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STOCHASTIC PROCESSES WITH VALUE IN EXPONENTIAL
TYPE ORLICZ SPACES

By MicHEL WEBER

University of Strasbourg-1

Let (T,0©) be a compact measurable topological space and ¥,(x) =
explx|? =1, 1 <g<o0. Let X={X(w,t),we€Q,t€ T} be a O-measur-
able stochastic process such that || X(s) — X(8)|| v, < d(s, t) for every
(s,t) € T ® T, where d(-, -) is some continuous pseudometric on (T, ). We
give a sufficient condition expressed in terms of a majorizing measure on
(T, d) in order that X take values in the Orlicz space LY« (T, p), where
g < @’ < o and p any Borel probability measure on (T, ©).

1. Introduction and main result. In a recent paper [2], Marcus and Pisier
have considered measurable stochastic processes having strongly integrable sam-
ple paths. Let (T, ®) be a compact measurable space and ¥,(x) = exp|x|? — 1,
q = 1. Let p be any Borel probability on (T, ®) and introduce the Orlicz space

Yo(T, p) = {f:T—>C:EIc>0: f\l’ [f( )]
T
and its Orlicz.norm,

I Lo, uy = inf{c > 0: fT\Ifq du(t) < 1}.

Let d(-, -) be a ®-continuous pseudometric on 7' ® T and consider any ©-mea-
surable stochastic process X = {X(w, t), w € @, ¢t € T} such that

du(t) < 00

10

(1.1) V(s,t)eT®T, | X(s)— X(t)llrver < d(s, ).
Let ¢ < ¢* < o0 and suppose
(1.2) AT,d) = fd“”“‘T Dllog N,(T, u)]V7 V% du < oo,

where as usual, N (T, u) denotes the minimal number of d-balls of radius u
enough to cover T.

In [2], the authors show that (1.2) implies that X takes value in L¥(T, p),
almost surely, for every Borel probability measure u. We refer the reader to [2]
for the proof and other interesting results. Our purpose in this work is to state a
sufficient condition similar to (1.2), expressed in terms of majorizing measures on
(T, d). This will necessitate a quite different approach than in [2]. Our result can
be stated as follows.

THEOREM 1.1. Let (T,0) be a compact measurable space and X a real
valued measurable stochastic process {X(w,t),w C Q,tC T} satisfying the
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condition (1.1) for some 1 < q < oo and some continuous pseudometric d(-, -) on
T. Assume that

there exists a Borel probability measure p on (T, ©) such that

Jq,q’(T’ d”"')
(1.3) T ) 1 Ve
_ am(T, 1 1+
?Zﬁ{fo ["g w(s: (s, ) < u) )] du} -

for some q < q’ < w0 and
diam(7T, d) ® [.L{(S, t) €T®T:0< d(S, t) = u} d
u

(1.4) fo - < .

Then the process X has sample paths in L¥<(T, v) almost surely, for every Borel
probability measure v on T.
In particular, when (T, d) is a compact ultrametric space, that is, when

Vs, t,ueT, d(s,t)<sup{d(s,u),d(u,t)},
the same conclusion holds, without assumption (1.4).

2. Preparation. For each t€ T and each ¢ > 0, we denote B,(t, &) =
{s € T: d(s, t) < ¢}. Since (T, ©) is compact, there is a compact subset
K={seT:3e>0: p{By(s,e)} =0},

such that p(K) = 0. Thus, there is no loss when assuming u{B,(¢, )} > 0, for
all € T and all ¢ > 0. Let {¢,, n > 1} be a sequence decreasing to zero and let
S,, be a subset of T satisfying

(2.1) U B,(s,¢,)=T, n=1.

s€S,

For every n > 1,let II,, = {m,(s), s € S,} be the induced partition of T. Let also
X ={X(w, t),w € Q,t € T} be any O-measurable stochastic process satisfying

(2.2) V(s,t)eT®T, E\X(s)~X(2) =5(s, 1) < oo.

