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LARGE DEVIATIONS FOR NONINTERACTING INFINITE
PARTICLE SYSTEMS

By TzoNG-Yow LEE
Princeton University

We consider noninteracting infinite particles, each of which follows a
diffusion with generator L = (D? + D)/2. The presence of many invariant
distributions makes the situation radically different from the more familiar
case where strong ergodicity assumptions are made. Explicit large deviation
rates for the empirical density are obtained. The dependence of the rates on
the initial distribution is strong and can be seen clearly. Some variational
formulas for the scattering data associated with L are also obtained.

Introduction. Cox and Griffeath (1984) considered independent simple
d-dimensional continuous time random walks with mean 1 holding times and
distributed according to i.i.d. Poisson variables with intensity § initially. A large
deviation principle with explicit rates for the occupation times was proved. They
also found that the large deviation probability is larger than exponential decay
when each individual particle is recurrent and is the usual exponential decay
when each particle is transient. In this paper we consider Brownian motion with
constant drift instead of random walks on Z¢ with d > 3 (both are transient)
and prove a large deviation principle for the empirical density measure D, , [see
(E.D.) for definition] which can imply occupation time large deviations using the
contraction principle [see, e.g., Varadhan (1984)]. Our rate functional also has
explicit formulas and reveals an intimate connection between large deviations
and potential theory. More precisely, L = (D? + D)/2 is the diffusion generator
of a single particle in our noninteracting system. We now introduce some
notation. Let T, (E,, resp.) be the probability distribution (expectation, resp.) of
a single particle starting from x and let o, (¢ _,) be the hitting time of x = I (=1,
resp.). Throughout this paper, X = {x;} stands for a point configuration; w =
{w;(s)} stands for trajectory of a configuration. We denote by p, = p,,, the
Poisson field with intensity A(x)dx and by P, , (Px, resp.) the probability
distribution of our particle system with initial distribution p,, = p,. 4 (8x,
resp.). Our main result is a large deviation principle for the empirical density D, ,
which is defined by

(ED) D, (K)=t"[Txx(ofs))ds formeasurable K c R.
- 0

D, ,, is regarded as an element in M(R) = {nonnegative o-finite measures on R}
on which we impose the weak topology # induced by continuous functions with
compact support.
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To see that P, , is stationary, it suffices to show that
EPa-b{HG(wi(t))} = exp {/[G(x) — 1](a + be*) dx} for G(x) > 0

with G(x) — 1 € Cy(R). This can be computed from the fact that the left-hand
side equals E*«o{T] . xR(t, x)} where R(t,x)= E{G(w(t))} satisfies R, =
L(R” + R’) with R(0, x) = G(x).

It is easy to check that P, , is ergodic and that D, , converges to (a + be*) dx
in the Z-topology for a.e. w. We are interested in the exponential decay rate
of P, (D, , € B}, where B is a subset of M(R). Let k(A) be lim,_, _ A(x).
In our approach to lower bound estimates, P, , is compared with another
ergodic system @, which is the noninteracting system with generator
L, =[D? + (k(\) + \)/AD]/2 and initial distribution p, [see, e.g., Donsker
and Varadhan (1975)].

We shall study P, , in Section 1 and Py in Section 2.

1. Large deviation rates for D, , under P, ,. Our main result is an
explicit formula for the rate function. Theorem 1.1 gives a lower bound. Theorem
1.2 estimates the cumulant generating function in terms of the scattering data
[functionals of the potential V()] and yields an upper bound. Theorem 1.3
proves the equivalence of upper and lower bounds. Theorem 1.4 characterizes the
scattering data in the spirit of the classical variational formula of the maximal
eigenvalue. Before giving the proofs we first introduce some notation and state

the theorems. Some of the notation will be used in Section 2.
We define sets of functions on R:

Fy,=Fy,= {}\(x): A is absolute continuous (a.c.), nonnegative,
AM(x) ~0asx - —oo, AM(x) ~ be* as x > oo and

f[(x ~A)%/8A] ax < oo},

F ,=F,u {A(x): A is a.c., nonnegative, A(x) ~ k(\) + be*
for some positive k(A ) depending on A as |x| = oo
and [[(X + B(A) —N)Y/8A] dx < oo},
and for a > 0,

F),= {)\(x): ) is a.c., nonnegative, A(x) ~ a + be* as |x| & oo

and [[(X +a - A)?/8M] dx < oo}.

Note that F, , = F, , UU,. oF, ;.
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THEOREM 1.1. If G is #-open and a > 0, then
liminft~'log P, ,{D, , € G}

t— o0
(1) )
> ‘Aeé‘}fn,_bf[(” —A)%/8M] dx,
liminf¢~"log P, ,{D,, € G}
t— o0
—  inf N+ k(A) = A)%/8A| dx
@ > -t { [l e vy

+[a+ k() log (E(A)/a) — k(k)]/2}.

