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ON THE UPPER BOUND FOR LARGE DEVIATIONS OF SUMS
OF LLD. RANDOM VECTORS

By M. SLABY

Case Western Reserve University

Let X;, X,,... be a sequence of i.i.d. random vectors with values in R<,
i =2(X,) and let A be the convex conjugate of log fi, where fi is the Laplace
transform of . For every d > 2, a probability measure y and an open set A
in R¥ are constructed so that

e S,
liminf —log Pl — € A] > —A(A),
n— oo n

where S, = X, + -+ +X,, and A(A) = inf, ¢ 4 A(x). It is also shown that if
u satisfies certain regularity conditions, then

1 S,
lim sup —log P(— eA) < —-A(A)
n— o n

holds for all Borel séts in R

1. Introduction. Throughout this paper, unless indicated otherwise, E will
denote a finite-dimensional Banach space. For every nonnegative finite Borel
measure u on E, fi will denote its Laplace transform, i.e.,

g(¢) = fe‘(") du(x), forée E*,

where E* is the space of all linear functionals on E.
We shall assume here that

(1.1) fi(§) < oo, for every ¢ in some neighborhood of 0 in E*.

The function logi: E* = [— o0, + 0] is convex and lower semicontinuous

(Ls.c.).
The Cramér transform A of p is defined as the convex conjugate of log f, i.e.,

Mx) = sup [(§, %) — log i(£)].
¢€E”

A is then convex and ls.c.
For every Borel set A in E denote

A(4) = inf A(x).

Let now X,, X,,... be a sequence of ii.d. random vectors with values in E,
P(X,)=p,andlet S, = X, + X, + - +X,.
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THEOREM 1.1. Under assumption (1.1),

1 S,
(i) lim inf —log P( —€ G) > —A(G), for every open set G,

n—oo

1 S,
(ii) lim sup ;log P( - € F ) < —A(F), for every closed set F.

n— oo

The one-dimensional version of the preceding is due to Cramér and Chernoff,
whereas the Banach space-valued case was proved by Donsker and Varadhan in
[6]. For proofs we refer to [1] or [5].

For any separable Banach space E, the upper bound, i.e., Theorem 1.1(ii),
holds for finite unions of open convex sets (see [1] or [3]); a larger class of sets is
considered in [5]. It is easy to show that in the one-dimensional case the upper
bound holds for all open sets. One way of seeing it is to observe that the problem
can be reduced to the case of open convex sets. On the other hand, Bahadur and
Zabell have shown in [3] that Theorem 1.1(ii) does not hold generally for open
sets in infinite-dimensional spaces.

Azencott and Ruget [2] and Bartfai [4] have given proofs of the upper bound
for any open set in R? It has been known for some time that both proofs are
incorrect and the question of the validity of the upper bound for open sets in R¢
remains open. (It is our understanding that this question was explicitly raised by
S. Zabell in the Workshop on Large Deviations, Institute for Mathematics and
Its Applications, University of Minnesota, November 1985.)

Since the lower bound holds for all open sets, the positive solution of this
problem would prove the convergence of

1 S,
zlog P( _nﬁ € A), for all open sets A.

In Section 2 we construct a probability measure u on R? with bounded
support and an open set A such that

lim inf —l—log P(i € A) > —A(A).
n— oo n

In fact, we show that for every separable Banach space E of dimension at least 2,
there is a probability measure p on E and an open set A such that the preceding
strict inequality holds; the measure p has the property that there exists an affine
subspace J of E of codimension 2 such that

p(J N convsuppp) > 0.

In Section 3 we show that if u is a probability measure on a finite-dimensional
space E satisfying (1.1) and there is no affine subspace / of codimension 2, such
that u(J N convsuppp) > 0, then the upper bound holds for every Borel set A.

In the remainder of this section we recall some known properties of convex
functions and especially of the Cramér transform A. Although the essential
definitions and results are given, we refer to [7] for more details on the subject.
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Convex functions in this paper are defined on subsets of E and take real
values as well as + . The effective domain of a convex function f is denoted by
dom f and is defined as follows:

dom f = {x|f(x) < o0}.

It follows immediately from the convexity of f, that dom f is a convex set. By E;
we denote the affine hull of dom f.
A convex function f is said to be proper if

(i) f(x) < oo for at least one x;

(ii) f(x) > — oo for every x.

A convex function that is not proper is improper.

We shall quote now three properties of convex functions from [7].

