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CONTINUITY OF GAUSSIAN PROCESSES!

BY GENNADY SAMORODNITSKY

Technion— Israel Institute of Technology and
University of North Carolina

We give sufficient conditions for local continuity of the isonormal process
L at some point of its parameter set. Since a Gaussian process defined on a
compact parameter space that is a.s. continuous at each point is sample
continuous, our result can be applied to the problem of general sample
continuity of Gaussian processes. It is shown that our sufficient conditions
are strictly weaker than the classical sufficient conditions for sample continu-
ity.

1. Introduction. Let {X(¢), ¢ € €} be a Gaussian process with a continuous
covariance function over a compact subset € of a metric space (S, d). Such a
process is called sample-continuous if there is a version of the process with
continuous sample functions. Equivalently, {X(t), ¢ € €} is sample-continuous
if it is uniformly continuous for ¢ restricted to a countable dense subset of ¥.
The process is said to be sample-bounded if it has a version with bounded
sample functions.

Let t, be a point of ¥. The process is said to be continuous at t, if there is a
version of the process with sample functions that are continuous at ¢,. Equiv-
alently, the process is continuous at ¢, if P(lim,_,, ,c¢X(t) = X(,)) =1, ¢*
being a countable dense subset of ¥.

Let H be a real, infinite-dimensional Hilbert space. A linear map L from H
into real Gaussian variables with ELx = 0, ELxLy = (x, y) for all x, y € H is
called the isonormal Gaussian process on H. [As usual, (-, -) denotes the inner
product in H.]

A modern approach to the study of sample function continuity and bounded-
ness of Gaussian processes reduces this problem to the study of those sets C ¢ H
on which the isonormal L has continuous GC or bounded GB sample
functions, called GC-sets and GB-sets, respectively [Dudley (1967), 1973),
Feldman (1971) and Sudakov (1969, 1971)]. This approach relates GC and GB
properties to certain measures of the size of a set C in H. Three such measures of
the size of C have been extensively studied: mixed volume [Dudley (1967),
Sudakov (1971) and Milman and Pisier (1987)], majorizing measures [Fernique
(1975) and Talagrand (1987)] and metric entropy. In this paper we use the notion
of metric entropy. The reader interested in mixed volumes or majorizing mea-
sures is referred to the sources mentioned previously.
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1020 G. SAMORODNITSKY

Let € be a subset of a metric space (S, d). Given & > 0, let N(%, €) = Ng(e)
be the minimal number of points x,, x,,..., x,, from % such that for any y € €,
there is an x; such that d(x;, y) < e. Then H(%, ¢) = In N(%, ¢) is called the
metric entropy of ¢, and the exponent of entropy r(¥) is defined by

(€)= 1 In H(%, ¢)
r = limsu
e—>0p . Iln 8'
Dudley (1973) proved that € c H is always a GC-set if
(1.1) [H(%, )" dx < oo
0

This implies in particular that € is a GC-set if r(¥) < 2, and it is known that ¢
cannot be a GB-set (and so not a GC-set) if r(¥) > 2 [Sudakov (1969)]. The case
r(%) = 2 includes an ambiguous range, however, where H.(¢) cannot determine
whether ¥ is GB or GC [Dudley (1973)]. In particular, there are compact
GC-sets for which the integral (1.1) diverges.

In this paper we find conditions under which the isonormal process L on a set
% c H is as. continuous at some point x, € €. This is closely related to the
question of whether or not ¢ is GC. Clearly, if € is GC, then the isonormal
process is a.s. continuous at each point of ¥. Less evident is the converse
statement: If the isonormal process is a.s. continuous at every point of ¢, then ¥
is a GC-set. This important property of Gaussian processes was noted for
Gaussian processes on [0,1] by Marcus and Shepp [(1971), page 436] who give
credit for the idea to Dudley, and can be extended as follows.

THEOREM 1.1. Let ¥ be a compact subset of a metric space {S, d} and X(t)
a Gaussian process on €. If X(t) is a.s. continuous at each point of €, then it is
sample-continuous.

The proof of Theorem 1.1 will be given in the Appendix at the end of the
paper.

In the following section we give sufficient conditions for local continuity of the
isonormal process. These conditions turn out to be strictly weaker than those
obtainable from (1.1). Consequently, our result (Theorem 2.1) can be used to
establish the GC property in situations in which the integral (1.1) diverges.

