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NECESSARY AND SUFFICIENT CONDITIONS FOR THE
CONTINUITY OF LOCAL TIME OF LEVY PROCESSES

By M. T. BARLOW

University of Cambridge
Let u,(x) be the 1-potential kernel density for a Lévy process, let ¢?(x) =
2u,(0) — u(x) — u(—x), let ¢ be the monotone rearrangement of ¢

and let I(¢) = fo, $(u)u"'(log(1/u))~"/? du. Barlow and Hawkes proved
that if I($) < oo, then the local time has a jointly continuous version. In this
paper it is shown that if I(¢) = oo, then the local time is not continuous.

0. Introduction. Let X,, ¢ > 0, be a one-dimensional Lévy process; that is,
a process with stationary independent increments. We denote by P* the law of
X starting at x € R, we write P for P° and denote expectation with respect to
P* P by E*, E. We will say that X has characteristics (a, 02, ») if

0X, — ,—tx(0
EeW4: = ¢ X(),

where

(0.1) x(8) = —iaf + 0202 — f[e“’y —1 - iyl <p]r(dy).

Here » is a measure on R satisfying [(1 A y®)»(dy) < oo, »({0}) = 0
We will be interested in Lévy processes satisfying

(0.2) [{X,,0<s<t}]>0 as.foreacht>0
and
(0.3) 0 is regular for {0}.

The first of these conditions states that the range of X has positive Lebesgue
measure, and this implies that X has an occupation density, or local time. The
second ensures that this local time is, at each fixed point, a.s. continuous as a
function of ¢.

Analytic conditions, in terms of (a, 62, »), for (0.2) and (0.3) to hold were given
by Kesten [18] and Bretagnolle [8]. (0.2) holds if and only if

(0.4) f Re1+ @)% <
and if (0.4) holds then (0.3) holds if and only if

(0.5) either ¢2>0 or /(1 A ly)v(dy) = .
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1390 M. T. BARLOW

The following theorem summarises results from [5, 8, 12 and 18] on the
existence and properties of the local time of X. We introduce the notation

U.f(x) = E* [ f(X,)e™ ds,
. 0
T,=inf{t>0:X,€ A}, T,=T,,
Y (x) = E% T,

THEOREM A (see [12, Theorem 4]). Suppose X satisfies (0.4) and (0.5). Then:
(i) U, has a bounded continuous density u (x), so that

E*["emf(X,) ds = Upf(x) = [udly = 2)f(5) dy

for bounded measurable f.

(ii) There exists a jointly measurable mapping (x, t, w) = Li(w) such that
(a) for each x, L* is a continuous additive functional, (b) for each t > 0,
(x, w) > L¥(w) is B(R) X F-measurable and (c) L satisfies the density of
occupation formula: For bounded measurable f we have

(07) [1(X)ds = [#(a)L; da.

(iii) u, and ¢, satisfy

(0.6)

(0.8) u(x) = E"fowe'“s dLz,
(0.9) ul(x) = o(x)u,(0),
1 1
(0.10) u(x) +uf-x)= ;fcos 0xRemd0.

We will be concerned with the following questions:

1. When is there a jointly continuous version of (x, t) = L}?
2. If there is a jointly continuous version, what is the modulus of continuity of
x = L§?

For Brownian motion the answers are well known. Trotter [25] proved that
Brownian local time has a jointly continuous version and McKean [20] and Ray
[24] found its exact modulus of continuity, Ray’s proof used the Ray-Knight
theorems [19, 24], which give the law of the process x — L% for certain stopping
times T, and from which it is easy to read off many absolute sample path
properties of L;.

There is no (known) analogue of the Ray-Knight theorems for any Lévy
process with jumps. However in [7] Boylan proved that, for a class of Lévy
processes which included the stable process of index greater than 1, there is a
jointly continuous local time. Meyer [21] obtained an estimate on the tail of the
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distribution of |L? — L?|, and using this and Garsia’s lemma, Getoor and Kesten
[12] found fairly general sufficient conditions for continuity.
Getoor and Kesten also proved that if

(0.11) lim sup (log a)u,(0) > 0,
a—> o0

then x — L} has no continuous version. [The asymmetric Cauchy process has
u(0) ~ c(log @) ! and so satisfies (0.11).] Thus not all local times are continuous,
and Getoor and Kesten posed problem 1 above. In [22] Millar and Tran
improved this discontinuity result and showed that if (0.11) holds, then L, is
unbounded in every interval around X,,.

In [1] a new estimate on the tail of |L® — L% was found, and using this and
Dudley’s theorem, Barlow and Hawkes [2] obtained a sufficient condition for
joint continuity.

Let

4’(-’5)2 = 2u,(0) — uy(x) — uy(—x)

(0.12) 1 . ox R 1 ”
_rrf( — cos 0x) el+x(0) ,
and let ¢ denote the monotone rearrangement of ¢. Set
- 1/e &;(u) du

0.13 I = —_—
(0.13) (4) L u(log l/u)l/2

THEOREM B (Barlow and Hawkes [2]). Suppose X satisfies (0.4) and (0.5).

(@) If I($) < oo, then (x,t) = L? has a jointly continuous version.
(b) Let H(u) denote the ¢-metric entropy of [0,1]. For each t > 0 there exists
0 = 8,(w) > 0 such that, for all a, b with (b — a) <3,

1/2
(0.14) sup|L? — L?| < 416(sup Lf) fBH(u)l/zdu.
x 0

s<t

The main result of this paper is that the condition I(¢) < oo is necessary, as
well as sufficient, for the joint continuity of the local time. (This was conjectured
by Hawkes [14].)