Let V(x) be continuously differentiable with compact support and
u(t,x) =u(v,t,x) = Ex{ exp ftV(w(s)) ds}
0

The Feynman-Kac formula asserts that u(¢, x) satisfies u, = (u,, + v,)/2 + Vu
and u(0, x) = 1. The cumulant generating function of D, , is a key ingredient in
our upper estimate:

log EPa,b{exp t/V(x)Dt’w(dx)} = log E"a-b{ IT E{exp ftV}
xeX 0

(C.GF.) = log E"{ TT u(e, x)}

= /[u(t,x) - 1](a + be*) dx,

where the last equality is a well-known formula for the Poisson point distribu-
tion. When we study the linear growth of (C.G.F.) in Theorem 2, the following
subjects arise naturally:

g(x) =g(V,x) = Ex{ exp wa(w(S)) dS} = lim u(t, x),
0 t— 00
which exists when V € A,
A = {V € C}(R): There are positive g(x) and two constants a(V') and B(V)
such that $(g” + g') + Vg =0, g(x) = a(V) forx < inf{y: V(y) + 0}
and g(x) =1+ B(V)e * forx > sup{y: V(y) + 0} }.

From the probabilistic representation of g(x), it is easy to see that A is convex
and contains all nonpositive V(x). The existence of positive U(x) € A will be
shown in (38). The scattering data a(V) and B(V) will appear in Theorem 1.2
and have some variational formula in Theorem 1.4.

We now state Theorems 1.2, 1.3 and 1.4.
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THEOREM 1.2. If V€ A and 0 € R, then

(3) lim ¢ [[u'(V, £,2) = 1] @x = [o"(V) - 1] 2,
(4) lim t—lf[u"(v, t,x) — 1]e*dx = 08(V)/2,

lim ¢! log Eﬂ,b{ exp [[O‘Z V(w(s)) ds]}

(5) =
= (a/2)[«(V) — 1] + (b/2)B(V),
(6) limsup¢ 'log P, ,{D,,€ C} < — in%la, o(7),
t— o0 re

for all M-closed subsets C, where

I, (7) = supy o [Vr(ds) = [a(a(V) = 1) + BA(V)] /2).

THEOREM 13. If a> 0 and F, , F, , are defined as in Theorem 1.1, then

JIov =1y /8n] dx,
(7) IO,b(T) = fO"T(dx) =}\(x)dxwzth)\ EF;)’b,
+ 00, otherwise,

f[(}« + k() — A)%/8)] dx

(8) I, (1) = +[a + k(X)log (k(N)/a) — k(N)] /2,
for 7(dx) = AM(x) dx with A € F, ,
+ 00, otherwise.

THEOREM 14. If Ve A, a >0, then

lim ¢~ 'log EPO-b{exp fotzi: V(w;(s)) ds}

(9) t— o0
_ xilg,),b{fw — [ =r)/8A] dx},
zlln:o t~'log EPa,b{expj:Z V(w;(s)) dS}
(10) - ap {fVA — [V + R(A) = 2)?/8A] ax
AeR,,

—[a + &(A)log (k(A)/a) — k(>\)]/2},
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and (9) and (10) are equivalent to a result in differential equations:

an Jim ¢! j [w(V, t,x) — 1)(a + be*) dx = {a[a(V) — 1] + BB(V)} /2

= sup {/V)\dx—la,b()\)>.
AeF,,

1.1. Lower bound ( Proof of Theorem 1.1). Lemmas 1.5 and 1.6 are needed in
the proof of Theorem 1.1.

LEMMA 15. For a,b >0, there exists a countable dense subset B, , of
M(R) in the A topology, with properties

A€ B, ,= (N +a)/AeL®(R),

(12)
h(Ba, b5 12) = [Nlog [A/(a + be*)] + (a + be* — \) dx < oo,

(13) Baf?ﬁaj[(x' +a—\)?/8\] dx = Fg?{fmf[(x +a—2)%/8M] dx

for all M#-open subsets G.

PROOF. Consider on 2, = {A\: A € C(—n,n],R*), A is a.c. and N\’ € L?)
the Sobolev H! norm Wthh makes =, separable. Denote B, as a countable dense
set of =, and B, as

B,={X: A€ B,} where A(x) is defined as
a+ [A(—n) — a]e**n, x< —n,
y AMx), x| < n,
M) = [b1/2 (X*(n)e "% - bl/2)e_(""”)]2, x> n,when b # 0,
a+ [A(n) — ale =", x> n,when b=0.

Also define B, , = UPB,. It can be checked that (12) holds and also that B, is
dense in 2,. Because UP°Z,, is dense in F,, B, , is now dense in F,, with
respect to the H'-norm. For (13), it suffices to prove for an arbitrary g(x) EF/,
and ¢ > 0, the existence of n and ¢(x) € B such that

(14) U[(¢+a—q>)/8q>—(£'+a—£)/8£]dx]<e.
To do this we first choose large n such that

(15) flx|>n(g' +a—§)?/8tdx <e/3
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and that

(16) [ (&+a-§)/sfde<ess,

[x|>n

where the relation between £ and £ is given in the definition of B Since B is
dense in =, there exists ¢ € B, such that

a7)

[, € +a-67/8e— (6 +a-9)'/ss] de| <esa.