2. Sufficient conditions for local continuity. We start with some ad-

ditional definitions and preliminary results.
For a given set % in a Hilbert space H and a given point x, € ¥, set

(2.1) C(x0;8) ={x € F:llx—x0l <8}, 8>0,
(22) N(xy; 8,¢) = N(¥(Xy; 8),¢), &>0,e>0,

(2.3) N(xg; 8, 8, ) = N(€(xo; 8,) \ €(x05 8,),¢), 8,>8,20,e>0.
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A set ¥ is said to satisfy Condition A if
xll —
Hlxll = 11l _ M <o

(2.4)
x,y€¥€,x+y ”x - y”2

The isonormal process L restricted to such a set ¢ satisfies the following bound,
which is derived in Samorodnitsky (1986):

o]
P{ supLx > Ao + Y, ej)\j}

x€¥ j=1
-
(2.5) sNg(el)—-z/—?AOIexp{—z—}

1 =) 2 1 o 22
+ gt ) T Nelewer| = 5 (s = pik0) ]
for any positive sequences {&,}%2,, {A;}j20, & — 0 as j — o, satisfying for all
k > 2 the conditions

(2.6) A1 21,
(2.7) pE < Ap_1/Ao < 1/p%.
Here
. 2Mo + 1
(2.8) Py = ——2g——8k_1
and
o = sup||x||, o = inf ||x|| > 0.
x€¥ x€¥

The proof of Theorem 2.1 is based on the bound (2.5).

REMARK 2.1. The following property of metric entropy is used in the sequel.
For any ¥, C %, and ¢ > 0,

(2.9) N(%,,€) < N(%,,¢/2).

This relation is semievident; details cah be found in Samorodnitsky (1986).

THEOREM 2.1. Suppose there is a constant § > 0 such that the function

(2.10) H(8,¢) =In N(xy; 8,0,¢), 0<8<0,e>0,
satisfies the condition
(2.11) lim ]SH(s, £)2dt = 0.

s—=0Y0

Then the isonormal process L restricted to € is continuous at x,.
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REMARK 2.2. An alternative sufficient condition for continuity of the isonor-
mal process at x, that follows directly from (1.1) is

(2.12) le(%(xo; 8),t)/*dt < o0 forall 8 > 0 small enough.
0

It is easily seen that the condition given by Theorem 2.1 is strictly weaker than
(2.12). [Suppose that (2.12) holds for all § < §. Then by (2.9) for any s < 6,
H(s, t) < H(%(x,; 0), t/2), so (2.12) implies (2.11). The examples given in the
end of this section represent situations in which Theorem 2.1 works while (2.12)
fails.]

ProOF OF THEOREM 2.1. By its definition H(s, ¢) is nonincreasing in ¢ for
each s. Also (2.9) implies that for any 0 <48, <8, <8, In N(xy; 8,,8,, ¢) <
H(6,,¢/2). Let

t
(2.13) Hy(s, t) = H(s, -15)
(2.14) H,(s,t)"?=Hys,t)"* + |Ins| + In[ln ¢,
> 1 s 1/2
(2.15) Hy(s, )2 = Hy(s, t)* + ;[ [ Hys, u)"”* du] .
0

These functions still satisfy (2.11).

Let ¢, > 0 be such that the function ¢(¢) = In|ln¢| is nonnegative and
nonincreasing on the interval (0, ¢,]. It follows then that for any 0 < ¢ < ¢,
Hy(s,t) = H(s, t/12) and Hy(s, t) is nonincreasing in ¢ for each s. Since the
function H (s, t) satisfies (2.11), there is s; > 0 such that for any 0 < s < s,,

(2.16) szl(s, )2 dt < 1.
0

Finally, let ¢, > 0 be such that the inequality |In¢|/¢ > 81 holds for any
0<t<t, Set

(2.17) 1(s) = fO“HZ(s, £)V2 dt
and

2y M2
(2.18) g(s) = [sup (I(u) + I(w)" }]