THEOREM 1. Let X be a Lévy process satisfying (0.4) and (0.5), and suppose
that
(0.15) / I(¢) = .
Then (x,t) —» L7 has no continuous version. Further, for each t> 0, ¢ > 0,
(L% a € Q N (—¢¢)} is P-a.s. dense in [0, ).

The estimates which lead to Theorem 1 also yield lower bounds on the
modulus of continuity of x = L¥. By working a little harder than in [1], and so
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getting better constants for the upper bounds, we obtain an exact modulus for a
fairly wide class of Lévy processes.

THEOREM 2. Suppose that ¢(u) = u®f(u), where a >0 and f is slowly
varying at 0. Then

(016) i ILs — L] 2( L )1/2
. m sup = 2{sup Ly
510 la—bi<3 o(b — a)(log(1/]b — a|))? vel

Oss<t

for all intervals I C R, t > 0, a.s.
Specialising to the case of stable processes, we have

THEOREM 3. Let X, be a stable process of index a > 1, so that
x(8) = 16|* + ih|6]*sgn(6),
where |h| < tan(an/2). Then

2 caIxIa_l

#lx) ~ T asx 0,
where

1T2-a)  (2-a)7
(0.17) c——f (1 —-—cosy)y” dy—; I
We have
|Le — L? 2cl/? 1/2
im  sup ! 172 1/2( upL’t‘)

(0.18) 810 la=bi<8 |b — a|® V2(log(1/|b — al)) (1+ A% 7" \zer

Ossst

for all intervals IC R and allt > 0, a.s.

REMARKS. 1. These results may be compared with the Dudley-Fernique
theorem [9, 10] (see also [16]) for stationary Gaussian processes. Let Y be a
stationary zero-mean Gaussian process and let y(¢ — s) =||Y, — Y,||,. Then Y
has a continuous version if and only if I({) < oo.

In Hawkes [15] it is shown that the local time of a Lévy process can be made
into a stationary process, and that ¢ is then the incremental variance; thus ¢
plays roughly the same role for L, as y does for Y.

2. Belyaev [4] showed that a Gaussian process either has continuous paths a.s.
or the sample paths are a.s. unbounded on every interval. The essential idea of
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the proof is that Y has an L? expansion
o0
(0.19) Y,= ) ¢j(t)£j’
j=1

in which the §; are independent random variables and ¢;(t) are continuous (see,
for example, Jain and Marcus [16]). The continuity or discontinuity of the
sample paths is a tail event for the £ ; and hence has probability 0 or 1.

We have been unable to find a similar 0-1 law for the local time. The L?
expansion (0.19) is still valid (see Hawkes [15]), but the £ ; are no longer
independent. Of course Theorems A and 1 do lead to a similar dichotomy, but
the proof is “hard” (i.e., involving detailed calculations and estimates) rather
than “soft” (using 0-1 laws and the structure of the process).

3. The term (sup, L7)'/? on the right-hand side of (0.16) shows how the size of
the oscillations of x — L near a point x, depends on L?. For Brownian local
time the Ray-Knight theorems give one reason for the presence, and form, of
this term. It would, however, be interesting to have a more general explanation
for its presence.

ExaMPLE. Let x(6) be given by (0.1), with a € R, ¢2 = 0 and

"(dx) = x_2gaﬁ(1/|x|)(p1(x>0) + ql(x<0)) dx,
where p,g >0, p+ g=1and

8.p() = (log y)*(loglog y)*.
(0.4) and (0.5) hold if @ > —1 orif a = —1, B8 > —1. We then have

x(0) ~ 71018,5(1601) + i(p — )0(1 + a) 'g,5(16])(log |6])n(6) as |8] > o,

where n(6) =1 if a > —1, n(0) = loglogf if a = —1, B> —1 and 7(8) =
(loglog f)(logloglog §) if a = B = —1.
If « > —1 then

$*(x) ~ c(log(1/1x])) " “*P(loglog(1/|x])) * asx - 0.

Thus if @ < 0 or @ = 0 and B < 2 the local time is discontinuous, while if a > 0
or a = 0 and B > 2 it is continuous.

These examples were discussed in [1], but there is an error there: The form of
Im x(0) is incorrect in the case « = —1. In the table [1, page 34] the case
a= -1, —-1<B<1,belongs witha=-1,8> 1.

The plan of this paper is as follows. In Section 1 we collect a number of
preliminary results and in Section 2 we obtain estimates which relate the
function h(x, A) = E *L%, to ¢%(x — y). The main estimates on the local time
are given in Section 3.

In order to prove that L7 is discontinuous, it is necessary to find lower
bounds on quantities like P(max_ . ,(L} — L) > z), where A is a finite set and
Xo € A. The basic idea is as follows. Let V, = ¥ . ,L%; if X is time-changed by
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the inverse of V we obtain a continuous time Markov chain with state space A.
As is well known, such a Markov chain can be built up from its jump chain and a
set of independent negative exponential holding times. Using this decomposition
we deduce that if A > 0 and T = inf{s > 0: L7 > A}, then

N(x)
(0.20) Ly= Y V,; forxeA,
Jj=1

where N(x) is the number of visits by the jump chain to x, and the V., are
independent negative exponential random variables.