Also it follows from (16) and the continuity of ¢ (+n) with respect to the H*
norm that we can pick ¢ such that

(18) jl R [(¢' + a — )2/8¢] dx < e/3.
(15), (17) and (18) now imply (14). O

Some notation is needed to state Lemma 1.6.
We define D, , , and D, ,, , by

Du(K) =t [ % xp(ws)) ds

0 w(0)e[~1/2,0]

and

DudK) =t [0 T xe(es))ds
0 w0 e[—t/2,0]°

Note that D, ,= D, ,, + D, , ». Also denote by F, the Borel field generated by
{w(s)I0<s s t} and by G, the Borel field generated by {w;(s)|w;(0) € [—t/2,0],
0<s<t}.

Define B()\ V,8) = {r € M(R): |[V(x)[7(dx) — A dx]| < 8} and note that
{N*B(A, V;,8): V;€ A, 8 >0, m € N} forms a basis of the open sets contain-
ing A.

» Vis
LEMMA 1.6. Let A € B, ,. We have

(19) lim 7"log dP},o/dP,,ol, = [a + klog(k/a) — k] /2

for a.e. w with respect to @, and also in L'(Q,) [Q, = @, with \(x) = k],

(20) lim ¢~ log dQu/dPyxyolr, = [[N + k(A) — A]*/8M dx

for a.e. w with respect to @, and also in LX(Q)).

(21) For any § > 0, tlim Pa,O{Dt,w,2 e NB(o,V, 8)} =
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and

(22) forany8>0,  lim QA{Dt,w,z < NB(o, V,-,s)} =1
t— o0 1

and therefore

lim QA{DM,,I S ﬂB(?\,V},&)} =1.
t— o0 1

Proor. We first prove (19). Since P, , and P, , have the same e%zolution, it
follows that

(dpk,o/dPa,O)lG, = d”'k, /dﬂa, t

where g, , (i, resp.) is the Poisson field on [—¢/2,0] with intensity . (a,
resp.).
The ergodicity of the Poisson field implies that

1
lim ¢7" log dpy, o/dpa,e = f [log diy, /AR, e| db, e

t— o0
=[a+klogk/a—k]/2
fora.e. X wr.t. p, and in L'(p,)

[therefore a.e. @ w.r.t. @, and LY(Q,)], where the last equality is a straightfor-
ward computation. This proves (19). For (20), it follows also from the ergodicity
of @, that, for a.e. @ wrt. @, and in LY(Q,),

lim ¢7'10g dQs/dPya ol = ¢ [[108 dQu/dPica o] 4R

= /()« + k(N) — 1)?/8A dx,

where we use the Cameron—Martin—Girsanov formula to establish the last
equality.

Formula (21) amounts to showing that, for every V € C(—1 1) and every
§d>0,

(23) lim P, oD, ., < B%0,V,8)} =0.
To show this let m(x) = E,{/{|V|(w(s)) ds} which is less than some constant
N due to transience and divide, for ¢ > 0, [ —£/2,0]° into three parts:
A, =(—o0,— (I + et +t/2)],
B,=(—(l+et+t/2),—t/2) U [0,et]
and (é&t, o).
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We have that
E%{t[|VID, . o d0))

(24) =E “-o{fo “’i(O)eEt/2,0]c|V|(wi(s)) ds}
- '/[-—t/Q’O]cm(x) -adx

o0
< [N -To_,<t) adc+ [ N-ade+ [ NT{o,< t}ads.
A, B, et
The following inequalities are crucial and will be used several times in this

paper:
I{o_,<t} < Prob{maxB(s) > —1l—-t/2 - x}
s<t

(25) — 2Prob {B(t) > -1 — t/2 — x}
for -I—-t/2-x>0
and
T {0, <t} < Prob{ max B(s) >x —1
(26) { : } {OSsst }

2Prob {B(t) >x — 1} forx > 1,

where B(s) is standard Brownian motion (B.M.). Both inequalities follow easily
from path transformation and the equalities at the end are well known.

It now follows from (24), (25), (26) and the Chebychev inequality that

limsup P, (D, , € B%(0,V,8)} < lim aN(I + 2¢t)/t§ = 2aNe/3.
t— o0 ' Y t—oo

Letting ¢ tend to 0, we obtain (23).

To prove (22), we modify the argument used for (21). Let ¢’ = (1 — ¢/10)¢ and
let I'/(E/, 0’) stand for the probability distribution (expectation, stopping time,
resp.) of a diffusion generated by [D? + (A + a)/A]/2; then we have

EPA{tf|V|D,,w,2(dx)}

-EA{[0 T Wle(s)as)

¥ w0)e[-1t/2,01°

(27) BR[0T (as)as)

0 w©el-1t/2,00

= EP"{/:ZW|} + f_tﬂ—dm(x))\(x) dx + j:m(x)}\dx

— 00

+[f“/2 + [“m(x)h d|,

—t/2—¢t 0
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where m(x) = E}{ [°|V(w(s))|ds} < N < oo for some N. Since —t/2 — ¢t <
—t'/2 — et’ — (¢/20)t and et = et’ + (e2/10)t, it follows that m(x) <
NT{o’_ (o 20 < t'} for x < —t/2 — et and that m(x) < NI}{0(2 1 < ¢’} for
x > et. Note that these estimates for m(x) involve only x € (— o0, —(g/20)t) U
((¢2/10)t, o), where |(\’ + a)/A — 1| can be made arbitrarily small by choosing
large t. Thus, we can modify inequalities (25) and (26) and prove that the second
and third terms in (27) are bounded for large ¢. From the fact that p, is an
invariant distribution, it follows that the first term in (27) is less than
(e/10)tf|V(x)|A dx. (22) can now be proved by the Chebychev inequality and by
letting ¢ — 0 as in the proof of (21). O