Then g(s)|0 as s — 0. We are going to show that for a separable version of the
process
Lx — Lx
(2.19) lixnsup{l——-—()l: x € F(xy; 8)} <2 as.
s—0 | &(llx — x,ll)
This implies, of course, that the isonormal process L restricted to € is continu-
ous at x,. As the supremum in (2.19) is taken over a decreasing family of sets, it
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is enough to prove that

|Lx — Lax,| } ]
———:x € ¥(x,;8)} >2|=0.
&(llx = xoll) °

Since we are talking in (2.20) about a limit as § = 0, we may and will assume
from now on that '

(2.21) 0 < 8§ < min(¢, s, t,)-

Set §,:=37,i=0,1,2,.... Then §, |0 as i > . Consequently, the mono-
tonicity of g(s) implies that

P[sup{l—Lx—_-L—xOl—: x € b(x; 8)} > 2}
&(llx — xoll)

(2.20) lim P [sup{
50

22) < 3 Plsupl EET I e gnnss 8
(2.22) SEO Sup{m-xe (205 8;) \ €(x0; i+1)}>2

<X P[sup{|Lx — Lxo|: x € €(x0; 8;) \ €(x¢; 6,1,)} > 2g(8,~+1)].
i=0

We are going to estimate the probabilities in the last sum in (2.22). Denote
%= {x — %, x € €(x0; ;)\ €(x0; 8,11)}
A separable version of the isonormal process is still linear with probability 1 on
countable sets. Therefore, letting %; be a countable dense subset of #(x; 8;) \
(%05 8;41), we get
P[sup{|Lx — Lxg|: x € €(x0; 8;) \ (%05 ;1) } > 28(8,.1)]
= P[sup{|Lx — Lx,|: x € #,} > 2g(8;,,)]

(2.23) = P[sup{|Lx|: x € B; — x,) > 28(8;,,)]
= P{ sup |Lx| > 2g(8i+1)}’
xXE€EY;

since #;, — x, = {x: x + xy € %,} is dense in F,.
We would like to apply the bound (2.5) to the last probability in (2.23).
However, %, may not satisfy Condition A; thus we first define

R d;
€, = {x—‘—, x € %.}.
llxll '
The same linearity argument used to establish (2.23) shows that with probability
1,

8
sup |Lx| = sup {|Lx|"—xﬁ} > sup |Lx|.

x€ %, xXEE; x€ %,
Thus,
(2.24) P{ sup |Lx| > 2g(8i+1)} > P{ sup |Lx| > 2g(8i+1)}.
x€, XEE,;
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Moreover, the points in %, have equal norms (8 ), and so %, satisfies Condition

A with M = 0. We apply the bound (2.5) to %;, taking o0 = ¢ = §;, M = 0. For
any two sequences {e{”)2.,, {AP)2 , satisfying (2 6) and (2.7), we thus obtain

{ sup |Lx| > X985, + Y £(z)}\(z)}

xG? Jj=1

< |2 09) exn| -
/% 0) e 5007 £ w4, 49

Xexp{— i()\(}) — p*AY) }

Note that for any x, y € %,

N =

()| N (%, &9)
(2.25)

R

et

TR |w Iﬂl TR
8 — e — ol + I3l | — — —
LHI =l 1
|| I 2&" I
—x =y =< X =Yy
uu 81
= 6]lx — y].

Consequently, for any ¢ > 0,
(226)  N(%,¢) < N(%,,¢/6) = N(€(x0; 8,) \ €(x0; 8,1,), £/6).
Thus, (2.25) can be rewritten as

{ sup |Lx| > A(2)8; + ) e(‘)}\(‘)}
xE? _]-1

< (2/m)""N(i) exp{ = N(i)*/2) N(xo; 8,1, 8, 62/6)
+(2/7)"*\(i) "exp{ - Mﬁﬂ}ZthHv%,VQ

Jj=

(2.27)

Xexp{—l(?\(?)_ - *)\(z))}

where A(i) denotes A{). Now we specify the & and )\(‘) sequences. Set

i g(sz 1)
(2.28) A(E) =AY = —7;—
' @ L —(‘-1‘) ;
(2.29) = 2827070, j=12,..,
1 Hy(8,,,,27%,,,)""
(2.30) XD = 2A() U “%ﬂ, ji=12,....

