,—b,) <x} =d/dxF"(x/a, +b,)
= F(x/a, + bn)"_lna;IF’(x/an +b,),

where the first factor tends to G at a rate given by the references cited above,
the main problem is to bound the difference na™'(F'(x/a + b) — y(x). The
recent thesis by Falk [44] contains a survey of results in this direction, some
further recent work being that of de Haan and Resnick [41] and Weissman [100].

Another problem, which has attracted some attention partly "because of
reliability applications, is the uniformity of the convergence of

Pla,(M, - b,) >x}/(1 - G(x))

for large x; see Anderson [2] and de Haan and Hordijk [39].

For a stationary dependent sequence with extremal index 6 = 1, a further
source of error is the approximation by the associated independent sequence, i.e.,
the difference

Ar,z”(x) = P{an(Mn - bn) < x} - Fn(x/an + bn)’

where F is the marginal d.f. of the sequence. Cohen [26] shows, under weak
covariance conditions, that for a stationary normal sequence A, is o(1/log n),
and hence that the rate of convergence in (1.2.1) is determined by the difference
F™(x/a, + b,) — G(x), and hence is the same as in the i.i.d. case. Let p be the
maximal correlation in the stationary normal sequence. Rootzén [87] gives a first
order approximation and bounds for A}’ that are roughly of the order
1/n1=p/0%P for p > 0.

By using an embedding technique, these rates are extended also to M® and
to point processes of exceedances. This embedding can be used more generally,
and hence also in dependent cases rates for the maximum often easily lead to
similar rates for kth largest values.

29. Multivariate extremes. We shall discuss here only one multivariate
problem, the extremal types theorem for ii.d. random vectors, and its extension
to dependent sequences. As shown by de Haan and Resnick [40] and Pickands
[82], the problem of characterizing the possible limit laws of the vector of
coordinatewise maxima splits into two independent problems, to find the mar-
ginal d.f.’s that may occur—by the one-dimensional result this is just the class of
extreme value d.f.’s—and to characterize the limiting dependence between com-
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ponents. Following Deheuvels [42] and Hsing [59], we will use the concept of
dependence functions to discuss this.

Let &€= (§,,...,¢,;) be a d-dimensional random vector with d.f. G and
marginal d.f’s G;, 1 <j < d. The dependence function D of £ (or of G) is defined
by

D(x,,...,x4) = P{Gy(&) < x,,...,G4(&y) < x4}

D is the d.f. of a distribution on [0, 1]¢, and it has uniform marginal distributions
'if the G;’s are continuous. The marginal distributions together with the depen-
dence function determine G, since

(29.1) G(xy,...,x5) = D(Gy(xy),...,Gy(xy)),  x,...,%x4€R.

This is a consequence of the relation
d
{Gf(gf) <Gfx)sl<j< d}\ U {G,(§) < G{x)), ;> x;)
j=1

c{g=<x;1<j<d}c{G(§)<G(x),1<j<d}

since it is readily seen that P{G,(§;) < G;(x;), §; > x,} = 0 for each j.

A further useful property is that convergence of d-dimensional distributions is
equivalent to convergence of the dependence function and the marginal distribu-
tions, provided the limit has continuous marginal d.f’s. This can be proved
rather easily using (2.9.1). Similarly to the one-dimensional case, a d-dimensional

d.f. G is said to be max-stable if there exist constants a,;>0,b,,i=1,...,d,
such that
(2 9 2) G"(an’lxl + bn,l’ ey an’ dxd + bn,d) = G(xl, ceey xd),

e Xy,..., X4 € R,
for each n = 1,2,... . Furthermore, a dependence function D is max-stable if

(2.9.3) D*(x¥/",..., xY") = G(xy,...,%,), Xy,...,x,€ R,
forn=1,2,....
THEOREM 2.9.1. A d-dimensional (d > 2) d.f. with nondegenerate marginal

distributions is max-stable if and only if its marginal d.f.s and its dependence
function are nondegenerate max-stable.

Proor. If G,,...,G, are max-stable, or if G is max-stable, then there are
constants a, ; > 0, b, ; with G(a, ;x + b, ;) = Gi(x), for i = 1,..., d. Hence,
in either case,

G™"(a, x, + b, ..., @y, axq+ b, 4)
(2.9.4) =DY(Gy(a, 1%, + b,,),...,Gyla, 4xq+ b, 4))
= DY(Gy(x,))"",..., Galx,)™).
Thus (2.9.2) follows at once if D is max-stable, by (2.9.1). The converse, i.e., that
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Gy ..., Y™ = D(yy,..., ¥g) for y, € (0,1), i = 1,..., d, if G is max-stable
also follows from (2.9.4), by taking x; = G; !(y,) there (note that each G, is
nondegenerate max-stable and hence continuous and strictly increasing on its
support). O

Let {£,} = {(§,.1,---» &, a)}5-1 be a sequence of i.i.d. random vectors, write
M, ;= max{{, ,...,§, ;} and suppose there are constants a, ;> 0, b, ; such

n i n,i

that
(2.9.5) Pla, (M, ,—b, ;) <x,1<i<d} -, G(x,...,x,),

where we may assume without loss of generality that the marginal distributions
of G are nondegenerate. It then follows exactly as in the one-dimensional case
that the possible limits G in (2.9.5) are precisely the max-stable d.f.’s. Thus by
Theorem 2.9.1 each marginal d.f. is max-stable and hence one of the three
extreme value types, and the dependence function is max-stable. Furthermore,
the distribution of a, (M, ;—b,;) tends to G;, for i =1,...,d and the
dependence function of {M,, ;: i =1,...,d} converges to the dependence func-
tion of G. To complete the characterization of the limits, it only remains to
describe the max-stable dependence functions. Again, this is a purely analytical
problem, to solve the functional equation (2.9.3), and we thus only cite the result,
which is obtained in somewhat varying forms in [40], [82], [42] and [59].

THEOREM 2.9.2. A function D on [0,1]¢ is a max-stable dependence func-
tion if and only if it has the representation

D(y,--e5 Ya) = i Jlog ,
(Y1s--es Ya) exp{ fS 1?32d{x‘ og ¥;} dn}

where S is the simplex {(x,,...,%z): ;2 0, i=1,...,d, X%, =1}, for some
finite measure p on S that satisfies [sx;dp =1 fori=1,...,d.

