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ON THE UNIQUENESS OF THE INFINITE OCCUPIED
CLUSTER IN DEPENDENT TWO-DIMENSIONAL
SITE PERCOLATION

BY A. GaNDpOLFI,' M. KEANE AND L. Russo
Delft University of Technology and II University of Rome

We consider dependent site percolation on the two-dimensional square
lattice, the underlying probability measure being invariant and ergodic under
each of the translations and invariant under axis reflections. If this measure
satisfies the FKG condition and if percolation occurs, then we show that the
infinite occupied cluster is unique with probability 1, and that all vacant
star-clusters are finite.

1. Introduction. Consider a probabilistic situation in which each of the
sites of the two-dimensional square lattice (i.e., each point in Z?) is either
occupied or vacant, the stochastic nature being specified by a probability
measure p. on the set of all such configurations. Regarding the nearest-neighbour
bonds (i.e., the line segments of length 1-joining two points of Z?2) as connections,
the set of occupied sites of a given configuration falls apart into maximal
connected subsets called occupied clusters. The theory of site percolation on the
square lattice deals with the description of these clusters.

In this article we shall be concerned with the number N of occupied clusters
that contain an infinite number of sites. Clearly, N is a random variable
invariant under the group of transformations of configuration space induced by
the group of translations of Z2. If we restrict our attention to those probability
measures which are ergodic under this group, this is sufficient to ensure that N is
constant with probability 1. Then if N is not 0, we say that percolation occurs.

The first investigations in percolation theory were of Bernoulli percolation,
which arises when each site is occupied with probability p and vacant with
probability 1 — p, independent of the other sites. Then there is a critical value p,
for the parameter p, strictly between 0 and 1, below which N is 0 and above
which N is nonzero. More recently, it has been shown that N is 0 for p = p,
[14]. The exact value of p, is unknown; the best lower bound is 0.503478 ([15])
and heuristic calculations ([4]) indicate that p, is approximately 0.59. We
remark that, for the same model in higher dimensions, the value of N at p, is
not known.

Early in the development of percolation theory, Harris [9] showed for a model
similar to the preceding one, the independent bond percolation model on Z2,
that N = 1 above p,. Fisher [6] then noted that Harris’ techniques work equally
well for independent site percolation on Z2. Later, an article by Coniglio, Nappi,
Peruggi and Russo [3], based on ideas in Miyamoto [12], led to N = 1 when p
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describes a percolating Ising model with no external field. General references
containing many recent results on independent percolation are Kesten [10] and
[11].

Our goal in this article is to extend these uniqueness results to a wide class of
probability measures u. More precisely, suppose that :

(1) p is invariant under horizontal translation, vertical translation, horizontal
axis reflection and vertical axis reflection;

(2) p is ergodic with respect to horizontal translation and vertical translation
(separately);

(3) increasing events are positively correlated under p; and

(4) N is nonzero.

(The second condition implies that N is constant with probability 1; the third
is the so-called ferromagnetic or FKG condition [7]).

Then we shall show that N =1 with probability 1. In fact, we obtain, as
Harris did, a bit more, namely, that any finite set of sites is surrounded by an
occupied circuit with probability 1. Now, if we consider two points star-con-
nected when their distance is less than or equal to V2, we can define the
connected components of the set of vacant sites as vacant star-clusters. Our
result implies that all vacant star-clusters are finite with probability 1.

Examples of measures satisfying our conditions are given by extremal Gibbs
states in Z2, in particular, Ising states with nonzero external fields, and restric-
tions of higher-dimensional Ising states to a suitable plane. However, our results
are quite general and the question arises as to whether the set of given conditions
is minimal, i.e., it is not possible to omit any single condition and obtain the
same result. In this direction, it is not hard to see that the separate ergodicity is
a necessary part of the set of conditions, as the ergodicity under the whole group
is not sufficient. We do not know whether the FKG condition can be omitted.

We mention three related results. In [13], Newman and Schulman have
shown, under conditions more general than ours and for arbitrary dimensions,
that the only possible values for N are 0, 1 and oo. For Bernoulli percolation in
all dimensions, a relation between uniqueness and qualitative properties of
thermodynamic functions was first shown in [16]; more recently the combined
work of Aizenman, Kesten and Newman [1] has strengthened this relation and
has yielded a proof of uniqueness. A corresponding result under our conditions
may well also hold, but other methods will certainly be necessary for this.