Hy(8,,,,27%8;,1)
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Note that g(s) > s/?|In s|'/%; consequently, by (2.21), AP > 1 for all i > 0 and
J = 0. Furthermore, note that p} = 2-¢~/3 does not depend on i, and that the
condition p} < )\(‘) /() tnv1ally holds for all i > 0, j > 2. The second part of
condition (2.7), namely AP /A(i) < 1/p}, becomes, after a substitution,

3H. (8i+1’ 18i+1)1/2 2-0U-1
>
H2(81+17 B ]._1)6141)1/2 3

Note that for any 0 < d < 1 and for any v, specifically v = £/2 or v = £, we have,
by (2.16),

Hy(t,dt)"”  Hy(¢,dt)"”* + 1/¢] [iH (¢, u)" du]”
Hy(t,0)"*  H(t,0)" + 1/t| [¢H (¢, u)"* du]"”

(2.31)

(2.32) _ (yd)[§H(e, u) du + 1/t] [EH (¢, u)"* du]™”
1/t fEH (8, u)'* du]'”

d’

whenever 0 < ¢ < s,. Then (2.31) follows from (2.32) with ¢t = §;,,, d =2"¢"D,
Furthermore,

17 /¢ 2
< E[LHl(t,u)l/zdu] +1<—

X 2
Ai)8, + Y eOAD = A(i)8; |1 +
P OH,(8;,1,278;,1) "
(2.33) X Z 2_1H2(8i+172~j8i+1)1/2]

4 [Sn12Hy(8,, 1, u l/zdu
<A()8[1+_f A Hl) i
8t+1H2(8l+1’ 8i+1)

Here the monotonicity of Hy(s, t) in ¢ has been used. Similar to (2.32) we have
for0<d<1,

f(f'tHz(t,u)l/zdu dt{Hl(t u)l/z+ 1/t[j‘ l(t’s)l/2d9]1/2} du

diHy(t,dt)""  de{H,(t, de)* + 1/t] [$H(t, 5) ds] ")

(2.34) /‘”Hl(t ) du + d| [¢H (8, 5)" ds|”*
d| JsHy(t, 5)" as]"”

2 2
<1+-= [le(t )'/? ds } <
d=

as long as 0 < ¢t < s,. Consequently, taking ¢ = §,,, and

1
29

(2.35) A(i)8+ T 6PAD < A(i)8,(1 + 8/9) < 2A(3)3;.

Jj=1
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Consequently, (2.27) implies that
P sup |Lx| > 2¢(3,,.)

XEE,;

< (2/m)* M) "exp{ = A(i)*/2} N(x0; 8,11, 8, £7/6)
+(2/ﬂ)1/2)\(i)_1exp{—)\(z) /2}
X 3 N(xg; 110,81 &7/6)exp{  1(X2, - pFA(D))’).

J=2

(2.36)

For every fixed i = 0,1,2,..., let a;, and b, be the first and the second terms,
respectively, in the right-hand-side of (2.36). Then (2.22)-(2.24) and (2.36) imply

that
2.37) Plsup| —— >
(2.87) [ p{g(nx—xou)

We are going to estimate each of these sums separately. We have

Ya< ) exp{ _g(8i+1)2/28i2 +In N(xo§ ;11,6 eii)/G)}
i=0 i=0

xE?(xo;ﬁ)}>2]S Ya+ X b

=0 i=0

< Y exp{-g(8,,,)"/202 + H(8,,,, £°/12)}

i=0

< Y exp{—g(8,,1)"/202 + Hy(8,,,, "))
i=0

IA

Z exp{ _I(8i+1)/28i2 + H2(8i+1, 5/3)}
i=0

i exp{ —H,(8,,8,)"//68,_, + Hy(8,, 8;’/3)}

=1

= iexp{ ( H,y(3;, 1)1/2/681 1)

i=1

IA

x[1 - 68,_,( Hy(8,,37%8,) /Hy(8,, 8)')]}.
Note that (2.32) implies that
H,(5,,37%,)"""
Hy(3,,8,)""

S0 .
8;_,Hy(8;, 3_181’)1/2 < 188,H,(3,,8,)"
and the last expression converges uniformly in i to zero as § — 0. Consequently,

for 6 small,

Yo ¥ ew| - A(6,8)") < Lew(-na)) - X5

i=0

NH [~
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as § — 0. Next we consider the sum Y% ,b,. Note that for all j > 2,