Hsing [59] also makes the observation that whereas the characterization of
the limiting marginal d.f.’s is crucially tied to linear normalizations, this is not so
for the dependence function. Specifically, if {u,, ;(x)} are levels that are continu-
ous and strictly increasing in x, and if

P{Mn,i = un,i(xi)’ i= 1’~~~,d} —d G(xp--o,xd),

where G has continuous marginal distributions, then the dependence function of
G is max-stable. The basic reason for this is the obvious fact that if T},..., T,
are continuous and strictly increasing, then (£,,..., &,) and (Ty(&)), ..., Ty(§,))
have the same dependence function.

Hsing also extends these results to stationary dependent sequences {£,}, along
rather similar lines as for the one-dimensional case, as treated in Sections 2.1 and
2.2. Specifically, for given constants {u, ;: j=1,...,d,n > 1}, the condition
D(u,, ,,...,u, 4) is defined to hold if there is a sequence /, = o(n) such that



EXTREMAL THEORY FOR STOCHASTIC PROCESSES 459

a,,; > 0asn— oo for
*%n

nl= max{IP(gw_ U, j:J= ,d, i€ AUB)
-P(¢ u, i j= ,d, i€ A)

(glj— n,j:j=1’°-’, },

where the maximum is taken over all sets A, B such that A C (1,..., %},
Bc (k+1,...,n} for some k. If D(u, ,,...,u, 4)holds the only possible limits
in (2.9.5) again are the max-stable d.f.’s. Furthermore, if, in addition,

d [n/k]
(2 9 6) hmsup n E E Z P{§1 zl n i 9,0 > un,iz} - O’
e n—oo L=11i=1 j=2

as k — oo,

then P(M,, ;<u,; i=1,...,d) > p>0 if and only it P(§,;,<u,;i=
1,...,d) = p, ie., the asymptotlc distribution of maxima is the same as if the
vectors were independent. [(2.9.6), of course, reduces to (2.2.1) for d = 1.]

A further question considered by Hsing is independence of the marginals in
the limiting distribution. In particular, he shows that if

d [n/k]
(2.9.7) limsupn Y, Y P{gl,il >u, 08> un’iz} -0,

i,lg=1 j=1
i # 1y
as k — oo, and if D(u, y,..., u, 4) is satisfied, then (2.9.5) holds if and only if
Pla,(M, ;- b, ;) <x} > Gi(x) as n—> oo for i =1,...,d, and G then is of
the form G(x,..., x4) = Gy(x)Gy(x;) - -+ Gy(xy).
Now, let {&n} be normally distributed with E¢, ; =0, V(§, ;) =1 and let
r;;(n) be the covariance between ¢, ; and &, , ;. If rj(k) <lforl<i#j<d
forall k and r; (n)logn—>0asn—> wofori, j=1,...,dand u, ;= x;/a,+ b,
with a,, b, as in (1.2.4), then D(u,, ,, ..., Up, ) (29. 6) and (2.9.7) are satisfied, so
that the asymptotic distributions of maxima are the same as for a sequence of
independent normal vectors with independent components (see [59] and [1]).

2.10. Convergence of sums to nonnormal stable distributions. The central
limit problem of convergence of sums to nonnormal stable distributions hinges
on the convergence of extreme order statistics, and perhaps the most natural
approach to it, and its extensions to dependent settings, is via extreme value
theory. In Theorem 2.10.1, which is new, this is made precise. The theorem,
which builds on ideas of Durrett and Resnick [43] and Resnick [85], contains a
functional central limit theorem, and the corresponding extreme value result is
the ‘“complete” convergence of upper and of lower extremes, which is discussed in
Sections 1.3 and 2.4. A similar one-dimensional approach via the joint distribu-
tion of extreme order statistics is used in [67] and [35] and will be briefly
discussed at the end of this section.
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The results depend essentially on the It6-Lévy representation of the stable
process, and we shall now list the relevant properties, referring to Itd6 [61],
Section 1.12, for proofs and further information. Let {n(¢): 0 <¢<1} be a
nonnormal stable stationary independent increments process [briefly, {n(¢)} will
be referred to as a stable process]. {n(¢)} can—and will throughout—be assumed
to have sample paths in D[0, 1] the space of real functions on [0, 1], which are
right-continuous and have left limits at each point. Let S = [0,1] X R, with
R =[— 0, 0]\ {0}, and define the Itd process N of jumps of {n(¢)} by

(2.10.1) N(A) = #{¢t: (¢, n(t) —n(t-)) € A},

for Borel sets A C S, where n(¢) — n(t — ) is the jump of 7(-) at time ¢. Then
N(A) is (measurable and) finite a.s. for each rectangle A such that A c [0,1] X
[— o0, —&] U [¢, o] for some & > 0. Hence N is a point process, and, in fact, it is
a Poisson process with intensity measure », which is the product of Lebesgue
measure and the measure »’ on R with density v,y * ! for y > 0and y_|y| %!
for y <0 for some constants y.,y_> 0, which are not both zero [i.e., in
shorthand notation, dv = dt X dv’ = dt X (v, |y|”* ' dy)].

Let m(e) = 0for 0 < a < 1,let m(e) = [,<,,»(1 + y*)"" dv'(y) for a = 1 and

let m(e) = [,<|,ydv'(y) for 1 < a <2, and define

2.10.2 (8 = dN — tm(e).

( ) M) f_l(;sssty (&)
e<|y|

Here the integral is just a finite sum: If N has the points {(¢,, ¥;): j > 1}, then
ly;/ > e and 0 < ¢; < 1 only for finitely many j’s, and

/L ydN= 3 .