2. Preliminaries. We begin by fixing our notation for points and subsets of
the discrete plane. Let P = Z?2 and set

0=(0,0),
x,, = (m,0), meZ,
¥, = (0, n), neZz.
We shall need the following subsets of Z2, described in terms of points z = (z,, 2,)
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belonging to them:
(1) The upper and lower half-planes

H*=[z,> 0]
and
H =[z,<0].
(2) The horizontal strips
Q.=[-m<z,<m], m=o0.
(3) The horizontal line and half-lines
L, =[2,=m],
L:=[z,=m, z =>0],
L,=[2,=m,2, 0], meZ

(4) Boxes B of the form [—m < z,, z, < m], m > 0. The set of all such boxes is
denoted by B.

(5) Chains, defined to be finite or infinite sequences of elements of P whose
successive terms are at distance 1 from each other. A chain is self-avoiding if
any two of its elements are distinct, and a finite chain is a circuit if its first
and last element are at distance 1 from each other. A chain is said to join
two (points or) subsets if it contains elements belonging to each, and it joins
a subset to oo if it contains an infinite number of distinct terms, one of which
belongs to the subset.

(6) Star-chains, obtained by replacing “distance 1” in (5) by “distance 1 or v2.”

In the following we shall make no distinction between z and {z} for nota-
tional convenience, and occasionally we shall confuse a chain with the curve in
R? obtained by connecting successive elements of the chain to each other with
straight line segments. We shall also make use of the elementary properties of
the index or winding number of a finite chain C around a point z € P not
belonging to C. The index, denoted by

i(C, 2),
is intuitively defined as 1/2# times the total change in the angle of the vector
2z’ — z as z’ proceeds from the initial point of the chain to the final point along
the curve corresponding to the chain. For the precise definition and the elemen-

tary properties, we refer to Beardon [2].
Next we introduce the probability space

Q={0,1}%,

provided with the o-algebra A generated by all finite cylinders and a fixed
probability measure p. An element w = (w,), p € £ is a configuration; z € P is
said to be vacant or occupied in w according to whether w, = 0 or w, = 1. An
event A € A is increasing if w € A and w < ' imply w € A, where “<”
denotes the coordinatewise partial ordering on @, and decreasing if the comple-
ment of A is increasing.



1150 A. GANDOLFI, M. KEANE AND L. RUSSO

Our notation for connection by occupied site chains will be as follows. Let U,
V and W be subsets of P, with possibly also V = co. Then

[U,v;W]

denotes the set of all configurations « for which U and V are joined by a chain
each of whose elements is occupied in w and belongs to W. If W = P, then we
simply write

[U,V].

It is easily seen that the occupied chain joining U and V may be assumed to
start in U, to end in V, and to be self-avoiding.

If U c P is finite, then U denotes the set of all configurations w for which
there exists a self-avoiding circuit C (disjoint from U) each of whose elements is
occupied in @ and such that for each z € U, i(C, z) = +1. It is well known that
this is equivalent to requiring that U is not star-joined to oo by a chain of vacant
elements (see, e.g., [10]).

If w € Q, an occupied cluster in w is a subset of P such that any two points of
the subset can be joined by a chain all of whose elements are occupied, and such
that it is maximal with respect to this property. The set of occupied clusters
forms a partition of the set of occupied sites of w, and we denote by N(w) the
number of occupied clusters in w that contain an infinite number of sites.

Points and subsets of P, configurations and events in £, will be moved around
using the horizontal and vertical translations

S(z) =z +(1,0),
T(z) =z + (0,1).
Note that S translates points and subsets of P to the right, but configurations
and events to the left:
(Sw), = wgy, 2E€P.
T acts in a similar fashion.

We can now state our assumptions A concerning the probability measure u on
(2,A).

(A.1) p is invariant under horizontal and vertical translations and axis reflection.
(A.2) u is ergodic (separately) under horizontal and vertical translation.
(A.3) For any increasing events E and F,

MENF) = p(E)u(F).
(A4) 0 < p(0,00]) <1.

A few remarks are useful. Assumption (A.2) is more than enough to imply that
N is constant with probability 1, and assumption (A.4) rules out N = 0, as well
as the trivial measure for which all sites are occupied with probability 1.
Assumption (A.3), the ferromagnetic or FKG condition, implies the same in-
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equality if E and F are both decreasing, and the reverse inequality if one is
decreasing and the other increasing, as follows from the definition of decreasing
events.

THEOREM. If assumptions (A.1)-(A.4) hold, then
p(N=1)=1.

Moreover, any finite set of sites is surrounded by an occupied circuit with
probability 1 and, equivalently, all vacant star-clusters are finite with probabil-

ity 1.

The main part of the proof will be given in the next section. The remainder of
this section will be devoted to preparations for the proof. Our first lemma allows
us to prove a bit less. In the sequel we always assume that (A.1)-(A.4) hold.