Proor oF THEOREM 1.1. (1) is proved by a standard entropy argument. For
A € F, , with X’/A € L*(R), the Cameron-Martin-Girsanov formula gives

log dQs/dPo,sls, = [ T (X/2\ ~ })(ei(s))[de; ~ } s]
- [L‘Z(Nm — 1) (wi(s)) ds |2
- /otz.("' = N)/2M(w;(s))[de — X' /2N dx ]

t
+ [ZLO = 2)/22]%(w(s)) ds/2.
The ergodic theorem then implies
(28) lim ¢ 'log dQ,/dP), 4/, = / (N = \)?/8A dx,
t— o0

a.e. w with respect to @, and also in L(@,).
In view of

k
lim Q,\{Dt,w e NB(A, V},S)} =1,
t— o0 1

Jensen’s inequality and (18) imply that

k
mininf ¢ 'log P, ,,{D,,w e NB(A,V, 8)} > - [(N = \)’/8Ndx.
1

t— o0

Since this holds for all A € F,, ,, A’/ € L*(R), V; and §, a simple argument
shows that, for all .#-open G,

liminft~'log P, ,{D, , € G}

t— o0
> —  inf f(;v — \)2/8\ dx.
AeF, ,nG
N/AeL™(R)

(1) now follows from Lemma 1.5.
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We prove (2) only for the case when b = 0 because the argument extends

easily to the other cases.
The reason for considering D, ,, and D, , , is that H(P, ,; @,) = oo when
k(M) # a. The following modified entropy argument is made possible by Lemma

1.6:

l
liminf ¢ log Pa,o{D,,w € NB(A,V;, 8)}
1

t— o0

l
> liminft‘lPa’O{Dt,w’l € NB(A,V;, 8/2)}
1

t— o0

1
+ liminf ¢ 'log P,J,(,{Dt’m’2 € NB(0,V, 8/2)}
1

t— o0

> lim — t‘l[log dQ,/dPy,0

t— o0 D, ,1€NIB(X,V;,8/2) )
+10g dPyr),0/ AP, 0] g, dQx + 0.
In view of Lemmas 1.5 and 1.6, (2) holds and Theorem 1.1 is proved. O

1.2. Upper bound (Proof of Theorem 12). First note that, for V€ A,
lim,, w(V,t,x)=g(V,x)and 8§ < u(V,t x) < N for all x, ¢ and some posi-

tive 8, N.
We divide R into four regions according to ¢, € and [—1, /], the support of V:

A==, ~1~ (3 +e)],
B=(-1-(1+e)t,~1— (3 —e)t],
C,=(-1-(t—¢)t,—1] and (—I,);

o[l -da= ([0 [0 [0 (1)

=1I(e, t) + Iy(e, t) + Iy(e, t) + I(e, t).
We shall estimate lim, _, ,I;(e, t), j = 1,2,3,4, separately and let £ — 0 in the
end. We write 6;,,0_,as 0,0_.
A useful representation of u is

u(t,x) = Ex{expfOtV(w(s)) ds; 6_< t} + T {o_> t}

(29) - BB fow [ Vi st]} + o> )

=E{u(t—o_,—1);0_<t} + T {o_>t}.
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Thus, we have u(t,x) < NI {o_<t} + I'{o_> t} and
(30) u’(t,x)—1<[1+(N-1)T{o_<t}]°—1< const.T,{o_< ¢}.

It now follows from (25) and (30) that lim,_,  I;(¢, ¢) = 0.
For I,(e, t), it follows from the existence of N: N > u(t,x) > N~! that

2¢(N'®! + 1) > limsup I, > liminfI, > —2¢(N"! + 1).

t— o0 t—>o0
I (&, t) is the contributing part. We first rewrite (29) as
u(t,x) =Tf{o_ >t} +Efu(t—0o_,-1); (1 —e)t<o_<t}
+E{u(t—0o_,-1); 0_< (1 —&)t}.
A crucial estimate is
[{o_> (1 -¢e)t} <T{w((1-¢)t)< -1}

(31)

(32) < Prob{B((l —e)t) < ;28“} =0

as t — oo, where B(s) is standard B.M. From this we see that the first two terms
of (29) tend to 0 as ¢ — oo uniformly for x € C,.
Since, for any ¢ > 0,

lim inf u(V,s, —1) < Ef{u(t —o_,—1); o_< (1 — &)t}

t—>o00 s>¢t

< lim supu(V,s, 1),

>0 g ¢

it then follows from (31) and (32) that
lim I(e, t) = [a®(V) — 1] (2 - ¢).
t— 0
On (1, ), we have T'{0,< t} < T {0,< 0} = e *D and
u(t,x) =Tfo,> ¢t} + E{u(t—0,,1);0,<t}.

The uniform integrability of u® — 1 on [—1, c0) then follows from u(t,x) < N
and implies that

lim I,(e, t) = 0.
t— o0

Adding the preceding four estimates and letting ¢ — 0, (3) is proved. Now we
prove (4).