<s<t i+ t-<tand
e<|yl / Ej:lyjaln
With this notation
(2.10.3) P( sup |n(¢) — 79(¢)| > 8) -0, ase— 0,
0<t<l1

for any 8 > 0.
Let {£,}2_, be arbitrary random variables, let {a, > 0, b,};7_, be norming
constants, define stochastic processes: {,(¢): 0 < ¢t < 1}_; in D[0,1] by

[nt]
(2.10.4) 1.(t) = X a,(§ - b,),

Jj=1

and in analogy with (2.10.1) let N, be the point process of jumps of 7, defined
as

N,(4) = #(t: (t,m,(¢) —m,(¢ —)) €A}
= #{Jj: (J/n, a,(¢ - b,)) € A},
for Borel sets A € S =[0,1] X R. The following theorem specifies the connec-

(2.10.5)
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tion between convergence in distribution of 7, to n and of N, to N. In this
convergence is in D[0, 1] given the Skorokhod topology, see, e.g., [23], Section 16.

THEOREM 2.10.1. Let {n,(¢): 0 <t <1} and N, be given by (2.104) and
(2.10.5) and let {n(t): 0 < t < 1} be a nondegenerate nonnormal stable process
with It6 process N defined by (2.10.1). Then n,, =, 1 as n — oo in D[0,1] if and
only if the following two conditions hold:

(2.10.6) N, -, N, asn— woonS,
and, writing I, ; = 1if |a,(§; — b,)| > e and I, ; = 0 otherwise,

[nt]
Y a,(§-b,)(1 -1, ;) + tm(e)

n— oo O<t<l|j =1

(2.10.7) limsup P{ sup

>8}—»0,

as ¢ = 0 for each 6 > 0.

PrOOF. Let N® and NS be the restrictions of N and N, .to [0,1] X
[— o0, —€] U [&, 0] for & > 0. Let 7(® be given by (2.10.2) and set

[nt]
1'(’:) = ‘/(; den - tm(s) = Z an(gj - bn)In,j_ tm(s).

<s<t j=1

e<|yl
First, suppose that 5, =, 1. The function that maps 7 into N® and 7, into
N{® is a.s. continuous with respect to the distribution of 7 (see [85]) and hence
N{® -, N® for each ¢ > 0. This implies that N, >, N, i.e., (2.10.6) holds.
Similarly, |1,(-) = 7%(-)| =4 n(-) — 7?(-)| in D[0,1], and hence

P{ sup Inn(t)—n‘,f’(t)|>8} —>P{ sup In(t)—n("(t)l>3}, asn — o,
1 0 1

O<t=< <t<
since
P( sup |n(¢) — n9(¢)| = 8) =0, ford>0.
0<t<1
Now,

[nt]
(2.10.8)  0,(t) (1) = X a,(§ - b,)(1 - I, ;) + tme),

J=1

and (2.10.7) thus follows immediately from (2.10.3).

Conversely, suppose (2.10.6) and (2.10.7) hold. The map that takes N, into 5{®
is a.s. N-continuous, and hence 1Y -, 7® as n — oo in D[0,1], and together
with (2.10.7) and (2.10.8) this implies that 7,, =, 1 by [23], Theorem 4.2. O

The main condition, N, — N, of “complete” convergence of extremes, requires
much weaker asymptotic mixing conditions than those needed for convergence of
sums to the normal distribution (cf. the end of Section 2.4). However, the local
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dependence restrictions, such as (2.2.1), may instead be rather restrictive and are
not even in general satisfied for 1-dependent processes (cf. Example 2.2.2).

The conditions, of course, become particularly simple when £, £,,... areii.d.
Then N, — N is equivalent to nP(a, (¢, — b,) € A) — »'(A) for each Borel set
A C[—o0, —€] U [g 00] for some ¢ > 0, which in turn is the same as

nP{a,(¢ - b,) >x} > Y+/wy_"_1dy, forx > 0,

(2.10.9) .
nP{a,(¢ - b,) <x} - Y_f lyl~*"'dy, forx <0,

as n — oo. Another way of expressing (2.10.9) is to say that the marginal d.f. F
of the ¢’s should belong to the domain of attraction of the type II distribution
for both maxima (if y,> 0) and minima (if y_> 0), with the same norming
constants {a, > 0, b,}. Furthermore, Resnick [85] shows that (2.10.9) actually
implies also (2.10.7) for i.i.d. sequences. Thus in this case 7, =, 7 in D[0,1] is
equivalent to (2.10.9). It may also be noted that b, can be taken to be zero here.

If one is not interested in full convergence in D[0,1], but only in “marginal”
convergence of 7,(1) = X7_,a,(§; — b,) to a nonnormal stable distribution, suffi-
cient conditions are easily found by “projecting onto the y-axis.” Let N’ be the
point process of jump heights of 7, given by

N'(A) = #{te[0,1]: n(¢t) — n(¢ -) € A] = N([0,1] x &),
for Borel sets A C R, so that N’ is a Poisson process with intensity »’ and
similarly let

Nj(A) = #{je[1,n]: a,(¢-b,) € A} = N,([0,1] x A).
By the same considerations as in the last part of the proof of Theorem 2.10.1, if
(2.10.10) N, -, N, asn— cin R,

n

and if, as before with I, ;= 1if |a,(§; — b,)| > e and I, ; = 0 otherwise,

lim sup P (

n— oo

n

Ya(é-0,)1-1, ;) +m(e)|> 8) -0, ase—0,
j=1
for each 6 > 0, then 7,(1) —», n(1) in R. Moreover, it can be seen that (2.10.10)
holds if and only if the joint distribution of the & largest and & smallest order
statistics of £,,..., £, tends to the distribution of the % largest and %2 smallest
jumps of {n(¢): 0 <t <1} for each k, again emphasizing the connection with
extreme value theory. This approach to convergence of Ya,(£; — b,) to nonnor-
mal stable distributions is, with some variations, pursued in detail for i.i.d. £’s by
LePage, Woodroofe and Zinn [67] and for stationary sequences satisfying distri-
butional mixing conditions by Davis [35].

Finally, the results of this section easily carry over to nonstationary situations
with [nt] replaced by an arbitrary time scale, to convergence of row-sums in a
doubly indexed array {£, ;} to a Lévy (independent increments) process without
continuous component, to multidimensional §’s and also to convergence of
so-called self-normalized sums.
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2.11. Miscellanea.

(a) Minima and maxima. Since the minimum m, = min{{,,..., £,} can be
obtained as m, = —max(—§,,..., —§,}, results for maxima carry directly over
to minima. In particular, it follows from the extremal types theorem that, under
distributional mixing assumptions, limiting d.f.’s of linearly normalized minima
must be of the form 1 — G(—x), where G is an extreme value d.f. Furthermore,
it is trivial to see that for i.i.d. variables minima and maxima are asymptotically
independent (cf. [66], page 28).