From (0.20) we see that there are two possible reasons why we may have
L% > L7; we may have N(x) > N(x,) or we may have LNV, ; > TNV
The first source of variation is hard to control, since in general the random
variables N(x), x € A, are as difficult to deal with as the local times L%, x € A.
On the other hand, the second source can be handled very easily: Conditioning
on o(N(x,), V,  j, j = 1) the random variables LYV, ;, x € A — {x,}, are inde-
pendent and have a gamma distribution with parameters for which good esti-
mates can be found. Fortunately it turns out that, in some sense, most of the
variation in L%., x € A, is due to the second source, and so the estimates which
we obtain by throwing away the variation in N(x) provide a good lower bound
for P(max, . ,(L% — L) > 2).

In Sections 4 and 5 these estimates are used to prove Theorems 1-3.

Throughout this paper X will be a Lévy process satisfying (0.4) and (0.5) with
local times L{, a € R, t > 0. We will write 7,(a) for the right continuous inverse
of L%

n(a) =inf{s > 0: L? > ¢}.

Occasionally, when a, ¢ are complicated expressions, we will write L(a, t), 7(a, t)
for L}, 7(a). For x € R, A € #(R), a > 0, we set

hy(x,A) = E"f e=0s JL%,

and we write h(x, A) = hy(x, A), h(x, ¥) = h(x,{¥}).

The notation ¢, c,, etc., will be used to denote a (fixed) universal constant,
with 0 < ¢ < o0. ¢;(¢) will denote a (fixed) function of &, with 0 < ¢,(¢) < oo for
each & > 0.

1. Preliminaries. Let Z(B, h), Z'(B, h) be independent random variables
with a I'(B, k) distribution. Thus EZ(B, h) = Bh, var Z(B, h) = Bh? and the
distribution of A~Y(Z(B, h) — Bh) does not depend on A. Set

v*(B,u) = P(Z(B, h) = Bh + hB'*u),

v~ (B, u) = P(Z(B, k) < Bh + hB"*u).
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Elementary and tedious calculations with the I' density function and Stirling’s
formula yield

LEMMA 1.1. There exist constants c,, c,(¢) > 0 such that, for all B > 1,
1> e>0:
2

@) v* (B, 1) = co.

(i) vy~ (B,0) = c,.

(i) y*(B,u) = c(e)exp(—((1 + €)/2)u?) for 0 < u < B2

(iv) Y7(B,u) = ci(e)exp(—((1 + &)/2)u?) for 0 < u < B2
LEmMMA 1.2. Let B, 8, = 1. Then
P(1Z(By, ho) — Z'(By, hy)| > x)

(1.1) (1 + ¢)x?
Boh + Bih?)

> cl(£)2exp(— o ) for 0 < x < &(Byhy A Bih,).-

ProoF. We may suppose that Byh, > B,h,. Let p = ByhZ/(Byhk + B,h2)
and ¢ = 1 — p. Then

P(1Z(By, ho) — Z'(By, hy) > x)
> P(Z(Bos ho) — Boho + (Boho — Bihy) + Bihy — Z'(By, by) > x)
> P(Z(By, ho) — Boho > px)P(Z'(By, hy) — Bihy < —gx)
= 7" (Bo» u)Y~(By, »),
where uB}/*h, = px, vBi/?h, = qx. It is easily checked that u < eB}/2, » < 8172,
and (1.1) now follows from Lemma 1.1. O
LEMMA 1.3. Let X, be a Lévy process satisfying (0.4) and (0.5).

() P(sup, <, af(Ls — L?) = x) < exp(—x°/4th(a, b)).
(ii) P(sup,,olA A L2 — A A LY > x) < 2exp(—x%/4\h(a, b)),
(iti) P(Sup, <, af Ll — LY) = x) < exp(—x%/(4(x + t)h(a, b))).

Proor. (i) and (ii) are proved in [1, Proposition 2.7 and Lemma 2.8]. (iii) is
an easy consequence of (i), since

{ sup (Lg—Lg)Zx}g{ sup (Lf—Lg)Zx}. O

s<m(a) 8<712(b)

REMARK. The estimate of [21] (see also [6, Proposition V.3.28]) states that

—x
1.2 P"( sup |L¢ — L% > x) < 2e‘exp( ———,),
(12) OSSStI | y(b - a)

where y(¥)2 =1 — ¢,(¥)¥,(—y). We will see in Section 2 that y%(y)/h(y) -
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u,(0) as y — 0. The estimates in Lemma 1.3 give better control over the tail of
|L® — L%, but (1.2) is simpler to use.

The following two 0-1 laws are both consequences of the Blumenthal 0-1 law.

LEmMMA 1.4 ([12, Theorem 4], [2, Proposition 3]). (a) Either (i) L, has a
continuous version a.s. or else (ii) L, does not have a continuous version a.s.

(b) Either (i) sup,cq L{ < oo forallt > 0 a.s. or else (ii) sup, c o L = oo for
allt> 0 a.s.

There is nothing special about the set Q.

LeEmMMA 1.5. Let D,, D, be countable subsets of R, with D, D cl D,. Then
{L;,x e D} c i{L%,x € D,} foralls=>0a.s.