PRroPOSITION 1.1 ([7], Theorem 10.1). Let f be a convex function on E. f|, is
continuous for every relatively open convex set A in the effective domain of f. In
particular, f|, is continuous if A is the relative interior of dom f, i.e., A =
int El(dom ).

ProprosITION 1.2 ([7], Theorem 5.3). If G is a convex subset of E X R, then
df
o(u) = inf{v|(u, v) € G}
is a convex function on E.

ProrosiTiON 1.3 ([7], Corollary 12.1.2). Given any proper convex function f
on E*, there exists some b € E and B € R such that
f(u) > (u,b) — B, foreveryue E*.
Given a measure p, we denote by C the closed convex hull of the support of p,
ie.,
C = conv supp p4;

and we denote the affine hull of C by E,. If E, = E we say that p is a full
measure.
Then, under assumption (1.1), we have the following.

PROPOSITION 1.4 (See [1], [3] or [5]).
(1.2) domA=C,
(1.3) intg(dom A) = int5(C).
REMARK 1.1. By Propositions 1.1 and 1.4 Al () is continuous. On the

other hand, also by Proposition 1.4, A(x) = o for x ¢ C. Thus Al B, is continu-
ous except perhaps on J E,,C~
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REMARK 1.2. By taking ¢ = 0, one can check that
Mx) > —logpu(E), foreveryx € E.
On the other hand, if p # 0 and b = (1/p(E))/ydr(y), it follows from Jensen’s
inequality that
A(d) = —log u(E).
In particular, for a probability measure p, we have A(x) > 0 for every x and
A(b) = 0if and only if b = [ydu(y).

REMARK 1.3. It follows from Remark 1.2 and the convexity of A that A is
increasing on every ray with vertex b; that is,

A(t) EA(ta + (1 — t)b), wherea # b,
is an increasing function for ¢ > 0.

2. A counterexample concerning the upper bound for open sets.

THEOREM 2.1. There is a probability measure p. on R? with bounded support
and there is an open set A C R? such that

1 S,
lim inf —log P(—;" = A) > —A(A).

n— oo

The proof will follow from three lemmas. We start with the construction of p
and A.

The measure p. Let

0, if x < 0,
F(x) = {1/1og(1/x), if 0<x<l/e,
1, if 1/e < x.

Then F is a distribution function. Let v be the associated probability measure.
For x € [0,1/¢], define

v(x) = (x, %)
and
v=wppoy L
Finally, we define
p=pé,+qv, wherep,g>0,p+q=1.

The set A. For any a > 0, define
h(x) = a'loglog(1/x)
and

f(x) = x%n(x).
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Since lim, _, 5, h(x) = + o0, we have that x? < f(x) for small x.
For every t > 0, define

A= {(x,y)I0<y<f(x),0<x<t}.
A, is open for every £ > 0.
The set A will be chosen eventually to be A, for small enough ¢.
LEMMA 2.1. For every t positive,

1 S,
lim inf —log P(—n— € A,) >logp — a.

n— o0

Proor. Since

P(% € A,) = (pd, + qv)**(nA,)

Z(n ke w(n— e
=X (k)p”q" Fr*n=B(nd,) = np"~lqr(nA,),
k=0
we have

1 S, 1
lim inf —log P(—; S A,) > log p + liminf zlog v(nA,).

n—oo n— o0

Now

v(nd,) = V({(x, ¥)0 < % < f(%),o < % < t})

= VF({x e [0,1/¢e]n < h(%) x < m})

= vp({x|x < ne=¢"}),

for large enough n. Thus
an 1 —an
v(nA,) = F(ne ®") = m >e
and so
1
lim inf ;log v(nA,) = —a.
LEMMA 2.2. Let A be the Cramér transform of p. Then
liminf A(x, f(x)) = —log p + 2a.

x—0+

PrOOF. From the definition,
A%, f(x)) = sup [ux + of (x) — log(p + g¥(u, v))].

u,v
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It is hard to solve this extremal problem exactly, since #(u,v) cannot
be computed explicitly. In order to get a suitable lower bound, we try to
choose values of u# and v (depending on x) which, roughly speaking, make
ux + vf(x) constant and #(u, v) negligible for small x. Let u = u(x) = 28/x
and v = v(x) = —(B/f(x)). Then ux + vf(x) = B, and A(x, f(x)) =
B — log(p + q#(u, v)) for any x. Now to conclude the proof it is enough to show
for every 8 < 2a

lim (u(x), o(x)) =0,

where
i}(u(x)’ v(x)) = fl/eeu(x)t+v(x)t2 dF(t).
0

Let ¢(¢) = u(x)t + v(x)t2. Then ¢ is increasing on [0, —u(x)/2v(x)] and de-
creasing on [ —u(x)/2v(x),1/e];

B u(x)
Prax = P| — 2D(x)

) = o (xh(x)) = Bh(x)

and
o - 557 | - wCeane o,
For small x, 0 < x < 2xh(x) < 1/e.
Let

I(x) = [(e*® dF(2),
0
I(x) = [ Ter ar(),
I(x) = [ Ve o dR(t).
2xh(x)
Then #(u(x), v(x)) = I)(x) + I(x) + Iy(x).
I(x) < e“®*F(x) = e2fF(x),

hence lim, _, ,, I;(x) = 0.