In a series of papers ([30], [31] and [34]), Davis studies the joint distribution
of m, and M, for stationary sequences {{,} under a number of different
dependence restrictions. Here we only note that some of his results alternatively
may be obtained as corollaries of the multivariate theory discussed in Section 2.9
by making the identification §; , = ¢, £, = —§,, so that M, , =M,, M, , =
—m,. For example, writing u,,=u,, u,,= —v, for v, <u,, the mixing
condition D(u,, i, U, ;) then translates to a,, ; — 0 for some sequence /,, = o(n),
with

= max{|P({, <u,, {>0v,:i€ AUB)
—-P(¢<u,, §&>2v,i€A)P(¢,<u,, §&>0,. 1€ B)l},

where the maximum is taken over all sets A € {1,...,k}, BC {k + [,..., n} for
k=1,...,n — I Thus if this holds for u, = x/a, + b, and v, = y/c, + d,, for
all x and y, it follows that any limiting d.f. of (¢, (M, — b,), c,(m, — d,)) must
be of the form G(x, ) — G(x, —y) where G is a bivariate extreme value d.f.
Furthermore, the criterion (2.9.7) for independence of componentwise maxima,
i.e., here for asymptotic independence of M, and m,, translates to

[n/k]
limsupn Y, {P(& > u,, §<v,) + P(§ <0, &>u,)} >0, ask - .
n— oo j=2

(b) Poisson limit theorems. Although somewhat less generally formulated,
the Poisson and compound Poisson limits discussed in Section 2.4 amount to
convergence of point processes N, defined from a triangular array {e, ;; i =
1,...,n, n > 1} of zero-one variables, with stationary rows ¢, ,,..., ¢, ,, by

Nn(E) = Z €n,is

i:i/nek

for Borel subsets E of (0,1]. Thus the proof of the Poisson limit for § = 1 (see
[66], Section 2.5) is easily seen to show that if D(u,) and (2.2.1) hold with
§i<u, and § > u, replaced by ¢, ;=0 and ¢, =1, respectlvely, then N,
converges to a P01sson process with 1ntens1ty 7 if and only if nP(e, ;= 1) = 7.

Conversely, the literature contains many sufficient conditions for convergence,
which may be applied to extremes by setting ¢, ; equal to zero or one according
to whether £; < u, or &; > u,. Two further sets of such conditions seem particu-
larly useful here. For the first, let %, ; be the o-algebra generated by ¢, ,,..., ¢, ;
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Then the relation

[nt]
(2.11.1) Y E{e, 1B, )} > tr, asn— oo,

i=0
in probability for each ¢ € (0,1] is sufficient for convergence of N, to a Poisson
process with intensity 7 ([48] and [43]). For the second one, which is due to
Berman [12] and [17], we assume that each row has been extended to a doubly
infinite sequence ...,e, _,, €, ¢, ¢, ... and write &, ; for the s-algebra gener-
ated by ..., ¢, ; 1, ¢, ;- Berman’s result is that if nP(e, ; = 1) — 7 and if there
exists a sequence v, of integers with y, = o(n), such that

Yn
nZP(en’1=1, €,;=1) >0, asn— oo,
i=2

nP(e, , = 1|8

n’_yn)—)’r, n — oo,

in probability, then N, again converges to a Poisson process with intensity 7.

Neither one of these three sets of conditions imply any of the others; in
particular, they are not necessary, and each of them might be the most conve-
nient one in some situation. However, e.g., for normal sequences with r,logn — 0
they all seem to lead to about the same amount of work. One useful feature of
(2.11.1) is that it also directly gives rate of convergence results (cf. [87]).

3. Extremes of continuous parameter processes.

3.1. The extremal types theorem for stationary processes. Let {£(t): ¢t > 0}
be a strictly stationary process having a.s. continuous sample functions and
continuous one-dimensional distributions. Then, assuming that the underlying
probability space is complete, M(I) = sup{{(t): t € I} is a r.v. for any finite
interval I and, in particular, so is M(T) = M(0,T]). The extremal types
theorem may be proved even in this continuous context, showing that, under
general dependence restrictions, the only nondegenerate limits G in

(3.1.1) Play(M(T) — b;) <x} =» G(x), asT - oo,
are the three classical types.

Though the general result requires considerable details of proof, the method
involves the very simple observation that for (any convenient) A > 0,

(3.1.2) M(nh) = max($,, $,---,$,),
where §;, = max{{(¢): (i — 1)k < t < ih}. Thus if (3.1.1) holds and the (sta-
tionary) sequence {,, §,,... satisfies D(u,) for each u, = x/a,, + b,,, then it

follows from the discrete parameter extremal types result (Theorem 2.1.2) that G
must be one of the extreme value types. Hence the extremal types theorem
certainly holds for strongly mixing stationary processes since then the sequence
{§,} is also strongly mixing and thus trivially satisfies D(u,). However, a more
general form of the theorem results from showing that the D(u,,) condition holds
for the {’s when the ¢’s satisfy certain conditions—in particular, a continuous
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version C(ur) of D(u,). In fact, the condition C(u;) may be defined in terms of
the process properties only at “time-sampled” points jg, for a suitable sampling
interval g, — 0.

In the following definition F, +{u) will be written for F,
where F, . (x,,...,x,) = P{(t) <x,,..., &¢,) < x,).

The condition C(uy) will be said to hold for the process £(¢) and the family of
constants {ur: T > 0}, with respect to the constants g, — 0 if for any points
§; <8 < ++- <s, <t < -+ <t, belonging to {kgy: 0 < kg, < T} and
satisfying ¢, — s, > v, we have

......

‘F.‘s, ..... sp,tl,...,tp»(uT) - ‘F.‘s1 ..... sp(uT)'Ftl ..... tpl(uT)l = aT, yr?

where ay , — 0 for some family y; = o(T') as T — co.