Box LEMMA. Suppose that there exists a positive number 8 such that for
each box B € B,

p(B) > 8.

Then any finite set of sites is surrounded by an occupied circuit with probability 1
and

p(N=1)=1.

PROOF. Any finite set is contained in a box B € B and the event B decreases
as the size of B increases. Therefore,

u( N B) > 38,
BeB
and since this event is translation invariant, it has by ergodicity measure 1, and
only u(N = 1) = 1 remains to be shown. Let z, 2’ € P. Then the set {z, 2’} is
surrounded by an occupied circuit with probability 1, so the probability that z
and z’ belong to different infinite occupied clusters is 0. Since there are only
countably many pairs z, 2’ € P, we conclude that p(N =1)=1. O

Next we show that percolation cannot occur in a strip.

STRIP LEMMA. For each z € Q,, we have

u([z, 0;Q,]) = 0.

~ProOOF. By (A.4), vacant sites occur with positive probability, and then by
(A.3) line segments of vacant sites also occur with positive probability, since
occurrence of a vacant site is a decreasing event. Hence by ergodicity of S the
strip @,, will be closed off infinitely often in each direction by a line segment of
vacant sites with probability 1, and the lemma follows. O
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The following lemma is ergodic—theoretic in nature and is a mild adaptation
of an interesting theorem of Furstenberg [8].

MULTIPLE ERGODIC LEMMA. If A,, A, and A, are monotonic (i.e., increas-
ing or decreasing) events, then
Dilimp(A, 0 S™M4, N S72A,) = p(A,)n(A))n(A,),

where D-lim 5, _, .ay = a if ay tends to a along a sequence of density 1.

Proor. First suppose that A, = Q. Then by ergodicity of S,
' N-1
A}im N7t Y w(AgnS™4,) = u(4,)u(4A,),
- n=0
and by (A.3) the sign of
r(Ag N S™"A;) — n(Ao)n(4;)

is constant. Thus the lemma follows for A, = @ by standard arguments. Now
imitate the proof on page 85 of [8], noting that the events obtained by
translation of monotonic events and the intersection of monotonic events of the
same type are still monotonic. O

Clearly, the same lemma holds for 7. The result leads to a lower bound
independent of the box size for percolation probabilities outside large boxes
which are far away. We shall use it in the following form.

COROLLARY. Let z € P, U and V be finite subsets of P, and W an infinite
subset of P. Then there exists a positive integer N such that

u([z, 00 WN (87U U SMV)]) 2 tu([ 2, 00 W]).

Proor. Define the events

A, = [all sites in U are vacant],
A, =[z,0; W],
A, = [all sites in V are vacant],
Ay =[z,00; W\ (S"NU U SVV)].
Then A, and A, are decreasing, A, and A are increasing, and clearly
SNA,NA, NS M,=8A,n A, NS M,.
Then (A.3) yields '
p(Ay)n(S¥e N S™M4,) > (SN, N Ay N S~MA,)
=p(SM,N A, NS™M,).
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By the multiple ergodic lemma, we have
D-limp(S™4, N A, N S™M4,) = p(A4,)p(4)n(4,)

and
D-limp(SNA, N S7M4,) = u(A4,)r(A4,).

N- o
Hence
D-limsupp(Ay) = p(A4,)

N-oo

and the corollary follows. O
Our last lemma will provide a tool for constructing circuits around boxes.

ToOPOLOGICAL LEMMA. Let Z € B€ B, and let z, and z, be two different
points outside B. Suppose that C, and C, are finite chains both starting at z,,
ending at z, and disjoint from B. If i(C,, Z) is different from i(C,, Z), then there
exists a self-avoiding circuit C (disjoint from B) such that

i(C,z) =1
and such that any site of C is a site of either C, or C,.

PROOF. Construct the circuit C by going from 2, to z, via C, and then from
2, back to z; via C,. By additivity of the index,
1(6’ 2) = i(Cly E) - i(C2’ 2)
and this last term is different from 0. _
It then follows that the component of R%\ C containing Z is bounded and

contains B. Moreover, it is simply connected and its boundary, traversed in the
correct direction, yields the desired self-avoiding circuit C. O

3. Proof of the theorem. We divide the proof into two parts, according to
whether percolation occurs in the upper half-plane or not. A proof of the first
part can be obtained by adapting Harris [9], as was done in Ferrari [5], but the
proof we give here is more closely related to assumptions (A.1)-(A.4) and
indicates the direction to be followed in the second part of the proof.