Proor. This is a simple consequence of the continuity in probability of L;.
Let ¢ > 0: It is enough to prove the lemma for 0 < s < ¢. Using the estimate (1.2)
we deduce that there exists a sequence 8, | 0 such that if x € R and |y, — x| < §,,,
then

P( lim sup |L?I— L2 = 0) =1.
n— o 0<s<t
For each x € D, let y,(x) be a sequence in D, with |x — y,(x)| < §,. Since D, is
countable, we have
sup |[L; — L)"| >0 asn— ooforallx € D, as.,
O<s<t

and the desired result follows immediately. O

We now define the monotone rearrangement of ¢. From (0.9) we have
uy(x) = 0 as |x| » oo and u(x) < u,(0) for x # 0. Thus ¢(x) > 0 for x # 0 and
$(x) = (2u,(0))/? as x| > oo.

Let

(1.3) p(y) = I{x: o(x) <y}l
Then p(0) = 0, p is right continuous and strictly increasing and p is finite on
[0, (2u,(0))'2).

DEFINITION. Let ¢ be the right continuous inverse of p; that is,

(1.4) ¢(x) = inf{y: p(y) > x}.
¢ is the monotone rearrangement of ¢ on [0, 0).

Since p is strictly increasing, ¢ is continuous; also ¢(O) q_b is weakly
increasing and 0 < ¢(x) < (2u1(0))1/ 2 for all x. It is clear that )«p )\qs for A > 0,
and that if ¢, < ¢,, then ¢, < ¢,.

Let dy(a, b) = ¢(b — a) for a, b € R. It is shown in [2] that d, is a metric
on R. For, if y(a, b) = }[u(a — b) + u,(b — a)] then, by (0.10) and Bochner’s
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theorem, y is a covariance kernel. If Y, x € R, is the stationary zero mean
Gaussian process with covariance y, then ||Y, — Y;||2 = 2v(0,0) — 2y(a, b) =
¢%(b — a), from which it follows that d, is a metric.

The following combinatorial lemma is based on Lemma 6.1 of Jain and
Marcus [16].

LEMMA 1.6. Let ¢ and p be functions defined by (0.12) and (1.2). Let
0<a<b, ¢6>0, x, € R. There exists a set A = A(x,, a, b, €) containing x,
such that if n = #(A) and A = {xy, xy,...,%,,_,}, then

p(b) p(a)
(1.5) m3n<m+l,
(1.6a) o(x;—x;) 2 a forali=+j,
(1.6b) ¢(xg—x;)<b foralll<j<n-1,

(1.6¢) for each i there exists j; #+ i with ~ ¢(x; — x;) < (1 + ¢)a.

Proor. Let
B,(x,8) = {y:¢(x —y) <8}

be the open ball in the ¢-metric with centre x and radius 8. As ¢ is continuous
B,(x, 8) is also open in the usual metric. By (1.3),

|By(x,8)| = 2p(8).

Starting with x, we shall define inductively a sequence of points {x,, x,,..., x,}
satisfying (1.6). Suppose that x,,...,x, have been chosen, and let C, =
B,(x9, b) — Uk, B,(x;, a). Then, by the continuity of ¢, if C, is nonempty it is
possible to choose x,,, € C, so that ¢(x,,, x;) < a(l + ¢) for some 1 <j < k.
Continue in this way until C,,_, = @. Then

m—1

B¢(x0’ b) c U B¢(xi’ a),

i=0
and so by (1.3), 2p(b) < m2p(a). Let n be the integer satisfying (1.5); we have
n < m and therefore the set A = {x,..., x,,_,} satisfies (1.5) and (1.6). O

REMARKs. 1. Using the fact that the balls B,(x,, ;a) must be disjoint, a
similar argument shows that if A satisfies (1.6), then #A < p(b + 1a)/p(a).

2. Let b be fixed and let N(a) denote the smallest number of d-balls of
radius a which cover B = By(x,, b) and let H(a) = log N(a), the d metric
entropy of B. We have

1 1 H ) 1 ) 1
o(a)  Ea(p) = (@) =log oy —los oy

Thus there is a close link between the function log1/p(#) and metric entropy.

log — log
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However, we will not need to use this as Lemma 1.6 enables us to work directly
with the function log1/p.

We will be able to avoid some complications by reducing to the case of a
recurrent process X. This is possible because while (interval) recurrence is a
global property, and so is affected by the large jumps of X, these large jumps
have no effect on the continuity of the local time.

Let X have exponent x((#) and characteristics (a, 02, »), and let K > 1.
Define the truncated process X, (K) by

X(K)=X,- Z AX, Liax, > k)
O<s<t

then X,(K) is a Lévy process with characteristics (a,o%,»%), where »®(dx) =
1_k, k) (x)v(dx). Expanding x(6) in powers of §, we deduce that

(1.7a) EX,(K)=at+ tf yr(dy),

1<|yl<K
(1.7b) varX,(K) = 0% + ¢ / y2r(dy).

lyI<K
Now set
(1.8) vi(dxe) = v (dx) + b3 x)(dx) + b _k,(dx),
where b,, b, > 0 are chosen so that at most one of b,, b, is nonzero and
(1.9) b,K — b,K + at + yr(dy) = 0.

I<|yl<K

Let Z', Z? be Poisson processes with rates b,, b,, respectively, independent of
X. (We can suppose that the probability space carrying X is large enough to
support these extra processes.) Set

(1.10) Y,= X,(K) + KZ! — KZ%;

Y is a Lévy process with characteristics (a, 02, »,). Let x,(#) be the exponent of
Y and let ¢,(x) be given by

! 1 0x)R ! de
¢1(x)—;f( — COS x) em .