The §; are, of course, maxima of £(¢) in fixed intervals of length A [e.g.,
§1 = M(h)] and the sampling interval ¢ must be taken small enough so that
these are well approximated by the maxima at the sample points jg. This is
conveniently done by assuming that for each a > 0 there is a family {q} =
{g,(u)} tending to zero as u — o such that )

P{M q) <u,0<jg<h
(3.1.3) liumfo‘jp {M(h) > u, 5(4{((13; u,0 <jg < h}

Here y(u) is a function, which will later be taken to represent the tail of the
distribution of M(A) but which for the present need only dominate P(£(0) > uj,
ie.,

(3.1.4) P{£(0) > u} = o(¥(u)).
The following result ([66], Theorem 13.1.5) then holds.

-0, asa—0.

THEOREM 3.1.1 (Extremal types theorem for stationary processes). With the
notation given previously suppose that (3.1.1) holds for the stationary process
{¢(¢)} and some constants a;, by and a nondegenerate G. Suppose also that
¥(u) is a function such that (3.1.4) holds and Ty(uy) is bounded for u, =
x/ar+ by for each x. If C(uy) holds for the families of constants {g(u)}
satisfying (3.1.3), then G must be one of the three classical extreme value types.

3.2. Domains of attraction. In the classical theory of extremes of i.i.d.
sequences, the type of limiting distribution for the maximum was determined by
the asymptotic form of the tail of the distribution of £,. This remained true for
dependent stationary cases with nonzero extremal index since the limiting type
was that of the associated independent sequence. For continuous parameter
processes, however, it is clearly the tail of the distribution of {, [in view of
(3.1.2)] rather than that of £,, which determines the limiting type. More specifi-
cally, if §,{,... are iid. random variables with the same distribution as
¢, = M(h), then {,} is called the independent sequence associated with {£,}. If
the {,-sequence has extremal index 6 > 0, then any asymptotic distribution for
M(T) is of the same type as that for Mn = max{fl, ceey fn}. Again the case § = 1
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is of special interest and sufficient conditions may be given. In particular, the
following condition [analogous to (2.2.1) for sequences] is useful:

The condition C’(u) will be said to hold for the process {£(¢)} and the family
of constants {u;: T > 0} with respect to the constants {g = g(u;) — 0} if

limsup(T/q) X P{£(0) > ur, £(jg) > ur} =0, ase—0.
T— o0 h<jg<eT

We assume also as needed that for some function v,
(3.2.1) P{M(h)>u} ~hy(u), asu — oo for0 < A <& some § > 0.
The following result may also be shown (see [66], Section 13.2).

THEOREM 3.2.1. Suppose that (3.2.1) holds for some function { and let {ur}
be a family of constants such that for each a > 0, C(ug),C'(uy) hold with
respect to the family {q(u)} of constants satisfying (3.1.3) with h in C'(uy) not
exceeding 8/2, where 8 is from (3.2.1). Then as T — oo,

(3.2.2) Ty(up) - 7> 0,
if and only if .
(3.2.3) P(M(T) < up} > e

Hence the function ¥ may be conveniently used in the domain of attraction
criteria and also plays the role of 1 — F in the continuous parameter analog of
Lemma 1.2.2. In particular, if M(T') has a limiting distribution as in (3.1.1) the
constants ar, by must satisfy Ty (u;) = 7 with uy = x/arp + by, (1= 1(x)) =
—log G(x)) from which a;, b, may sometimes be conveniently obtained. In
some cases the important function ¢ is readily obtained (as in Section 3.4), but
in others (cf. Section 3.3), its calculation can be quite intricate.

3.3. Extremes of stationary normal processes. Let &(t) be a stationary
normal process (assumed standardized to have zero mean, unit variances) and
covariance function r(t) satisfying

(38.3.1) r(t)=1- C|t|* + o(|t|*), ast— 0,

for some C > 0, 0 < a < 2. This includes all the mean-square differentiable cases
(a = 2) and a wide variety of cases with less regular sample functions (0 < a < 2),
such as the Ornstein—Uhlenbeck process (a = 1). It may be shown that for such
a process a function Y (u) satisfying (3.2.1) is given by

(3.3.2) Y(u) = CYV*H u@=/%27) " exp(—u?/2),

but the proof involves quite intricate computations when a < 2. The H, are
constants whose numerical values are known only in the cases & = 1,2 (H, = 1,
H, = 71?). The “regular” case a =2 is simpler and y(u) may then be
alternatively obtained as in the next section.

It can be shown (cf. [66], Theorem 2.5.1), using the normal comparison lemma
that the (standard) stationary normal process £(¢) satisfying (3.3.1) satisfies the
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required dependence conditions for the general theory provided, that
(3.3.3) r(t)logt—> 0, ast— oo.

The function {(u) given by (3.3.2) satisfies the domain of attraction criteria
for the type I extreme value distribution. Indeed, some calculation shows that
TY(ug) > 7 with 7 = e, up = x/ar + by, for

ar=(2 logT)l/z,
(3.3.4) br=ar+{((2 - a)/2a)loglog T
+log(C/°H,(27) " 2e-0/2)} /ar,

Hence (using the last remark of the previous section) (3.1.1) holds with a,, b,
given by (3.3.4) and G(x) = exp(—e ™).

This result was obtained by Cramér [28] for the case a = 2 and a somewhat
more restrictive condition on the rate of decay of r(¢) as ¢ = 0. The result in its
present generality was obtained by Pickands ([79], [80]), though the proof was
not quite complete and was subsequently corrected by Qualls and Watanabe
[83]. In particular, considerable generality is afforded by the family of covari-
ances satisfying (3.3.1), and the requirement r(¢)log¢ — 0 imposes only a very
mild assumption on the rate of convergence of r(¢) to zero as t - co.

3.4. Finite upcrossing intensities and point processes of upcrossings. In the
continuous parameter case exceedances of a level typically occur on intervals and
do not form a point process. However, a natural analog is provided by the
upcrossings (i.e., points where excursions above a level begin), which can form a
useful point process for discussing extremal properties. Furthermore, in many
cases the intensity of this point process provides the function y(u) needed for
the determination of extremal type. Before proceeding it is of interest to note
that an alternative to discussing upcrossings is to consider the amount of time
that the process spends above a level. This approach, used by Berman, is briefly
indicated in Section 3.7.