First part of the proof. Assume that percolation occurs in the upper half-

plane, that is,
u([0,00; H*]) =p > 0.
We intend to apply the box lemma of the preceding section. Choose any box
B € B. Using the corollary with 2z =0, U= &, V=B, W= H" and T in place
of S, we obtain a positive integer N such that
u([O, o0; HT\ TNB]) >p/2,

and T-invariance of p then yields

p,([y_N,oo; T-NH* \B]) >p/2.
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The strip lemma implies that

l‘([y—N’ o0; QN]) =0,
so that we have

l‘([y-N» Ly; QN\B]) >p/2.
This event is the union of the events

[y—N’ L;\rr; (L—N U QN—I U L?\L/) \B]
and
[¥_n» L (L_y U Qy_, U Ly)\ B],

which have the same measure by (A.1) since they are reflections of each other
with respect to the vertical axis. Hence

p([y_n» L (L_y U Qv U LY) \B]) = p/4,
and by horizontal reflection then also

F‘([yN’ Lty (LyUQy_;ULIN)\B]) 2 p/4.

The events in the last two inequalities are increasing, so that, by (A.3) their
intersection J satisfies

p(J) = p?/16.
We now claim that
J c [y_n» yn;s P\B],

since if w € o, then there are occupied self-avoiding chains from y_, to L} and
from yy to L7, both lying in @, and avoiding B. Let z,€ L} and z_€ LT
be their end-points. If y, or z_ belongs to the chain from y_y to Ly, then there
is the connection we required. Otherwise, this last chain can be enlarged to a
self-avoiding circuit C with i(C,yy) = 0 and i(C, z_) = +1, which the chain
from yy to z_ must then intersect in a point of the other chain, and we have

verified the claim.
It follows that

w([y_n» yv; P\ B]) = p?/16.

Now choose any x € B and note that the index of a chain from y_y to yy
avoiding B around x is an odd multiple of %, and changes sign under reflection
with respect to the vertical axis. Hence if we define J* (J7) to be the event that
there is a chain of occupied sites from y_, to yy outside B with positive
(negative) index around x, then
w(J*) = u(J7) 2 p*/32,
and since both events are increasing,
' p(J*NJ7) > p/1024.
But now the topological lemma yields
JtNnJ C B,
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SO
n(B) > p*/1024

independently of the size of B, and the box lemma with § = p*/1024 is then
applied to complete the proof.

Second part of the proof. Assume now that

#([0,0]) =p >0
and
p([0,0; H*]) = 0.

Together with translation invariance this implies in particular that with prob-
ability 1, any infinite self-avoiding chain of occupied sites intersects each hori-
zontal line in an infinite number of distinct sites. Again we intend to apply the
box lemma. Choose any box B € B. Using the corollary with 2 =0, U=V =B
and W = P, we obtain an integer R > 0 such that

u([0,00; P\ (S*B U S™*B)]) = p/2.
REMARK. The full strength of the multiple ergodicity seems to be necessary
here. The point is that the intersection of the events
[O, w; P\ S*B]
and
[0, 0; P\ S~%B]
is not, contrary to what one might suppose at first sight, contained in the event
[0, 0; P\ (S®B U S~%B)].
Our penultimate aim now is to bound p([0, x,z; P\ SEB]) from below. By
horizontal invariance,
u([x2z, 003 P\ (SFB U S*EB)]) = p/2.
Next, let
I={x,:0<m<4R}

and apply the corollary again with 2 = x,5, U=V =1 and W= P\ (S*B U
S3EB). This yields a positive integer M such that

p([x2r, 05 Kog]) = p/4,
where for notational convenience A
. K,r =P\ (S*BuU S*®*B U SMT U S™MI).
Put
K = P\ (SRBuU S %B).

Now if w € [0, 00; K], then there is an infinite self-avoiding chain of occupied
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sites from the origin in w, which by assumption must (with full probability)
intersect the union of half-lines SYLJU S~ L, infinitely often, and hence at
least once. The first intersection can lie either in S¥L§ or S™™L; and vertical
axis reflection then yields

p([0, SML$; K\ S™MLg]) > p/A.
Similarly,
”([xzn’ S™MLg; Kyp\ SM*4RLS]) = p/8,

by reflection around the vertical axis at 2R. Note that here the symmetry
argument depends essentially on the presence of the “spurious” boxes S™#B and
S3EB. and that the length of I has been chosen to preserve the necessary

symmetries.
Next, let A denote the event that there exists an occupied chain C from 0 to

SMLy contained in K\ S™¥L;, such that it either contains x, or is such that
i(C,x,5) > 0,

and denote by A~ the corresponding event with negative index. By horizontal
axis reflection,
p(A*) =p(A7) 2 p/8,
since
A*UA~=[0,SML¢; K\ S™MLj]
has measure at least p/4. Now (A.3) yields
p(A*N AN [xy5, S™MLg; Kyp \ SM*4RLS]) = p?/512,
as these three events are increasing. We now claim that
A*N AN [xy8, STMLy; Ky \ SM+*RLS| < [0, x5 P\ S®B].