. Hy(8,,,,2707 s, )% 27U~
A(]‘)_l—-pj*}\(l)=}\(l) 2( +1 - z+11)/2 _ 5
3Hy(8:,1,27'8;,,)

(2.38) |
H2(85+ ,27U7Ds; 1)1/2

> A(i) -
6H2(8i+1:2—18i+1)1‘

Using (2.38), we get for small §,

&9

b 1 . L\2
)y N(xo; 8iv1, 9, ’?)exp{— 5(?\‘}11 2 0)) }

j=2
> ; g(8i+1)2 H2(8i+1’2_(j_1)8i+1)
< H,(5,,,,3718,2-U-D) —
< JEzeXP{ 2( i+1 3 ) 728,2 H2(8i+1’2_18i+1)
i . g(8i+1)2 H2(8i+1’2_(j_1)8i+1)
9-U-D§ ) —
< Ef"p{Hz(‘*‘“’ 1) T T 8,8 )

> 1 Hy(8;,,,279796,,,) 1(8,,,)
< —
- exp 728,‘ H2(8i+1, 8i+ 1/2) 8i

Jj=2
H2(8i+1,8i+1/2)8i2:|}

1(8;,1)
s 1 H2(8i+1’2_(j_1)8i+1)

< exp{ —

=2 2168:’ H2(8i+1,8i+1/2)

J
H2(8i+1, 8i+1/2) }}
Hy(8,,1,8,.1)"% "

X[l—72

Hy(8;,1,8,,1)"°

X [1 — 216

Hy(8;11,8:.,)""

1 H2(8i+1’2_(j_1)8i+1)1/2
€ex -
P 2165; H2(8i+ 1’ 8;’+1/2)1/2

A
~.
it

Hy(8,,1,0,,./2)"* 8., \12
x[1—216 2851, 8ia/ 1)/2 8,-H2(8i+1,_+1) ]}
H2(8i+1’8i+1) ' 2

o 1\/(1 _ el 1
- — | - . —(U-Dg. —
~2exp{ [ LR (Si)

j=

IA

X [1 — 216 - 48,H,(3, 4, 8i+1)1/24]}.
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But 8H,y(8, )2 - 0 as § — 0. Consequently for smal! 8, uniformly over i,

3 N(3 8,41, 8, &57/6)exn{ —§(X2, = p2A(i))’)
Jj=2

X exp{ = (1/1728)(1/0)Hy(3,11,2705:01) ")
p-

IA

I/\

Zexp{ 2In|ln2-Y~15;, |}

IA

jf (- Din2) %= ¢ < oo,

independently of i. Consequently for small &,
0 0
Z b;<c) a,
i i=0

Thus X2 b, is finite for small § and I% b, = 0as 8§ — 0. Consequently, (2.20) is
proven and then (2.19) follows. O

The following two examples are taken from Dudley (1973).

ExamMpLE 2.1. Let {a,} be a sequence of positive numbers with 1 > a, | 0.
For k = 1,2,..., let €, be a cube of dimension %% and side 2a,/k? centered at
0. Let the cubes %, lie in orthogonal subspaces. Let ¥ = U%_,%,.

Consider the origin x, = 0. Letting a,l0 slowly, we can make
e2H(Cy(8), €) — 0 as slowly as desired; thus the integral (2.12) can diverge for all
8 > 0. Nevertheless, the isonormal process is continuous a.s. at x, = 0. We show
that Theorem 2.1 works here.

For every fixed & and e,

2a,

N(%,,¢) < max{( e ) ,1}

and for fixed 0 < §, < §,, ¢ > 0,
) 1 4q,\ %
(2.39) N(0; 8,,8,,¢) < N(%(Sl)c, 8/2) < kzl (—k—:) +1,
where
n(s) = max{k: a,/k > s}.