Let then (as before) {£(¢): t > 0} be stationary with a.s. continuous sample
functions, and continuous one-dimensional d.f. If u is a constant, &(t) is said to
have an upcrossing of u at t, > 0 if for some ¢ > 0, £(¢) < u in (ty — & t,) and
£(t) = uin (¢, ty + e).

Under the given assumptions, the number N,(I) of upcrossings of u by £(¢) in
an interval I is a (possibly infinite valued) r.v. If p(u) = EN/(0,1)) < o0, then
N/(I) < oo as. for bounded I, and the upcrossings form a stationary point
process N, with intensity parameter p = p(u).

For stationary normal processes satisfying (3.3.1), u is finite when a = 2 and is
then given by Rice’s formula, w(u) = (C/2)"*n~‘exp(—u?/2) and for general
processes p may be calculated under weak conditions as

(34.1) p(u) = j(;wzp(u, z) dz,
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where p(u, 2) is the joint density of £(¢) and its (q.m.) derivative £’(¢). In fact,
these relations can be shown simply since p(u) = lim , o (u), where

(3.4.2) Jq(u) =q 'P{£(0) <u<¢(q)}, qg>0,

and hence depends only on the bivariate distribution of £(0) and £(g). Under
general conditions, it is also the case when u — o0 as ¢ — 0 in a suitably
coordinated way that J(u) ~ p(u). We shall use a variant of this property,
assuming that for each a > 0 there are constants g (z) — 0 as u — oo with

(3.4.3) lim inf Jaft) -1, asa— o
umoo p(u) ’

and that

(34.4) P(M(q) > u) = o(p(u)).

It may then be readily shown that (3.1.3) holds if ¢(u) = u(u). Also (3.2.1) is
often satisfied in regular cases. Under such conditions it thus follows that {/(u)
may be replaced by p(u) in previous results. (For details see [66], Section 13.5.)

Thus the intensity p(u) can provide a convenient means for determining the
type of limiting distribution for M(T'). However, the point process of upcrossings
has further interesting properties analogous to those for exceedances in discrete
parameter cases. Specifically, let u = u; and T tend to infinity in such a way
that Tu(ur) = 7> 0. Define a normalized point process N; of upcrossings
having points at ¢/T when ¢ has an upcrossing of u at ¢, ie, Nj(I)=
# {upcrossings of u, by £(¢) for ¢/T € I}. Then the following result holds.

THEOREM 3.4.1. Suppose that the conditions of Theorem 3.2.1 hold, with
Y(u) = p(u) and with (3.1.3) replaced by (3.4.3) and (3.4.4). Then Nj converges
in distribution to a Poisson process with intensity v as T — oo. This, in
particular, holds for the stationary normal processes satisfying (3.3.1) with
a =2 and (3.3.3).

Similar results may be obtained under appropriate conditions for the point
process of local maxima of height at least u as u — oo, leading, in particular, to
the asymptotic distribution of M *)(T'), the kth largest local maximum in [0, T'].
Indeed, “complete Poisson convergence” results, analogous to those indicated for
sequences in Sections 1.3 and 2.4, may be obtained for the point process in the
plane consisting of the locations and heights of the local maxima (cf. [66],
Sections 9.5 and 13.6, for details).

Finally, it is also possible to obtain Poisson limits in cases with irregular
sample paths when p(u) = oo (e.g., normal with 0 < a < 2) by the simple device
of using the “e-upcrossings” of Pickands [80] in lieu of ordinary upcrossings.
Specifically, for given & > 0, £(¢) has an e-upcrossing of the level u at ¢, if
&t)<uforte (t,— &ty and &(¢) > u for some ¢ € (¢, t, + m) for each n > 0,
so that clearly the number of e-upcrossings in a finite interval I is finite [indeed
bounded by (m(I)/¢) + 1 where m(I) is the length of I']. This device was used
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in [79] to give one of the first proofs of Theorem 3.3.1. (See also Section 3.7 for a
different approach.)

3.5. x2-processes. The proofs for normal processes in Section 3.3 and also for
the sequence case (Section 2.5) use the normal comparison lemma (Theorem
2.5.1) in an essential way. It will also be the basis for the present section on
functions {x(¢)} of stationary d-dimensional (d > 2) normal processes £(t) =
(&4(2), ..., £4(2)) defined as

d
(351) X() = L &0,

We shall assume that the components are standardized to have mean 0 and the
same variance 1—here this is a real restriction and not just a question of
normalization—and also that the components are independent. Then x(t) has a
x*-distribution and the process {x(¢); ¢ > 0} is called a x2-process (with d
degrees of freedom). Extremal properties of x2-processes, and of some related
functions of £(¢), have been studied in detail by Sharpe [93], Aronowich and
Adler [4] and [5] and Lindgren [68]-[70]. Here we will follow the “geometrical”
approach of [69], and use the fact that x(¢) is the radial part of £(¢) to find the
asymptotic double exponential distribution of maxima of x(t¢), referring the
reader to [5] for results on minima. However, we will indicate how the results can
be obtained quite smoothly from the general theory of Section 3.4, rather than
by using Lindgren’s direct calculations.

Now, suppose further that the component processes {£,(¢)}, i = 1,..., d, are
continuously differentiable a.s. and have the same covariance function r(¢). We
shall presently show that p(u), the mean number of u-upcrossings by x(t),
0<t<1, is easily found from (3.4.1), and then apply Theorem 3.4.1. For
i=1,...,d, §(0) and £/(0) are jointly normal, and hence independent, since

COV(&(O): gi(O)) = %i_lf})E{h_l(gi(h) - §i(0))£i(0)} =r'(0) =0,

where the last equality holds because r(¢) is symmetric around zero. Similarly, if
A = —r"(0) is the second spectral moment, £/(¢) has variance A. Thus the
conditional distribution of x'(0) = & ;2£,(0)£(0) given x(0) = =& ,£2(0) = u > 0
is normal with mean 0 and variance L¢ 4A¢2(0) = 4Au. Let p(z|u) be the
density of this conditional distribution and let p(u) be the density of x(0), i.e.,
(3.5.2) p(u) = 27921 (d/2) " ud/2-le~u/2,