1/e Bt

I(x) = exp| — ——(t — 2xh(x)) | dF(t),
5) = [ exp| =75 (¢ - 2500 | )
hence by Lebesgue’s dominated convergence theorem lim, _, ,, I(x) = 0.

I(x) < e®m=[F(2xh(x)) - F(x)],

but
F(2xh F(x) = : :
(@xh(2)) = F(2) = {75~ Togl/a
log2h(x)
= log2h )
(g1 - S|
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Thus
. log2h(x) 1
PR [ F(2xh(x)) — F(x)] = (log1/x)* 7% | _ log2h(x)
logl/x

Let w = log1/x. Then, for every 2 > 0 and s > 0,
log(% log w) . log(klogw) . klogw
m ——— = lim lim
w— 0 w? w— o0 klog w w—> 00 w?

Hence
log2h(x) log2h(x)
m ————— = log —————7~
x—0+ logl/x x—>o§+ (log1/x)*~#*

and therefore also lim, _, ,,I,(x) = 0. Summarizing, lim, , ,. #(u(x), v(x)) = 0
and so

=0, forp <2a,

liminf A(x, f(x)) > —log p + B, foreveryB < 2a. ]

x—0+

LEMMA 2.3. For small enough t,
A(A,) = infA(x, f(x)).
x<t

Proor. Let b= (b,, by) be the barycenter of p, i.e., b = [xdu(x). Then
b, > 0, b, > 0 and A(b) = 0, by Remark 1.2.
A(0) = sup[ —log(p + g#(u,v))] < —log p.
Thus, by Remark 1.3, for every 0 < x < b,

b

By Lemma 2.2, for small enough x,
AMx, f(x)) = —logp + a.
For t small enough, f(x) < (b,/b,)x and A(x, f(x)) > A(x,(by/b,)x) for every

0 < x < t. Now suppose there is y < f(x) such that A(x, f(x)) > A(x, y), where
0 < x < t. Then, for every 0 < s < 1,

b,
A x, —x| < A(0) < —log p.
1

b
A ) > 1= 90 2, | + (s, ),

1
which contradicts the convexity of A because
b

y < f(x) < 2x.
. b,
This proves that A(A,) > inf_ _ A(x, f(x)).
Since A, N {(x, )|y > x?} C int C for small enough ¢, by Remark 1.1,
A(4) = A(4,U (%, f(2)0 <% < 1)) < infA(, £(x)). 0
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PrOOF OF THEOREM 2.1. It follows from Lemma 2.2 that
lim inf A(x, f(x)) > —log p + 2a.

t—0+ 0<x<t
By Lemma 2.3, then
lim A(A,) > —logp + 2a.

t—>0+
Thus, for small enough ¢, A(A,) > —log p + 3/2a. On the other hand, by
Lemma 2.1,

1 S,
lim inf —log P(; € A,) >logp—a>logp—3/2a > —A(A,). O

n— oo

REMARK 2.1. The curve y(x) = (x, x%) is not essential in the construction of
Theorem 2.1. One could use other curves y(x) = (x, g(x)), where g(x) is convex,
increasing and g(0) =0, and then find an appropriate function f so that
lim, _, (»(nA,))/" exists and is positive. The essential part of the construc-
tion is the distribution function F; the key point in its use is the proof of
lim, _, ,,Iy(x) = 0 in Lemma 2.2.

REMARK 2.2. For every separable Banach space E with dim E > 1, there are
a probability measure p on E and an open set A such that

1 S,
lim inf —log P(;" € A) > —A(A);

n— o

u is such that pu(J N dC) > 0 for some affine subspace </ of codimension 2.

PRrROOF OF REMARK 2.2. If dim E = 2, then we have p and A from Theorem
2.1.