Define also A

m(s) == max{k: a,/k > s*/*}.
Both n(s) and m(s) increase to infinity as s | 0. We have

(2.40) H(s, t) < 1n[n§)(%)k + 1].

k=1
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We will show that
1/2

of [P0 [ 40, )\
2.41 li In e +1 dt=0
The obvious relations In(x +y) <In2x +In2y, x,y>1 and (x+ <
xV/2 + y'/2 yield that

(2 42) s " m(s) ( 4a, )k2 1/2 N
. < -
0 k=1 kt

© ta R 1/2
n(s a
+[{m Y —* dt + s(41n2)"”.
kt
Y k=m(s)+1

Denote by I, and I, the first and second integrals in the right-hand side of (2.42).
We are going to show that

lim I, —hmIZ—O

s—0
We have, for small s,
m(s) 1/2
2] +In2 d
hs '/(;{kzlk n( kt) ]} ‘

<s(m(s)1n2)1/2+f f)k[ln( :t )]1/2dt

m(s)

< s(maymey s kglkfos[ln —tl ]1/2

< s(m(s)n2)"”* + m(s)(mz(s) +1) 28[111(4_:1)]1/2

and this goes to zero as s — 0 because m(s) < a,s~ Y% Further, for every
m(s) < k < n(s),

4a,\¥ da,, | F/4an | tkanst
(7) ( kt )

< (el/e)4k.ak/t < (el/e)4ai/st < exp{

(2.43)

4a72n(s) +1
est |’
where the first inequality in (2.43) follows from the fact that

maxx'/* = e/®
x>0
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and the second inequality follows from the fact that a,/k > s. We conclude that

I s n 4ar2n(s)+l 1/2d

o sj(; n(s)exp p t

2.44

(2.44) < s[lnn(s)]"? + 2¢7V%a,,,,, 572 'ft‘l/z dt

= s[lnn(s)]"? + 4e72a,, 4 11

The first term in (2.44) converges to zero because n(s) < s 'a,,, while the
second term converges to zero because m(s)1 oo as s | 0. Therefore, the condi-
tions of Theorem 2.1 hold.

REMARK 2.3. Note that the GC property of € follows. We have just proved
that the isonormal process is continuous at x, = 0. Certainly, for any x, € ¢
other than the origin, for any sufficiently small § > 0 the metric entropy of
%(x,,d) is bounded by a logarithmic function of ¢, and so the integral (2.12) is
finite. In this example, consequently, we have proved that € is a GC class by
proving that the isonormal process is continuous at the (only) “difficult” point
x9=0.

EXAMPLE 2.2. Again, let {a,} be a sequence of positive numbers with a, | 0.
Let
€= {$a,(Inn)""* n=>2} U {0},

¢, orthonormal. Consider x,= 0. If a, |0 slowly (a, = (Inln k)~"'/2 is slow
enough), then the integral (2.12) diverges for all § > 0. Let us show that
Theorem 2.1 can be applied to this example as well. Set

M(s) = min{n: a2/In n < s?}.
Then, for any 0 < §, < §,, € > 0,

(2.45) N(0;8,,8,,¢) < M(8,) — M(8,) + 1.
This implies that

(2.46) Ny(8,,8,,¢) <2M(§,),

so that

(2.47) H(s,t) <In2 + In M(s).
Then

sz(s, )% dt < s[In2 + In M(s)]*?
0

and we have to show that
lim s%In M(s) = 0.

. s—0
But this is clear, since

2
Ap(s)—1 > g2
In(M(s) — 1) ’
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S0
M(s) < 2exp{s‘2aM(s)_1},
and also M(s)?1 o as s 0.

REMARK 2.4. Again, we have proved the GC property of €, since at any
point x, € % other than the origin the isonormal process cannot have a discon-
tinuity.

APPENDIX

Theorem 1.1 is proven here. The idea of the proof is the same as that of
Marcus and Shepp (1971) in the case of Gaussian processes on [0, 1].
Let €* be a countable dense subset of €. For any I C € and ¢ > 0, define

there is an r > 0 such that for every 8 > 0 there are
t,€ ¢* NI and ¢, € ¥* such that d(¢,,¢,) <8 and ).

A(I) = {w
[X(t) — X(t,)| =e+r

LEMMA A.l.
P(A(I))=0orl.