Because lim,_, t"Y? [u%(V, t,x) — 1]e* dx = 0 for any y € R, we focus on
integration of [u® — 1]e* on [y, ) with y > L .

The following lemma is crucial in proving (4).

LEMMA 1.7. If V€ A, then
(33) tlirn u(V,t,x) =g(V,x)
—
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and
o0
lim f =%V, t,x)u(V,t, x)e* dx

t— o0 y
(34) = [Tg" 2V, x)(g) e de
¥
forally € R such that V(x) = 0 forallx > y.

Proor. To derive (33), we use an integral representation,

(35) u (V. t,2) = [p1, % y)u(V,t -1, ) dy,

where p(l, x, y) is a smooth kernel and |p,(1, x, y)| < cl(:yc)e‘cz(")y2 for some
positive c,(x), cy(x) because V is smooth and compactly supported.

Let ¢ tend to oo, (33) follows from (35) and the dominated convergence
theorem.

Formula (34) amounts to showing that u%(V, ¢, x)e* < f(x) for some f e
L'(y, o). Notice that {(t, x) = u(¢, x) satisfies

= +8)/2, $0,x)=0, for x>y, t>0;
f(t, y) = ux(t: y)’
and therefore
(36) u(t,%) = Tifo, < 1) - u(t, 9).
Th(e lsgnma then follows from (33) and the fact that T{o, <t} <Tfo, < 0} =
e *72) O

We now prove (4). Notice, from (26) and (36), that (z® — 1)e* is integrable on
[y, ©) and that lim,_  u.e* = 0. From the fact that u,¢ x) =
E{V(w())[{V(w(s))ds} and from (26), it also follows that [yu.e*dx < oo.
Thus,

lim t‘lfoo[uo —1]e*dx = lim wauo‘lu,exdx
y

t— o0 tooovdy

=0/2 lim foouo‘l(uxx +u,)e*dx
Yy

t— o0

=0/2 lim fwuo‘l(uxex)xdx
y

t— o0
= 0/2 lim u*~X(V, ¢, y)B(V)
t— o0
—(6 - l)fwu”‘zuﬁex dx,
y
where the last equality is an integration by parts. Since y is arbitrary, we let y

tend to oo and (4) is proved.
Recalling from (C.G.F.), we see that (5) follows from § = 1 of (3) and (4).
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By a standard method for upper bound estimates [e.g., see Donsker and
Varadhan (1975)], (6) holds for compact subsets and also holds for closed subsets
if P, , has the property: There exist compact subsets K y such that

(37) hm limsupt 'log P, {D, , € K§} = —oo.

N-ow (s

We shall establish (6) by proving (37). Take a nonnegative U(x) such that
a(U) < o0, B(U) < 0. For example, computation shows, for U = x;_, ¢;/8, that
a(U) = e'/%- 4 and B(U) = 1. It then follows that

(38) V(z) = [U(x - 2)(@7) e /2 dz > 0
and that
Ky= {o: [V(x)o(ds) < N}

is A-compact. Also from the convexity of a(:), B(-) and the fact that
a(U(x — 2)) = a(U), B(U(x — 2)) = e?B(U ), we have

limsup ¢~ log E b{expf ZV(w (s)) ds}

t— o0

ala(V) — 1] + BB8(V)

(39) - .
. U)—-1] + be’B(U
< f(277)_1/2e_z /2 a[a( ) ] B( ) dZ <
2
Since, by Chebychev’s inequality
limsupt~'log P, ,{D, ., € K§}
t— 0
< limsupt~'log E = b{expf ZV(w (s)) ds}
t— o0

P, , satisfies property (37). Therefore (6) holds. Theorem 1.2 is completely
proved. O

1.3. Equivalence of lower and upper bounds (Proof of Theorem 1.3). We
shall first consider the case when 7(dx) has some regularity properties. These
restrictions will be removed at the end. Let us suppose that 7(dx) has a density
}\( ) Which is smooth and positive (strictly positive for I, , with a > 0). Suppose

I, §(A) = I, 4(7) < oo; we now start proving that A € E,b

Using convexity we can find an ¢ > 0 and a positive V, with V(x) > ee~2* for
x > 0 such that B(V) < . It then follows that [e™2*A dx < co. Because
B(X[-c0/8) = ¢/(c +4) <1 for c > 0, we also have that

(40) X must satisfy [ ® Ndx < .
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If we define & = log g(V, x) and integrate by parts, we have
sup [ Jvnax - bB(V)/Z]
1%

>27'sup sup f— [h" + (K + h’])\dx
I weCe(-1,1)

(41) =2"'sup sup fl [h'?\' - (K)’A - h')\] dx
I wegr(-1,17-1
_ 1 9
=2"'sup sup f [—)\(h’) + (N - }\)l’] dx
I hecp(-1,17 -1

- 2-1supf’ (N = N)?/4\ dx,
l =1

where the second equality holds from the fact that the integrand contains no
derivatives of A of order higher than 1. Therefore

f°° (N = A)%/8\ dx < .

By Schwarz’s inequality, it follows from [® A < oo and [ (A" — A)%/8A <
o0, that lim,_ __A(x) = 0. The existence of lim,_ Ae™* follows from
©Ae 2* < o0 and PN — N)?/8\ < 0. To conclude that A € F; , it remains
to show that A(x) ~ be*.