If dim E > 2, then we may assume without loss of generality that E = R? & F,
where F is a Banach space (any subspace of dimension 2 has a closed comple-
ment). Let p, and A, be as in Theorem 2.1 and let p, be a probability measure
on F such that [|x| dpy(x) < oo. Take p=p, X p, and A = A, X A,, where
A, is an open set in F such that convsupp p,C A,. Then fi(u, v) = i,(u) - fiy(v),
where u € R%, v € F*. Forany x € R? and y € F,

A%, y) = sup [(u, 2y + (v, y) — log(f(u) - Aix(x))]

u,v

= sup [(u, x) — log fiy(u) + (v, ¥) — logiy(v)]

u,v .
= sup [(u, x) — log i,(u)] + sup [(v, ¥) — logfiy(v)].
u i v
Thus
}\p,(x, y) = Ap,l(x) + A[l.z(y)'
Let X, = (Y, Z2,), Z(Y,)=p, LZ)=p, so that L(X,)=p. Let S, =
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?_ ,X;. Then
Sa LiY; XisiZ
Pl—e€A|=P|——,—— | €A, XA,
n n n
L, v,z
=P EA |Pl— €A,
n n
LY
=P €A, |
n
Thus

P 1 Sn ) 1 ?=1Y;
lim inf —logP(;— GA) = liminf —log P - EAI) > —A,(A).

n—oo n— o

But
= 1 = . . +
A(A) (x,lgfeAA(x, y) jnf inf [A,(x) + A, ()]
=A,(A) + A, (A).
By Remark 1.2, A,(A,) =0 because A, contains the barycenter of p,. Thus
A(A) = A, (A) and so

1 S,
lim inf —logP(—r—l- € A) > —A(A). m

n—o

3. Upper bound for probability measures satisfying certain regularity
conditions. As it was pointed out in Section 1, there are known upper bound
results for a restricted class of sets. The following theorem gives the upper bound
for all Borel sets but with a restriction on the measure.

THEOREM 3.1. Let p = L (X,) satisfy the following conditions:

(1) () < oo for all & in a neighborhood of 0 in E*.
(ii) There is no affine subspace J of E, of codimension 2 such that

u(JN3gC) >o0.
Then, for every Borel set A in E,
1 S,
lim sup ;log P(;"— € A) < —A(A).

n—o

Assumption (ii) is not necessary; however, in view of Remark 2.2, it is not
superfluous and provides what appears to be the simplest hypothesis, which rules
out the cases described in the remark. The proof will follow from the upper
bound for closed sets [Theorem 1.1(ii)] and three lemmas.

REMARK 3.1. (a) Let a € E and T,: E — E be defined by T,(x) = x + a. If
pe=mp°T;', C, = convsuppp, and A, is the Cramér transform of p,, then, for
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every x in E,
A(x+ a) =Ax)
and
C,=C+a.
(b) Let f be alinear 1-1 function from E to another finite-dimensional space
F.If py=po f~', C;= convsuppp, and ), is the Cramér transform of u,, then,
for every x € E,

Ap(f(x)) = Ax)
and
C = f(C).

LEMMA 3.1. Let p be a full probability measure on E such that fi is finite in a
neighborhood of 0 and there is no affine subspace J of codimension 2 such that
p(J N 3C) > 0. Then A|y is continuous for every supporting hyperplane H of C.

ProoF. Let H be a supporting hyperplane of C and let a € H. By the ls.c.

of A,
AMa) < liminfA(x) < liminf AJg,(x).

x—a x—a,x€H

Thus if a is a point of discontinuity of A|g, then A(a) < co.
Now
H =inty(domA N H) U (H\ domA) U dy(dom A N H).
By Proposition 1.1, A|y is continuous in int ;(dom A N H). For a € H \ dom A,
A(a) = oo, hence A|y is also trivially continuous in H \ dom A. It is enough
then to show that
AMa) = o, foreverya € dy(domA N H).

Let then a € dy(domA N H) and let J be a supporting hyperplane of
dom A N H at a in H. By Remark 3.1, we can assume without loss of generality
that E = X @ R?, where X is a finite-dimensional Banach space such that

dim X = dim E — 2.

We can also assume that a =0 =(0,0,0), H=X XR X {0}, J =X X
{0,0)}, Cc {(x,y,2)lx€ X, yeER, 2>0} and HNdomA C {(x, y, 2)|x €
X, y>0, z=0}). Then E* = X* ® R% For any x € X, let A = (x, —1,0). Then
h € H \ dom A; hence A(h) = o0 and so )

NB)= s [(u,x)— o logi(u, v,w)] = o.
(u,v,w)edom fi )
Suppose now that A(a) = A(0) < oo, i.e,
A0) = sup [—logi(u, v, w)] < oo.
u,v,w
Then, for every x € X, there is a sequence £, = (u,, v,, w,) such that
(*) (¢,) cdomji and lim (u,,x) —v,) = + .
n— oo
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Let
G = {(u,v) € X* X R|i(u, v,w) < oo for some w}.
Then: (1) G is convex. (2) There is a u, such that (u,, v) € G for arbitrarily
large negative v.
(1) follows from the convexity of fi.
To prove (2) we define
¢(u) = inf{v|(u,v) € G}.