ProPOSITION 1.7. Let X and Y be as above.

(a) There exists a stopping time S > 0 such that X = Y on [0, S).
(b) There exist constants ¢(K ) (depending only on a, v, K), with ¢(K) - 1
as K — oo, such that

1 1
¢(K) '/Re————~ < Re—————
1+ x(6 14+ x,(6
(1.11) x(8) xa( )1
< c(K)Re1_+;(—(—0_) forall 8 € R.



LOCAL TIMES OF LEVY PROCESSES 1399

(c) Y is point recurrent.
(d) e(K) V%(x) < ¢y(x) < c(K)?p(x) for all x € R.
(e) I(9,) < o if and only if I($) < oo.

Proor. For (a) it is enough to take S = inf{¢ > 0: max(|AX,|, |AY)) > K }.
Since » and », agree on (—K, K ), we have

x(8) — x(8)| < fmzKu — e®|p(dy) — »,(dy)|

<2v((-K,K)°) + 2b, + 2b,

= 'fI(K), say.

Using (1.9) and dominated convergence, we have 7(K) — 0 as K — oo. Writing
n = n(K), we have

2 2,
I+ x12 = 11+ x| < 11+ x)" = (@ +x)1
=|x- X1”2 +2x;, +x— X1
<21+ x| + 07
< (2n+ 7)1 + xyls

since Rex, >0and |1 + x5/ =21+ Rex; > 1.
Hence

1
— Re

Re
1+x 1+ x;

11+ xI? 11 + x,?

= |11 + x*(Rex — Rexy) + (1 + Rex;)(11 + x.” = 11 + xI*)|
<|1+ X1|2(3"7 + "72)'
Writing ¢(K) = 1 + 3n(K) + 7(K)?, we have

1 1
T SC(K)I1+xl“’
(1 + Rex) 1
< K

Interchanging x and ¥, in these calculations gives the other side of (1.10).
From (1.7)—(1.10) we have EY;? < oo, EY, = 0, for all ¢ > 0. Hence ¥,, n > 0,
is interval recurrent (see [11, Theorem 3.1]). The estimate (1.11) shows that Y
satisfies (0.2) and (0.3), and therefore Y is point recurrent by [11, Corollary 5.4].
(d) and (e) now follow easily from (1.11), the definition of ¢, and the
properties of monotone rearrangements. O

REMARK. From the construction of S, we have that S has a negative
exponential distribution and ES = (b, + b, + »(—K, K )~ =2/q(K). So
P(S > t) = exp(— 3tn(K)) > 1as K — co.
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The final result in this section is a rather long analytic lemma, which will be
used in Section 4 with H(u) = logl/p(u). If H(u) is slowly varying at O the
result is quite easy, but the general case requires some work.

LEMMA 1.8. Let H(u) be a decreasing positive function satisfying
(1.12) /IH(u)l/2du = + 0.
0

Let 8, K, \,0 > 0. Then there exist sequences (a,),(b,),(r,) decreasing to 0
such that py =\, and

(1.13) b,..<a,<2a,<b, foralln,
(1.14) Y expa, <38,
n=1
(1’15) Z an(H(an) - H(bn))l/2 = 00,
n=1

(1.16) H(a,) — H(b,) = K,
where

n—1 92
(1'17) a, = Z H(aj) - Z_z_[”n A arZL(H(an) - H(bn))]’

=1 n

ProoF. We begin by noting that it is enough to find (a,),(b,),(r,) such
that Yexpa, < co. Forif m>1and ¢, =a,,,, b,=Db,,, and p), = pu,, then
a, < a,.,, and (1.14) follows by taking m sufficiently large.
We consider two cases:

Case A. limsup, _, ;u*H(u) > 0.
Case B. limsup, _, ju?H(u) = 0.

Case A is fairly straightforward. There exists an n > 0 and a sequence x, |0
such that x2H(x,) >n for all n. Set p, =n/n, and choose b, such that
H(b,) > 2K. Now define (a,),(b,) inductively as follows. Suppose
by,..., b,, ay,...,a,_, have been chosen. Let a, be the largest x; such that

x;<3ib,,  H(x;)>2H(b,),
and now let b, be the largest 27, i > 1, such that

n"‘n+192 Z
(1.18) ——— >(n+1)+ ) H(a,).

(2_l) r=1

Such a choice of (a,),(b,) is clearly possible. Then H(a,) — H(b,) >
1H(a,) > 1H(b,) = K, so that (1.16) holds. Also as H(a,) > na,?
a,(H(a,) — H(b,))"? = (11)"/? and (1.15) holds.
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This inequality also implies that
2

n—1 ]
(1.19) a,< ) H(a;) - 7ha S 1,
j=1 n

by the choice of b, and so (1.14) is satisfied.

Case B is harder. We begin with some minor simplifications. It is enough to
prove the result with p, = A for all n, for then setting p,, = a2H(a,) we do not
affect the value of a, and have p, — 0. Further, there exists u, > 0 such that
u?H(u) < X for 0 < u < u,, and so, taking b, < u,, we have

(1.20) ZH(a)—HZ (H(a — H(b,)).

Thus it is sufficient to take a, as given by (1.20) and find sequences (a,), (b,)
satisfying (1.13), (1.14), (1.15) and (1.16).