Using lim h'(x)e* = —B(V) = ¢, we have

X — o0

I s(A) = sup [ — [A” + (W)* + WA dx — BB(V)
h

= sup {c[b - xlifgox(x)e-x] +  sup f— MR+ (N - A)h'}.

ceER h: h'e*—c

It is easy to check that the second term in { } equals (A’ — A)?/4\ dx. From
the assumption that I, 4(A) < oo, it then follows that A(x)e™ — b.
We now prove the formula for I ,. It is already proved in (41) that

sup [fV)\dx - bB(V)/2] > f()« — \)%/8A dx.

The reverse inequality is just an easy consequence of integration by parts and
the Schwarz inequality.
Before proving (8), we need the preliminary

LEMMA 1.8. If A(x) > 0 and a.c., then

(42)  sup f —MH)?+ (N = N)hdx = inff‘ (N + m — \)2/4\ dx,
heCy(—1,1) m—1

(43) supinf [' (X + m - \)"/4Ndx = inf [* (N + m = A)’/4) dx.
1 m -1 m Y —oo
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PrRoOF. From

® N2 , , _ [t N2 o )
f_w[—i\(h) + (N = A)K] dx f_l[ MR+ (N +m= )R] ax

’

N +m—2\)°
< rmoy

it follows that the left-hand side of (42) is smaller than or equal to the
right-hand side. The minimum on the right-hand side will occur for m, which
satisfies

(44) f_’l(x' + my(1) = A)/2)\ = 0.

But now letting A’ = (A’ + my4 — A)/2\, which is admissible due to (44), one
sees that, in fact, (42) is an equality. One inequality in (43) is obvious and we
prove the reverse inequality; we study the behavior of m,(l) as I - «:

1) If lim,_, |m4 ()| = oo, then
supiinf [* (X' +m = A)’/4N dx > lim JL (0 + ma(1) = A/ 4N dx = <o,
1 m -1 —o0vY—-1
(2) If there exists a subsequence, also named m,(l), converging to m, # + oo,

sup inff’ (N + m — \)2/4A dx
r om Yo

1%

sup lim flo [N+ ma (1) — A]? /4N dx
b

Iy lmeod-

f°° (N + my — A)2/4A.
The lemma is proved. O

Suppose I, o(A) < oo. Let us now prove that A € F, ;: The existence of a
nonnegative V € A with V(x) > & for |x] < 1, implies that

sup/ Adx < o
ceER

and, therefore, that there exist sequences x, - — o0 and y, = o, such that
(45) Ax,),A(y,) <N < oo forsome N.
In view of (42) and (43), we have

inff°° (N + m—\)?/8\ dx < oo,

which, from the strict positivity of A, (45) and expanding (A" + m — \)?, easily
implies that

(46) f_”w(x)“’/sx + /_ww(m,, ~2)%/8A < oo.
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Schwarz’s inequality then implies the existence of lim, _, , ,m,log A(x) — A(x),
and therefore of lim,_ , A(x). But o > [®_(m, — A)?2/8\ forces
lim,, _ ,A(x) = m,. We denote m, by k(). The proof for A € F, , is complete.
It can be proved by a mixture of reasoning used in the I, , and I, , situations
that A€ F, , if I, () < co.
Let us now prove the formulas for I, ,(A). We split the variational calculation
into two parts as follows:

21, ,(A) = sup J2vhdz - ala(V) - 1] - bB(V)
> sup f- AR+ (N = MR — a(eh==) = 1)
h'eGP(R)
= { sup [E(A)c— a(e®— 1)]} + f[}\’ + k(N) — A]?/4N dx,
h(—o)=ceR

where the last equality follows by the technique used to prove (42). Therefore,
21, ,(\) > f[)\’ + k(N) - >\]2/4}\dx +a + k(A)log[k(N)/a] — k(N).

The reverse inequality again follows easily from integration by parts.
We now remove the smoothness assumption.

LEMMA 19. If I, (1) < oo, then 7(dx) must be of the form T(dx) = A(x) dx
with A\ a.c.

PrOOF. First choose a smooth nonnegative even test function ¢(x) with
Jo(x)dx =1 and compact support. Let C, = logfep(x)dx and ¢(x) =
e 'p(e " (x + C). {¢(x): & > 0} then satisfies

@) fe*p (x)dx = 1,
(i) ¢, tends to 8, weakly because lim,_, ,e~!C, = 0,
(i) VeEA = V¢, €A.

It follows from convexity that
(Vo) <a(V), B(V=¢,) <B(V).
Therefore, by duality, we have

Ia,b(T) = Ia,b(d)e(_ ')* T)'
If we write A (x) dx for ¢(— - )* 7, this implies that
(47) limsupI, 4(A,) < .