We consider two types of approximation. The first one is connected with the
sequence {II,, n > 1} and gives a step process whose sample paths are therefore
in any Orlicz space LY+ (T, v) almost surely:

p(du)
(23) VteT,vn=1, X®t)= Y I, (¢ X(u)———,
SES,, "( )( )j‘Bd(syEn) lu'n(s)

where for simplicity we note p,(s) = p{By(s, &,)}.
The second approximation is needed to obtain a majorizing measure type
condition:

(2.4) VteT,Yn>1, XO(t) =fB X(u)‘;(((il:)).
ba(25 &) n
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In the sequel, we denote X "(¢) and X?(¢) by X,(¢), except when it is necessary
to distinguish them. The following lemma is very classical.

LEMMA 2.1. Assume that the identity map i: (T, d) — (T, 8) is uniformly
continuous. Then, if the sequence {e,, n > 1} decreases sufficiently fast to zero,
one has

(2.5) vVieT, P{ lim X,(¢) = X(2)} = 1.

Proor. By assumption, A(e) = sup{d(s, t): d(s, t) < 2¢} tends to zero with
e, so that we can choose a sequence {e,, n > 1} such that T, ,/A(e,) < oo.
Further,

P{1X(t) - X,(¢) > JA(e,) | < /A(e,)

by applying the Tchebycheff inequality. The proof is achieved by applying the
Borel-Cantelli lemma. O

Consider now a sequence of functions b,: T — R™ such that

(2.6) sup( T 8,(0)] < =,

teT n=1

and put Rpy(2) = X2P_nb(t), Ry =sup{Ry(t),t € T}. Let {A,,n>1} be a
sequence of events such that P{N,.,(4,)°} >0 and set &, =N,.,(A,)" Let
¢: R > R* be any convex nondecreasing function. One easily has
X(t) — Xo(t) b(t) | Xa(¢) — X, ,(2)
— =7~ | = Z ' Iy ye-

Ry(t) a1 Ba(2) b.(2) "
Integrating first with respect to dP, then with respect to any Borel probability
measure v on (7T, ®), one obtains

E{191/T¢[X—(9—:X°—(t)]u(dt)}

(2.7) Iszﬂ’ [

R,
2.8 -
(2.8) 3 ,EIE{I‘A” Lw[xn(t)bn(in_l(t)] Zl((tt)) o dt)},
=B,
Thus, if B, < o and X, = X",
(2.9) Q; € {w: X(w,-) € L¥T,v)}.

We are therefore in a position to state

LEMMA 2.2. Let (T, ®) be a compact measurable space and X a ©-measur-
able stochastic process {X(w, t), w € Q, t € T} satisfying (2.2). Assume that the
identity map i: (T, d) — (T, 8) is uniformly continuous and let {¢,,n > 1} be a
sequence decreasing to zero such that the conclusion of Lemma 2.1 holds.
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Suppose further that there exist a sequence of functions b,: T —» R*,n>1, a
convex nondecreasing function ¢: R - R* and a sequence {A,,n>1} of
events satisfying (with X, = X{V)

(2.10) sup{ )3 bn(t)} < o0,
(2.11) p{ ﬂl(A,,)c} > p >0,

(2.12) ZIE{I(A")c . (p[Xn(t) b_(‘f)"“(t) ] Zl((tt)) v(dt)} < oo,

for some Borel probability measure v on T. Then, with probability greater than
p, the sample paths of X belong to L¥(T, v).

3. Proof of Theorem 1.1. Since we assume (1.1), we can choose g, =
27"diam(T, d), n > 0, in order that (2.5) holds. Let v be any Borel probability
on (T,0) and let N > 1 be fixed. Set

Xn(8) = XP(t) and py(2) = pu(s) if t e my(s),
and for all n > N,
X,(2) = X2(¢),
1 /q-1/q
b,(t) = 3[log(1 + MH En_1s
X,(t) = X, ,(0) r'ﬂv—l
b,(t) ’
1 1/9-1/¢
kat) = [log(l T O )] ’
A,={3teT:k,(t)>EkX1)).