By Proposition 1.2, ¢ is a convex function. Now it is enough to show that there
is u, such that ¢(u,) = — 0. Since G contains a neighborhood of 0, p(u) < + o0
in a neighborhood of 0. Therefore, it is enough to show that ¢ is not a proper
convex function.

Suppose that ¢ is a proper convex function. By Proposition 1.3, there is
x € X and B € R such that, for every u € X*, ¢p(u) = (u, x) — B. Hence, for
every (u, v) € G,

(u,2) —v < (u,x) —p(u) < B,

which contradicts (*).

Therefore, ¢ must be improper and so (2) is proved. Now

e O = inf fi(u,v,w)
u,v,w

= inf [fe<"”‘>du(x, y,2)+f el dy(x, y, 2)
J HN\J

u,v,w

+f e(u,x)+oy+wz d”(x, ¥, Z) .
E\NH
Take u = u,. Then (u,, v) € G for arbitrarily large negative v and
lim et ® oy dy(x, y,2) =0,
v—=> —00 YHNJ

by Lebesgue’s dominated convergence theorem.
Let ¢ > 0 and v, € R be such that (u,, v)) € G and

f et )00 gy(x, y,2) <e.
HNJ

By the definition of G, there is w, € R such that fi(u,, vy, wy) < 0o0. Again, by
Lebesgue’s dominated convergence theorem,

lim e(to®)Fooytwz gu(x vy 2) =0.
w— -0 YE\NH .
Finally, by the assumption,
p()=p(JNnC)=w(JNHNC)=p(dNaIC) =0,

hence

/e”x dp(x, y,2z) =0.
J
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Thus, for every ¢ > 0, e M® < ¢, and, therefore,
A(a) = A(0) = 0.

This contradicts our initial assumption that A(a) < co. Thus A(a) = o for
every a € dy(dom A N H), as claimed. O

LEMMA 3.2.  If there is no affine subspace J of codimension 2 in E, such that
w(J N 8E“C) > 0, then A|; is continuous.

Proor. By Remark 3.1, we can assume that E = E, . By Proposition 1.1, Al
is continuous on Int C. Let a € dC and let H be a supporting hyperplane of C
at a. Let b= [xdp. Then b & H. Let P be the stereographic projection from
the barycenter b onto H. P is defined on the open halfspace L such that
dL=H+b—-aand HC L.

For every x € L, P(x)=h if h€e H and h—be {{(x - b)|teR}. P is
continuous on L. For every x€ CNL, Px=tx—b)+ b with t>1. By
Remark 1.3,

A(P(x)) > A(x), foreveryxe CN L.

Let (x,) € C be such that lim, , x, = a. We can assume that (x,) € C N L.
Then

limsup A(x,) < lim A(P(x,)) =A(a),

n— oo

by the continuity of P and Lemma 3.1.
Since also A(a) < liminf, ,  A(x,) by the Ls.c. of A, it follows that

lim A(x,) = A(a). O

COROLLARY 3.1. Under the assumption of Lemma 3.3, for every A C C,
A(A) = A(A).

PROOF. Let a € A and let (x,) be a sequence in A such that lim, _, x, = a.
By the continuity of A|s, lim,, ,  A(x,) = A(a) and hence

AMa) > ;ggk(x) = A(A). O

PRrROOF OF THEOREM 3.1. Let A be any Borel set in E. Then A = (AN C) U
(ANC).

1 S, . 1 S, P
lim sup —log P(—— EA) = limsup —logP(—— EAN C) < —A(A N C),
n-ow N n noo N n

by Theorem 1.1(ii). .
‘By Corollary 3.1, A(A N C) = A(A N C) = A(A). Therefore

1 S,
lim sup ;logP(;" EA) < —A(A). i

n— oo
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CoRrOLLARY 32. If X, X,,... is a sequence of i.i.d. random vectors in R?
and p = £(X,) has no atoms on the boundary of C = convsupp p, then

S,
lim sup —log P(— € A) —A(A), foranyBorelsetA.

n-— oo
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