Set g(u) = e “H(e )72, 0 < u < o0. Then H(v) = »%g(log 1/1:)2 and (1.12)
implies that

(1.21) / g(u)du = oo
0
As H is decreasing we have, for any x, u > 0,

(1.22) g(x+u)=e*“H(e **)? > e“‘e"‘H(e"“)l/2 = e “g(x).
Let I, = [**! g(u) du. We have, using (1.22),

I = 'Eg(n +u)du> g(n)/:e"‘du =(1-eYg(n)

and
1 1
I, = fg((n +1)+u—-1)du< _/g(n +1)e' “du < eg(n+1).
0 0
So
(1.23) 1-eNg(n)<I,<eg(n+1),
(1.24) Y g(n) = .
Now set n = } and let
(1.25) J={n:g(n+1)=e"g(n)}.
If J were finite then, taking r > max{n: n € J},
[ee] o0
Y g(n)< X e " g(r) < oo,
n=r n=r
which contradicts (1.24). Thus o is infinite. We will now show that
(1.26) Y g(n+1) = .

ned
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As g(n + 1) > e~ 'g(n) this is immediate if ¥, . ;8(n) = c0. So suppose that
Y, &(n) < co. Then J° must be infinite and , . ;,-g(n) = co. Let

[>¢]
= U{rk,rk+1,...,rk+sk},
k=1

where r, <r, + s, <r,,, — 1 for each k. If n € J° then g(n + 1) < e "g(n),
and so

Y g(n) = fl i &(ry + m)
neJ° k=1 m=0
< kZI &(7) Z e™<c Z &(1).

Thus X,8(r,) = 0. As r, — 1 € J for k > 2 this proves (1.26).

Let J = {n,, n,,...}, with n; < n,,, for all i. Choose £ > 1 and, for 0 < s <
k—1,let J, = {n,,,, r = 1}. By (1.26) there is at least one s, s, say, such that
Yoey, g(n + 1) = oo. Let y be large enough so that H(u) > 2K for 0 < u <y,
let J = J,, N [y, ) and write J’ = {m,, m,,...}, where m; <m,,,. We have

(1.27) Xg(m,~ +1) =0, my,—m;=k.

i=1
Now define
a,=e m*D ph =e ™,

Thus b,,, < @, < 2a; < ea; = b; so that (a,),(b,) satisfy (1.13). Since m, € J,
g(m;+ 1) > e "g(m;). We have

H(b;) = e®™g(m;)’,  H(a;) = e?**™g(m, + 1)%,
and thus
H(a;) — H(b,) = ezm,-[ezg(miﬂ)‘l - g(mi)2]
(1.28) > e?™ig(m; + 1)’[e? — e2"]
= H(a;)1 - e?""2) = H(a,)(1 —e™).

So a,(H(a;) — H(b))"/? > ca;H(a;)"/* = g(m; + 1), and hence (1.15) follows
from (1.27). As H(a;) > 2K (1.28) implies (1.16).

It remains to prove that (1.14) holds. By the construction of JJ’ the set
{m;+1,...,m,,} contains k elements of J and s, = m;,, — m; — k elements
of J°. Therefore,

g(m., +1) > e %e ™g(m,; +1).
We have
H(a;,,) = e***™ng(m;,, + 1)*
2 T Uity 4 1)?

= H(a;)e**~" = H(a,)e*.
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Thus X721 H(a;) < H(a,)L?Z{ e ¥"™) < H(a,)e* — 1)*. By (1.20) and (1.28),

02
a, < H(an)[ - ?(1 - e")].

Now choose & large enough so that the term in square brackets is negative; then
a, < —cH(a,) < —ce™H(a,), and we have proved (1.14). O

ek -1

2. Potential theory estimates. Recall from the introduction the notation
(2.1) h(x, A) = E* fo Tag—es g

and let v (x) = u(0) — u(x). In this section we obtain estimates for A in terms
of vy (x) and ¢(x).

LeMmMA 2.1. Forx, y € R, we have
hy(x, y) = w(0)(1 = dy(x — ¥)¥i(y — %))
= ¢*(x — ) — w(0) (v y — x)vy(x — ¥)).
Proor. By the strong Markov property of X and (0.9),
u(0) = E* [ dL + 4(y — x)¥(x — ), (0).

(2.2)

So
hy(x, y) = ul(o)(l =% — ¥y - x)),
which gives the first half of (2.2). The second half is obtained by the substitu-
tions ¥y(2) = 1 — 4;(0) "'oy(2), $°(2) = vy(2) + v(—2).0
LEMMA 2.2. Forx € R, A € 4(R),
h(x,A)

_TA .

(2.3) h(x,A) <h(x,A) <

e’e

ProoF. The left-hand inequality is evident. Let R be a negative exponential
random variable, with mean 1, independent of X. Then

hy(x,A) = E*L} r 1, P*(R>T,) =E% s,
Therefore, since h(x, A) = E’L’;A, we have
h(x, A) = h(x, A) = E* 1z _1,(L%, — L3)
= E*1per 5 L5,
< E*1p_r,E°LT,
= (1 - E%* T)h(x, A),
giving the right-hand inequality. O
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COROLLARY 2.3.

@ oo S

< hy(x, y)

< h(x,y) < ¢*(x - y)(l - 4)2(:1(—0_)3'))_1-
(b) hy(x, y) < ¢*(x — y).