Then, using (3.4.1), it follows that

u(u) = p(u) [“2p(elu) dz
(3.5.3) 0

= 2-(d—1)/2r(d/2)—1(>\/ﬂ)1/2u(d—1)/2e—u/2’

for u > 0. For u fixed, J(u)= P(x(0) < u < x(q))/q = p(u) as ¢ — 0, and
similarly (3.4.3) holds for u'/%q = u'/%q (u) - a > 0 (cf. [69], Lemma 2.5).
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THEOREM 3.5.1. Let &(¢t) = (§,(2),..., £4(8)) be a continuously differentiable
d-dimensional standardized normal process with independent components and
the same covariance function r(t), as before. Suppose further that r(t)logt — 0
as t = oo and that

(3.5.4) Tu(up) > 7, asT - oo,

and let Nj. be the point process of upcrossings of up by {x(¢T'}: t € [0,1]}. Then
¥ converges in distribution to a Poisson process with intensity T, and, in
particular,

(3.5.5) | P{Orsn?SxTx(t) < uT} —e ", asT - .

PROOF. We shall briefly indicate how the conditions of Theorem 3.4.1 can be
checked. We assume that d = 2, the extension to d > 2 being straightforward.
The main idea in [69] is to introduce the normal random field {x,(¢): 0 < 8 < 2,
t = 0}, where

xo(t) = £,(¢)cos 0 + £,(t)sin @
is the component of £(¢) in the direction (cos 8, sin #), and to note that then

(3.5.6) x(¢) = sup x,(2)
0<f<2m

Thus sup, _ , < ,X(¢) = Max,_, . 4 o< <2,Xs(2)% and it follows at once from the
extremal theory for normal random fields that (3.2.1) holds for y(u) = p(u) and
any h > 0, (see [69], Lemma 2.2). As noted before, for fixed a > 0 (3.4.3) holds
for ¢ = a/u'/?, and (3.4.4) is an easy consequence of (3.2.1). Thus it only remains
to establish C(u;) and C’(u;) for an arbitrary A, say & = 1, and with ¢ = q,(u)
for each a > 0. For this we introduce a further sampling, in the #-direction,
given by a parameter r = b/u'/?* with b> 0. Let %,(¢) = max{x,(¢); i=
0,...,[27/r]}. Then, by (3.5.6) and an easy geometrical argument,

(3.5.7) x(t)cos?r < %,(¢)* < x(¢),

for 0 < r < w/2. To show that C’(uy) holds let uf = (uy)%cosr, so that by
(3.5.7) and stationarity,

T
— X P(x(0) > ug, x(jg) > ur)
1<jg<eT

IA

P(%,(0) > up, %,(jq) > uy)
<jg<eT

IA

q,
(3.5.8) T
7 | P(%,(0) > uf, %,(jq) > ur)
1

q
<jg<eT

—P(%,(0) > uz)P(%,(jg) > ur)]
+&(T/q)" P(%,(0) > up)’.
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It is readily seen that Tu((u7)?) —» 7/ = Texp{b?/2} and that x(¢) has mean 0
and variance 1, and that |cov(x4(0), x4(£))| < |r(¢)| for any 6, 6’. The normal
comparison lemma can then be applied in a straightforward way to show that
the sum on the right-hand side of (3.5.8) tends to zero. Furthermore, it follows
from (3.5.7) and (3.5.2)-(3.5.4) that

o(T/9) P(%,(0) > uz)” < (T/q)*(P(x(0) > (up)?))” — e(7e?"2)2m/(Aa?),

and thus C’(u;) is satisfied.
Next, with the notation of C(u;),

Fjs‘l ..... sp,tl,...,tp»(uT) - F;‘ ..... sp(uT)I;‘t1 ..... tpl(uT)I

S'P()"(,(t) suf?: te {s,...,s,,t,..., tp,})

—P(f(r(t) <u¥? te {sl,...,sp})
xP(;Z,(t) <\up:te {tl,...,tp,})|‘

+ Y Plup<x(jg) < up/cos?r).
1<j9<T

(3.5.9)

Here the normal comparison lemma may be applied, similarly as for C’'(u,), to
show that the first expression on the right tends to zeroas T — o0 if ¢, — 5, > ¢
for suitable y; = o(T'). Furthermore, the last sum in (3.5.9) is bounded by

T T
;P(UT < x(0) < ug/cos?r) = 2 (e=2'ur — e—z-'uT/cos2r}

- (277/)\)1/21'(1 - e‘bz/z)/a, as T — oo,

by straightforward computations. Since this limit tends to zero as b — 0 for a
fixed, this may be seen to prove C(uy).
It is easy to “solve” (3.5.3), to show that (3.5.4) implies that

P{aT( max x(¢) — bT) < x} - exp(—e™*), asT — oo,
0<t<T
for

ap=1/2, by=2logT + (d - 1)loglog T — log(T(d/2)’7/A).

It might also be noted that this proof of C(u;) and C’(u;) applies, with obvious
changes, also when the components of £(¢) are dependent and have different
covariance functions.

3.6. Diffusion processes. Diffusion processes have many useful special prop-
erties, and, correspondingly, several different approaches to their extremal be-
havior are possible. E.g., Darling and Siegert [29], Newell [76] and Mandl [73]
apply transform techniques and the Kolmogorov differential equations (cf. also
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the survey [24]), Berman [11] exploits the regenerative nature of stationary
diffusions, similarly to Section 2.6, and Davis [32] and Berman [14] use a
representation of the diffusion in terms of an Ornstein—Uhlenbeck process. Here
we shall discuss some aspects of Davis’ methods, and, in particular, state his
main result [relation (3.6.6)].