-0
For a # 0, (47) implies that limsup, _, /(N, + kB(A,) — A,)?>/A,dx < 0. By the
same technique used to derive (46), it follows that lim sup, _, o f((\,)?/A,) dx < oo.
This then implies that 7 = weak-lim,_, (A (x) dx must be of the form A(x) dx
with a.c. A(x) and in fact with [((A)2/A) dx < . For 7 such that Iy (1) < o0,
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we note that absolute continuity is after all a local property and we therefore
concentrate on finite intervals. By the same technique used to prove (40) and the
fact that ¢ has compact support, it follows that 7(K) < N|K| for all K ¢ [0,1]
for some constant N and A(K) < N|K|. (47) then implies that
limsup, _, o /a((N,)?/A,) dx < o and therefore that 7 is of the form A(x) dx with
a.c. A(x). Note that [0,1] can be replaced by an arbitrary finite interval. The
proof is complete. O

We now remove the positiveness assumption: Because I, ,(be*) = 0, convex-
ity and lower semicontinuity imply that

Iy (X) = li_{r(l)]o_b(ebe‘ +(1-¢€)A)
= Eli_r.lz)(l - s)zf(}\’ ~ A)2/8[ebe* + (1 — €)A]

= f(x —7\)?/8\ dx

for a # 0; the expression becomes more involved but the same argument works
nicely. The proof of Theorem 1.3 is complete. O

1.4. Variational formulas of scattering data ( Proof of Theorem 1.4). Recall
from Theorem 1.2 that V= —[h” + (h)2+ h']/2 and [ — h"A = bB(V) +
fN’R’. We need only show that

sup — /)\{h’ — [(7 =1)/2A] )2 dx = 0.
AER ,

By solving (A’ — X)/2X = R/, we see that 0 is attained by A(x) = bg*(V, x)e*.
(9) is proved.
Similar reasoning also reduces (10) to

sup f— ME = (N + R(X) = A)/2A] ax
A€F, ,

+k(A){loglaa(V)/k(A)] + 1 = [aa(V)/k(N)] = 0.
Since the equations
[N+ aa(V) = A]/2="H,
k(A) =aa(V) and A€F ,
have the solution

M) = bg*(x)e* + aa(V)g'(x) “e0g=2(y) dy,

we see that 0 is attained and (10) is proved. O
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2. Large deviation rate function of D, , under Pyx. As to large deviation
rates of D, , under Py, it is easy to see that the rates are not too sensitive to the
specific configuration X which we start with.

Our main result in Section 2 is that the rate function equals some I ,(-)
(defined in Theorem 2.2) for a.e. X with respect to u, , and that, if @ + 0 and
AEF, ,—F/y, I (A) =00 > 1, (M)

Theorems of Section 2 differ from Section 1 only in that “P, ,” is always
replaced by “Py for a.e. X with respect to p, ,.” The proofs, therefore, proceed
very similarly. We shall concentrate only on this relatively new aspect, i.e., “Py
for a.e. X wurt. p,,” Again we first introduce some notation and state the
theorems. Let &, ,  be

{X: zl-i»l?o f“log pr{expéZV(wi(s))ds} = [aloga(V) + b,B(V)]/2}

and let Q, , be Ny ¢ 48, 4 v-
Theorems are labeled to note the analogy between Sections 1 and 2.

THEOREM 2.1. For each a, b > 0, we have

P, b{X:liminft‘llog Py{D, ,¢G} > inf Gf(}\’ +a—\)2/8\

t— o0 AEF; N

for all #-open subsets G} =1.

THEOREM 2.2. We have

(48) ”’a, b{ﬂa, b} =1.

If Cis M-closed, a,b >0, and X € Q, ,, then

(49) limsup¢~'log Py{D, ,€ C} < - ingI;’b(fr),
t— o0 TE

where 1, (1), for T € M(R), is defined as

sup / Vr(dx) — [aloga(V) + bB(V)] /2.
VeA

THEOREM 2.3. Fora, b > 0,

(50) I ,(r) = {f(’\’ +a—\)"/8\dx, fort=\(x)dxwith) € F/,,

+ o0, otherwise.

Note that, when a >0and A € F, , — F/,, I, ,(A) > I, ,(M).



LARGE DEVIATIONS OF INFINITE PARTICLE SYSTEMS 1555
THEOREM 24. IfVE Aand X € Q, 4, then

tlln:o t"'log pr{expj:Zi‘, V(w;(s)) ds}
(51)
= sup [[VA-(N+a-n)/8A]ax.
AEF,

This is equivalent to a result in differential equations:
lim ¢' ) logu(V,t x) =[aloga(V) + bB(V)] /2
nds xeX
(52)
= sup fVA dx — I 4(N),
AeF;,
for a.e. X with respect to p,, ,.
Before going into detail, it is instructive to investigate why I, ; = o0 > I, (A)
for A € F, , — F,,: The cause of this inequality is that
P, o{11/¢( Number of w,(0) such that w;(0) € [~£/2,0]) — k| < ¢}
is asymptotically greater than exp[—¢/2(a + klog k/a — k)] in contrast with
Py{] | <&} is zero when |k — a| > ¢ and ¢ large, for a.e. X wrt. p, .

2.1. Lower bound (Proof of Theorem 2.1). We first show that

m
u,‘{X: liminf#~ log PX{Dt,Q € nB()\,V},S)}
t— o0 1

(53)
> —f()« +a- A)2/8)\} =1
when A € F/ , and h(p,, s py) < .
Let Q4 (Q,, resp.) denote the particle system generated by [D? + (A’ +

a)/AD]/2 and starting from X (p,, resp.); F, is as in Section 1.
First for @,, the ergodic theorem implies that

(54) ”"A{X: lim QX{Dt,we nB(A’ Vps)} =1.
t— o0 1
Again the Cameron-Martin-Girsanov formula implies that

p,)‘{X: lim £~10g dQ/dPyls, = [(N + & = \)?/8A
(55) o

for a.e. w w.r.t. @4 and in Ll(QX)} =1.