PROOF. Let z =y — x. Since v(2)v(—2) < ¢*(2), the left-hand inequality in
(a) follows from (2.2), while the middle inequality is clear. Now u,(2) > u,(0) —
¢%(z), and therefore y,(2)"! < (1 — ¢*(2)/u,(0)) . So, by (2.3) and (2.2),

h(x, y) = lll'l_l(z)hl(x, y)
<41 (2)¢%(2)

< (2)(1 - ¢%(2)/u0)) ",

which proves the right-hand inequality.
(b) and (c) are immediate from Lemma 2.1 and (a). O

Let us now suppose that X is recurrent. Let A C B be Borel sets in R with
0¢ A. Let p=PYT, < T, 0r,); p is the probability that an excursion of X
from 0 which hits B also hits A. If n is the characteristic measure of the Poisson
point process of excursions from 0 and, for A € #Z(R), m(A) is the n-measure of
the set of excursions which hit A, then p = m(A)/m(B). We also have
h(0, A) = m(A)~ L

Let X = — X be the dual process of X (relative to dx). If - is some quantity
associated with X [like the measures P* or the function u,(x)], then * will
denote the same quantity for X. The semigroups (P,) and (B,) are in duality
relative to dx.

Because X is recurrent, X is also recurrent. Also, a.s., all the excursions from
0 begin and end at 0. (This is an easy consequence of the spatial homogeneity of
X and the fact that X has only countably many jumps.) Therefore, by a
theorem of Getoor and Sharpe [13] (see also [17] and [23] for the case when X
does not have a transition density), the excursions of X have the same law as the
time reversal of the excursions of X. An excursion hits A if and only if its time
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reversal does, and so m(A) = m(A) for all A C R. Thus

(2.4) h(0, A) = h(0, A)
and
(2.5) P(T, < Tyobyr,) = PT, < Tyo0r,).

_ REMARK. By considering marked excursions we can also show that
h(x, A) = h(x, A), but we will not need this.

PROPOSITION 2.4. Let A be a closed set and x & A. Set p = inf{¢(x — y),
y € A}. Then
(2.6) in? < h(x, A).

Proor. It is sufficient to deal with the case x = 0. Suppose first that X is
recurrent. Set

B= {y €A:v(y) > 91(_3')}’
C= {J’ €A:v(y) = 01(_3')}’

D= {y €A:v(y) < ’-71(_y)}~
By (0.8),

u,(0) = h,(0, A) + Eoe‘TAEXTafwe‘”dLg
0

< (0, 4) + E°E ¥ [(I(TDUC<TO) + 1(Tnuc>To))“l(‘XTA)]
< (0, 4) + EE%u[1g, i =Xg) + L, <z (0)]-
Therefore writing S = Tj© 07,
(0, A) 2 E%(1¢,  <soi(— X7, )
> J?P%Tpuc < S),

as vy(y) 2 3[vy(y) + vy(—=y)]1 2 3p* for ye DU C.

We have 6,(x) = v(—x), iz(x, A) = h(x, A) and so, writing B = {ye
A: d(y) > d(—y)} =D, C = C, D = B, and repeating the proof of (2.7) for X,
we obtain

(2.7)

(0, A) > 3p?P(Tp 6 < S).
Now
PTy < 8) =P%Ty,c<8S) (asD=B,C=0C)
= PTpuc < S) [by(25)].

As BUCUD=A, P(Tg,c<S)+ PTp,c<S)=1 and therefore, since
h(0, A) = A(0, A) > max(h,(0, A), h,(0, A)), we have h(0, A) > 1p2.
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Now suppose that X is not recurrent. Let K > 1, let Y) be the recurrent
process constructed in Section 1 and let u{*), ¢*) and A¥) be the functions u,,
¢ and A for YO, Then A{¥)(0, A) > Linf{¢'*)(y), y € A} for each K > 1. Now
if S = S is the stopping time given in Proposition 1.7(a) and ¢(K), n(K) are
the constants given there, then

IR0, A) — h)(0, A)| = E°1(TA>S,( fs Te=s dLY(X) — fs T"‘Y)e—deg(Y))’

< E%E% [“e*(dLY(Y) + dLY(X))
0

< E%~S(u{®)(0) + u,(0))
< ¢(K)uy(0)(n(K)/(2 + n(K))).
Letting K — oo, we deduce (2.6). O

PROPOSITION 2.5. Let A be a closed subset of R, and let x, y & A. Suppose
that for some K > 6,

¢o(x—2z) 2 K*(x —y), ¢(y—2)=2K¢*(x—y) forallz€A.
Then if ¢*(x — y) < 1u,(0),

5
(*‘Eydny>sMLAu{n)smmyy
ProoF. Let F={T, < T,}. Then
h(x, A) = h(x, y) = E*1p [ *dL; - E*1, [ "dL
T, T,
TA
< Ex(lFEyf dL:‘:) < Px(F)h(x’ A).
0

Thus writing ¢ = ¢*(x — y)/u,(0), we have
h(x7 A) - h(x7 y)

P*(F) > 7z, A)
R e S S
= h(x, A) 2 T Ki-9 = T K

because by Proposition 2.4, h (x, A) > 1K¢*(x — y).
Let B = A U {y}; we have

T —s g1«
hl(x9 y) - hl(x’ B) = ExfT e dLs

B

=E* lpe‘TBEXTBfT’e_S dL* < P*(F°)h(x, y).
0
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Hence 5
h(x,B) = P(F)(x,9) > (1= |z ),
proving the left-hand inequality; the other one is evident since T, > Tj. O

3. Basic estimates on the local time. Let A be a finite set in R, let
n= #(A)andlet A = {xy, xy,...,%,_,}. Set

(3.1) h,=h(x;,A-{x;}), 1l<i<n-1,
d= miinh,., D= 1<131<a')z( 1h(xo,x)

We will assume A satisfies

(3.2) #(A) =n > 20.