A diffusion process {£(¢); ¢t > 0} can be specified as the solution of a stochastic
differential equation

(3.6.1) dé(t) = u(&(2)) dt + o(£(2)) dB(2),

where {B(t): t > 0} is a standard Brownian motion. We refer to [62] for the
precise definition and for the properties of {£(¢)} used in the following discus-
sion. For simplicity, we will consider a somewhat more restrictive situation than
in [62], and, in particular, we assume that {{(¢)} is defined on some open,
possibly infinite, interval I = (r,, r,) and that p and ¢ are continuous with ¢ > 0
on I

Let {s(x); x € I} be a solution of the ordinary differential equation

(3.6.2) 0%(x)s”(x) + 2p(x)s’(x) =0

i.e., let it have the form s(x) = ¢, + czj;;exp{—]x’(”(Zp(z)/oz(z)) dz} dy, with
¢, > 0, ¢; real constants, for some point x, € I. Then s is strictly increasing
and by Itd’s formula n, = s(§&,) satisfies du, = f(n,) dB, for f(x) =
s'(s X (x))o(sY(x)), i.e, s is a scale function and {n,: t > 0} is the diffusion on
natural scale. The speed measure m, corresponding to this scale function, then
has density 1/f(x), i.e.,, m(dx) = (1/f(x)) dx. We further assume that the speed
measure is finite, |m| = [;m(dx) = [;(1/f(x))dx < oo, and that s(x) — oo as
x > r, s(x) > —oo as x — ry. It then follows that the boundaries r,, r, are
inaccessible, that the diffusion is recurrent and that there exists a stationary
distribution so that {£{(¢)} becomes a stationary process if £(0) is given this
distribution.

The Ornstein—Uhlenbeck process, which will be denoted by {{(t)} here, is the
stationary diffusion process (3.6.1) specified by I = R, u(x) = x/2, o(x) =1,
x € I. For the present purposes, a convenient choice of scale function for {£(t)}
is §(x) = (277)1/ 2(xe?*/2 dy, and the corresponding speed measure is m(dx) =
(27)~ /2%~ **/2 dx. Furthermore, it can be seen that {£(¢)} is a standardized
stationary normal process with covariance function r(¢) = e~ !l and that §(x) ~
27)/2%x"e*"/2 = (x¢(x)) "' as x — oo0. Hence Theorem 3.3.1 may be applied
with C = a = 1 and its conclusion can, e.g., by a simple “subsequence argument,”
be written as

(3.6.3) sup |[P(M(T) <u) — e 7/5®| >0, asT - 0,
u> i,
for any &, > 0 and with M(t) = sup{f(t): 0<t< T}
The main additional fact needed is that the Ornstein—Uhlenbeck process on
natural scale can, by a change of time, be made to have the same distribution as

{n(t)}. More precisely ([32], Theorems 2.1 and 2.2), there exists a strictly
increasing random function {7(¢): ¢ > 0} such that the processes {s(£(¢)): ¢ > 0}
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and {§(£~( 7(t))): ¢ > 0} have the same distribution, and which satisfies
(3.6.4) T %(T)—>1/|m|, asT — oo,

almost surely.
As in Section 2.6 it follows easily from (3.6.3) and (3.6.4) that

(3.6.5) sup |P(M(7(T)) <u) - e T/GWImD| 0, asT — 0.

Since for M(T') = sup{é(¢): 0 <t < T},
P(M(T) < u) = P(sup{s(£(¢)):0<t< T} < s(u))
= P(sup{5(£(7(¢))): 0 < t < T} < s(u))
= P{M(+(T)) < 5 '(s(u))},

(3.6.5) is readily seen to imply the main result of [34], that
(3.6.6) sup |P(M(T) < u) — e T/6WImMD| - 0, asT — oo,

u<ug

for any u, € I with s(u,) > 0. This is a quite explicit description of M(T'), “as
the maximum of T i.i.d. random variables with d.f. G(u) = exp{ —1/(s(u)|m|)},”
and, in particular, domains of attraction for M(T') are found by applying the
classical criteria to exp{—1/(s(«)|m|)}. Finally, as for Markov chains, the
hypothesis of stationarity is not essential, (3.6.6) holds for any initial distribu-
tion, as can be seen, e.g., by a simple “coupling argument.”

3.7. Miscellanea.

(a) Moving averages of stable processes. 'These are continuous time processes
of the form £(¢) = [e(¢ — x) d§(x), with {{(x)} a nonnormal stable independent
increments process. Their extremal behavior, which is similar to that of the
corresponding discrete parameter moving average (cf. Section 2.7), is studied in
detail in [86].

(b) Sample path properties. As mentioned in Section 2.7, the asymptotic
distribution of sample paths near extremes is studied in [86], [89] and [36]. A
different approach to this problem, via so-called Slepian model processes, has
been pursued by Lindgren in a series of papers (cf. the survey [71] and the
references therein).

(c) Extremal properties and sojourn times. In an important series of papers,
Berman studies “the sojourn of £(¢) above u,” defined as Lp(u) = [[1{£(¢) >
u)} dt, where 1{-} is the indicator function. For a wide variety of cases, including
many normal processes, x2-processes, Markov processes and random Fourier
sums, he finds the asymptotic form of the distribution of L, (u) as u — oo for
fixed T, and as u,T — o in a coordinated way. Furthermore, he uses the
equivalence of the events {M(T') > u} and {L,(u) > 0} to study the maximum
of {£(¢)}. The earlier work on these topics is reviewed in the present journal
([12]) by Berman himself. For later work see [13], [15], [16] and [18]-[21].
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(d) Exceedance random measure. The sojourn time of £(¢) above u can, of
course, be defined for processes whose sample functions are continuous but not
sufficiently regular to define upcrossings (though “e-upcrossings” may be defined
and useful). However, a unifying viewpoint may be obtained by considering the
“exceedance random measure ” {(B) = [,cp.g1{£(¢) > u} dt for Borel subsets
of [0, 1], which extends the notion of L,(u) in an obvious way. Similar limiting
theorems hold for {(B) as for the exceedance point process N, of Section 2.4. In
particular, compound Poisson limits typically occur (with multiplicities that are
not necessarily now integer-valued). In cases where upcrossings are defined, this
limit has the pleasant interpretation that the positions of the events represent
upcrossing points, and the associated multiplicities represent the immediately
following exceedance time above the level u. For details see [65].

Acknowledgments. It is a pleasure to thank Patrick Albin, Simeon
Berman, Richard Davis and Sidney Resnick for comments on a number of
sections.

Note added in proof. The following new book has recently appeared and is
an important addition to the literature on extreme value theory: RESNICK, S. I.
(1987), Extreme Values, Regular Variation and Point Processes, Springer, New
York. This book provides an elegant and scholarly treatment of many areas for
independent random variables, especially surrounding regular variation, records
and extremal processes, and multivariate extremes.
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