(3.1) k,(t) = [

We have
Xn(t) - Xn—l(t) bn(t)
’“‘n)‘ff'q’[ b.(0) ]Rw(t)”(d”
(3.2) <Iay fT \pq[X”(t) b_(f)"“(t) kn(t)]Eb'%v(dt),

Xn(t)_Xn—l(t) * bn(t)
sz‘I'q[ 0] kn(t)]mv(dt).
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By integrating with respect to dP, then using Jensen’s inequality,

Xn(t)_Xn—l(t) %
i )

X(u) = X(v) T w(du)u(do)
B e [ b7) k"‘t)}u,,u)u,,_l(t) |
where we write By(t) = B(s, ey) if t € my(s)
and B,(t) = B(¢,¢,)if n > N,

once

sup{g(u’—l:()f):ﬁ, u€eB,(t),ve Bn_l(t)} <1

But, by (3.1) this quantity is less than 3e,_,k*(£)[b,(¢)]~! < 1. Therefore, for
every n > N,

X (2) — X, 1(t) | ba(2)
{ (A, )°f\I' [ b (t) ]RN(t) U(dt)} fR (t) U(dt),

and thus,

00 Xn _Xn—l n
(3.3) ENE{LAn)CfT wq,[ (t)b,,(t) (t)]R If(tz) v(dt )}

Further,

sup{ i b,(t), te T}

n=N

(3.4) < sup{by(t),te T}

ey 1 e-1/¢’
+O(1)sup{f0 [log(l + W)] p,(du), te T},

which is finite by (1.3). We now turn to the control of the sequence {A,, n > 1}.
First observe

Vn=>=N,

A, cC {3 teT:|X,(t) - X,_,(2)

1 1/q
R E)n_1(2) )] }

(3.5)

> 3sn_1[log 1+
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and by applying Jensen’s inequality,
1X(2) — X, (2]

36) 3%_1[%]_1{

[X(u) - X(v)] p(du)p(dv)
B,(t)®B,_,(t) ! d(u, ) EalEpnoa(t) |

d(u, v)#0
Therefore, for every n > N,
X(u) - X(v)
A,c{3teT: A ————= [n(du)p(dv) = 1
B()®B,_,(?) d(u, v)
(3.7) d(u, v)#0

: {‘/‘/(.)<d(u,v)s3e,,_l\l,q[%ﬂ]“(du)“(dv) >4 1},

since d(u,v) < 3¢,_, when (u,v) € B,(t) ® B,_,(¢t). Further, by applying
Tchebycheff’s inequality, one obtains,

(38) Yvn>=N, P{A,} <p®p{(u,0)eT®T:0<d(u,v)<3e,_,}.
We finally obtain, by letting Q5 =N, y(A,)¢ and using assumption (1.4),
(3.9) Igun P{Qy} = 1.
The proof is achieved by applying Lemma 2.2.

When (T, d) is a compact ultrametric space, the two sequences of approxima-

tion described in (2.2) and (2.3) are identical, since 7(s) = B(¢, ¢,) for every
t e m,(s), s €S, and n > 1. The same proof, with the modifications

. [ 9n ]l/q—l/q’
b,(t) = 3¢,_,|log|l + ————— R
(£) = Sen—s ( u,.(t)u,,_l(t))

. on 1/9-1/¢
k0 = [‘°g(1 * B DD )] ’
leads to (3.3) and (3.4), and for every n > N,
X - X(v
(811 A,C {ate T: fan(t)Mn_l(t)qfq[%_)}”(du)u(do) > 2n},
so that
(3.12) P(A) =27 E uln(o)nlm(s)) 5277
s'€8,

(3.10)

which easily implies (3.9). O
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