Formula (53) then follows from a standard entropy argument.
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To complete the proof, we have to replace, in (53), pa by p, 5, and also
N"B(A, V;, 8) by a general .#-open G. This is easy using Lemma 1.5. 0

2.2. Upper bound (Proof of Theorem 2.2). Three steps of observations will
reduce this theorem to Theorem 1.2.

(1) Since, due to the noninteracting nature of the evolution,

log EPX{exp[]:Zi: V(w,(s)) ds]} = Y logu(V,t,x)

xeX
is additive in X, we only need to show that

(56) ”’1,0{91,0} =1, p‘O,l{QO,l} =1
(2) It is elementary to construct@ (Vi: Vi €A, k=1,2,3,...} sothat @, , =

NZ-1210,v, and Ry, =NF_ Qg v, It therefore suffices to show that, for

Vea, p‘lO{QIOV} =land p, {2y} = 1,ie,
(57) By O{X hm ™t Y logu(V,t, x) = loga(V)/Z} =1

xeX
and
Iho, 1{X llm ™t Y logu(V,t,x) = (V)/2} =1.
xeX

(3) Formula (57) follows easily from the result: For V€ A and § € R we have

lim ¢~ 1logE"“’{exp[é’ Y logu(V,t, x) } = [®(V) - 1] 2

t— o0 xeX

and

lim ¢ 'log E"Ol{exp[() Y logu(V,t, x) } =6B8(V) /2.
t— o0 xeX
In view of (C.G.F.), this is exactly (3) and (4) in Theorem 1.2.

For (49) the proof of (6) works nicely after replacing P, ,, (V) — 1 and 1,
by Py, log (V) and I

2.3. The equivalence of lower and upper bounds (Proof of Theorem 2.3).
The Ij , formula is the same as I, , since they are equal by definition.
Since

217 () > sup [-[r + B+ KN+ a' dx
’ 1 heCD‘”( Ly

=sup[ sup f = AR = (M +a=-2)/20)] % ax
(58) ! |recp-1,07-

+[’ (N + a — \)/4A dx
-1

f°° (N + a — A\)2/4\ dx
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it follows from the same reasoning as in the proof of Theorem 1.3 that

A~a+be* as x— too if I ,(A) < oo.
For the I , formula, we have
21 (A) = [ (N +a—N)’/andx

in (58).
The reverse inequality again holds because the difference equals
[ = MK = [(N + a — N)/2X]}* dx, which is nonpositive. O

2.4. Variational formulas of scattering data (Proof of Theorem 2.4). We
only need to show that

sup - JAE = [V +a=2)/2A]} dx = o0,
Again, 0 is attained by

A= begh(x) + ag™(z) [ e g (y) dy,
which is the solution of (A" + a —A)/2A =h’and A € F;,. O

In Donsker and Varadhan (1987), a large deviation principle for empirical
density is also proved. We find it instructive to contrast the model studied here
to that in Donsker and Varadhan (1987). Some remarks are:

(1) It affects technicality for proofs rather than the qualitative large deviation
results whether each Markovian particle is a diffusion or a chain with
countable states [as in Donsker and Varadhan (1987)]. For example, a
dependence of the rates on the initial distribution is a common feature for
both models.

(2) Worth noting is the difference between (3)—(4) in this paper and (2.23) in
Donsker and Varadhan (1987). This difference results in the inequality
I, o(-) > I () (as functionals) when a # 0 which does not occur in the
model considered in Donsker and Varadhan (1987). Also this difference can
be explained by the fact that our model has I'{6_;, < 0o} = 1forall x < -1
which violates an assumption made in Donsker and Varadhan (1987).

(3) An interesting model is the independent B.M. particles on R (d > 3) which
“essentially” (regardless of countable states assumption) satisfies all assump-
tions made in Donsker and Varadhan (1987). {g,: a > 0} is the invariant
distribution and therefore only one functional, instead of «(-) and B(-),
appears in the limit of the cumulant generating function [namely capacity
c(V)]

o(v) = lim [g(x) - 1sl"

where g(x) satisfies (A/2 + V)g = 0 with g(x) > 0 and lim,_, &(x) = 1.
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Following the approach used here and in Donsker and Varadhan (1987), the
rate can be computed as I,(A) = [([VA|>/8\) dx for A ~ a as |x| > oo and
“nice” A. A variational formula for C(V') can then be proved:

VA2
de(V)—iti]: j[vx- |

where k, depends on dimension only. This should be contrasted with a
classical variational formula

dx.

: . A Ivi®
the maximum eigenvalueof | — + W | = sup f Wf —
2 1>0,11f 1, =1 8f

(4) For models with recurrent particles, e.g., random walk or B.M. in one or two
dimensions, Cox and Griffeath (1984) and Lee (1988) prove that the large
deviation probabilities decay more slowly than exponentially.
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