Indeed, if « is a configuration belonging to the intersection on the left, then
there exist occupied chains C*, C~ and C such that

(1) C* and C~ begin at 0 and end in SML{;

(2) either x,, belongs to C*U C~ or i(C™, x2R) >0and {(C, x,5) <0
(3) C begins at x,5 and ends in S™L;

(4) C* and C~ do not intersect S*B U S™MLg;

(5) C does not intersect SMI U SM*4RL+U SEB = SFB U SML;,

Now form a circuit C by first traversing C*, then the straight line segment o in
SML0 between the terminal elements of C* and C~, and then returning to 0 via
C~ in the reverse direction. Since the index is addltlve and since i(J, x,5) is
clearly 0, we have that either x,5 belongs to C*U C~ or

i(C, x,5) = ‘:(C+ Xyp) — i(C7, x5p) 2 1.

In the latter case x,5 belongs to a bounded component of R*\ C and S™¥L;
lies in the unbounded component of R?\ C, as C* and C~ do not intersect
S~ML . Hence C, which connects x,5 and S~ L, must intersect C, and since it
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does not intersect SML, it must intersect C* or C~. Thus in both cases 0 and
%, p are connected by a chain lying in C U C*U C~ and noting that these chains
do not intersect SEB then yields w € [0, x,5; P\ S®B]. It follows that

([0, x5z P\ SEB]) > p3/512,

and an application of the topological lemma as in the first part of the proof gives

p(B) = p(S*B) > pb/2%.

Taking 8 = p%/2? in the box lemma finishes the proof. O

REFERENCES
[1] AizENMAN, M., NEWMAN, C. M. and KESTEN, H. (1986). Uniqueness of the infinite cluster and
continuity of connectivity functions for short and long range percolation. Unpublished.
[2] BEARDON, A. F. (1979). Complex Analysis, Chapter 7. Wiley, New York.
[3] ConicLio, A. Narpi, C. R., PERuGGI, F. and Russo, L. (1976). Percolation and phase
transitions in the Ising model. Comm. Math. Phys. 51 315-323.
[4] Essawm, J. W. (1972). Percolation and cluster size. In Phase Transitions and Critical Phenom-
ena (C. Domb and M. S. Green, eds.) 2 197-270. Academic, New York.
[6] FERRARI, M. (1984). Thesis, Modena.
{6] FIsHER, M. E. (1961). Critical probabilities for cluster size and percolation problems, /. Math.
Phys. 2 620-627.
[7] FortulN, C. M., KASTELEYN, P. W. and GINIBRE, J. (1971). Correlation inequalities on some
partially ordered sets. Comm. Math. Phys. 22 88-103.
[8] FURSTENBERG, H. (1981). Recurrence in Ergodic Theory and Combinatorial Number Theory.
Princeton Univ. Press, Princeton, N.J.
[9] Harris, T. E. (1960). A lower bound for the critical probability in a certain percolation
process. Proc. Cambridge Philos. Soc. 56 13-20.
[10] KESTEN, H. (1982). Percolation Theory for Mathematicians. Birkhiuser, Boston.
[11] KEsTEN, H. (1987). Percolation theory and first-passage percolation. Ann. Probab. 15
1231-1271.
[12] MivamoTto, M. (1975). A remark to Harris’s theorem on percolation. Comm. Math. Phys. 44
169-173.
[13] NeEwmaAN, C. M. and ScHULMAN, L. S. (1981). Infinite clusters in percolation models. /.
Statist. Phys. 26 613-628.
[14] Russo, L. (1981). On the critical percolation probabilities. Z. Wahrsch. verw. Gebiete 56
229-237.
[15] TOTH, B. (1984). A lower bound for the critical probability of the square lattice site percola-
tion. Unpublished.
[16] vAN DEN BERG, J. and KEANE, M. (1984). On the continuity of the percolation probability
function. Contemp. Math. 26 61-65.

DEPARTMENT OF MATHEMATICS
DELFT UNIVERSITY OF TECHNOLOGY
JULIANALAAN 132

DELFT

DEPARTMENT OF MATHEMATICS

ITI UNIVERSITY OF ROME “TOR VERGATA”
Via OrAzio RAIMONDO

ROME

ItaLy

THE NETHERLANDS