PrOOF. Let s,,s,,... be an enumeration of the points of ¥*. Then there
exists a sequence of orthonormal Gaussian variables Y, Y,,... and real numbers
{a;;}, i <J, such that for each i,

(A1) X(s,) = éai ¥,

Let a;; = 0 for j > i and let for ¢, ¢, € ¥*, i(1) and i(2) denote the places of ¢,
and ¢, correspondingly in the fixed enumeration of ¢*. Then

(A2) 02(t1’ ty) = E[X(tl) - X(t2)]2 = il(ai(l)j - ai(2)j)2'

Note that the covariance function of the process R(s,t) is continuous on
¥ X €, since X(t) is a.s. continuous at each point of ¥. Then the function
o%(s, t) is also continuous on € X ¥, and, because of compactness, it is uniformly
continuous. Consequently, for every 6 > 0 there is an n = n(6) > 0 such that
d(t,, t,) < m implies that o%(¢,, t,) < 62 If also ¢, t, € €*, then (A.2) implies
that |a,;,; — a;4);| < 0 for every j. Let us rewrite the event A(I) as

there is an r > 0 such that for every 6 > 0 there are

t,e€ €* NI and t, € ¥* such that d(¢,,¢,) <& and }.

IE2 Y (@)@ — Qi) 2 e+

We claim that A (I) is a tail event for the sequence Y, Y,, ... . It is sufficient to
show that if w, and w, are such that for some finite m, Y (w;) = Y,(w,) for all
n > m, then w, € A(I) implies w, € A(I).

A(I) = {w
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Suppose the contrary, i.e., w; € A(I) and w, & A(I). Then for some positive
r(w,), for all sufficiently small 8 > O there are ¢, € ¢* N I and ¢, € ¥* such
that d(¢,, t,) < 8, while

ey, = Gig);)| = e+ r(w,),

o0

E Y;‘(“’Z)(ai(l)j - ai(2)j)
j=1
[Here, as before, i(1) and i(2) denote the places of ¢, and ¢,, respectively, in the
fixed enumeration of €*.] We conclude (recall that all sums have finite numbers
of terms) that

<e+ ir(w).

0 0
3r(w,) < E Y}(‘*’l)(aia)j_ ai(z)J E wz)(aza), i(2)j)
Jj=1 Jj=1
‘ 0 0
(A.3) < '21 Yj(wl)(ai(l)j - ai(2)j) - ’21 Yj(“’z)(“«nj - ai(2)j)
j= Jj=
= E (Y("-’l) Y'(wz))(aia)j - ai(2)j) .
Jj=1

The inequality (A.3), however, cannot hold for all positive &, since its left-hand
side is positive, while the right-hand side goes to zero as 8 — 0. This contradic-
tion shows that A (I) is a tail event. Consequently, Kolmogorov’s zero—one law
implies that P(A(I))=0or 1. O

We return now to the proof of Theorem 1.1. For any I € € and & > 0 define

B(I) = for any 8 > O thereare ¢, € ¥* NI and t, € ¢*
)= 1 “|such that d(¢, ¢,) < 8 and |X(t,) — X(&,)| > ¢

Then B(I) € A, 5(I). If X(t) is not sample-continuous, then P(B(%)) > 0 for
some ¢ > 0. Then P(A(%¥)) >0 for some &* > 0. This implies that
P(A(%)) = 1.

Let d, = sup, , c¢d(t;, ¢;) < 0. The compactness of ¢ implies that we can
cover it by a finite number of compact sets O, €5V, , €5y of diameter at
most d,/2 each. Since

k(1)
(A4) A (%)= U A.(ED),

“we conclude, that for some (1), 1 <i(l) <k(1), P(AM¥Q)) > 0. Thus
P(A (%)) = 1. We divide now %} into compact subsets of diameter at most
d,/4, and so on. We obtain a sequence of nested compact nonempty sets

0 1) (2) .
C= ¢ > x> € >

with the following two properties: For each £ = 1,2,... P(A (%) =1 and
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the diameter of ¥, ~((’;?) is at most d,/2*. This sequence has to converge to a point

U

t,, € €. Then, by the definition of A (1),

P( limsup X(¢) — liminf X(t)ze*)zP(k Ae*(%i((’}e))))=1,

t—t,, te g tot,, te¥* =0

This contradicts the assumption that X(¢) is a.s. continuous at t.. This
contradiction shows that X(¢) is sample-continuous.

Acknowledgments. The author thanks Robert Adler and Stamatis
Cambanis for their valuable remarks. Moreover, the presentation has profited
very much from good refereeing.

Note added in proof. M. Talagrand has pointed out that the proof of
Theorem 2.1 can be simplified by using Borell’s inequality [C. Borell, The
Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975) 207-216]
instead of our inequality (2.5).
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