Let A, € and 7 be strictly positive constants satisfying

(3.3) e< &,

(3.4) A> IOm?.xhi,

(3.5) n < eN/2.

We begin by time-changing X to reduce it to a Markov chain on A. Let
V,=X,.cal?, and let «, = inf{s: V, > ¢t} be the right continuous inverse of V.
Let ¢ be a cemetary state, and set X X,, if a, < oo, X,=¢ if @, = o0. Then
X is a Markov chain on A U {{}, and if Q (gx,,) is the Q-matrix of X we
have g, ., = —h;forl<i<n-1 ’

Let Y, 7 > 0, be the jump chain of X and let M; = XX ol(y,-x, be the total
number of visits by Y to x;. For 0 <i<n -1, 1<]<M let V., be the
duration of the jth visit by X tox; for0<i<n-1, j>M let( ;) be
independent negative exponential ranc_lom variables with EV,; = h,-.

Set

H#=0(Y,,r=>0),

g, = o(VU, j=1),
. t
T = inft > 0: [15,.yds > A,

and let N(x,),0 <i < n — 1, be the number of visits made by X to x; before
time T. Let 7, = 7\(x,) be the inverse of Lj°.

LEmMMA 3.1. (1) #,9,i=0,. — 1, are independent.

(i) V;; are zndependent negatwe exponentzal r.v. and EV;; = h,.

(iii) Lx- =XV, for0<i<n-—1

(1v)N(x)EXV? for 0<i<n-1and o(V;,1<i<n-1,j21) is
independent of # V %,



1408 M. T. BARLOW

PROOF. This is essentially immediate from the construction of X, Y and the
V., O

Now set

A
A0 =A- ﬂ>\1/2, A=A+ 71)\1/2, ro(xi) = 70’ rl(xi = ;l—
Note that by (3.2)-(3.5) we have, for0 <i<n — 1,

A1 —e)
(3.6) ro(x;) = “max, B,

and similarly r,(x;) > 10. Note also that 1 —e <A/ A<1<A,/A<1+e
Let J be the random subset of A defined by

>10(1 —¢) 29,

(3.7) J={x;,1<i<n-—1:r(x;) < N(x;) <r(x;)}
and let
(3.8) B={#(J)< tn—-1}.

J is the set of “good” x;, on which we have reasonable control over N(x,); B
is the “bad” event that J is too small. We begin by obtaining a bound on the
size of B.

Set H = {7, < o0}.

LEMMA 8.2. P(B N H) < cexp(—n2/5D).

PROOF. Let £ =n—1— #(dJ), so that B = {£ > n/5}. Thus
ny -1

") E(£1H)

P(BnH)s(5

n—1

5
(3.9) = n i§1 P(N(x;) < ry(x;) or N(x;) = ry(x;), H)

<5 max P(N(x;) <r(x;),H)

1<i<n-—1
+5 max P(N(x;) >r(x;),H).
l1<i<n-1
Let1 <i < n -1 and write x = x;, A = h;. By Lemma 1.3(i) we have
P(Lz <A, H) = P(A - L7 > qN/2, H)
< P(Lz - Lz > nN/?)

(3.10) < exp( ﬁﬁ)

|- 55)
< exp —E .
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Similarly, by Lemma 1.3(ii),
P(L% > \,) = P(L% — A > 9N/%, H) < P(L%, — L3 > y\/2)
(3.11) —n2A -7 -
< exp(m(xo—’x)) < exp(m) < eXp(ED—).
We also have

(3.12) P(L% < Ng, H) 2 P(L% < A|N(x) < (%), H)
XP(N(x) < ro(x), H).

Using Lemma 3.1, the second term in (3.12) is

N(x)

Pl Y Vi, < AoIN(x) < rp(x)
Jj=1

2P( )y Vij<)\0)

1<j<r(x)

(3.13)
> P(Z,<A,), ‘
where Z; has a T'(r(x), h) distribution. By Lemma 1.1, as ry(x) > 1,
P(Zy < \y) = P(Z, < r,(x)h)
(3.14) =17 (n(x),0)
> cp.

Combining the estimates (3.10) and (3.12)-(3.14) we have, for 1 <i<n — 1,
(3.15) P(N(x;) < ry(x;), H) < ¢g'exp(—n?/4D).
A similar argument works for the other estimate. We have

N(x)
Vij > MIN(x) = r(x), H

Jj=1

P(L: >\,H)>P P(N(x) = r(x), H)

and

N(x)

Pl ¥ V> MIN(x) = r(x), H| > P(Z, > )),
Jj=1

where Z, has a I'(7(x), h) distribution and F(x) = [ry(x)].
Now

P(Z,>\) = P(Zl > fi(x)h + (rl(x) - fl(x))h)
> P(Z, > 7(x)h + h)
=y (F(x),1) 2 ¢,
by Lemma 1.1. From these estimates we obtain, for 1 <i<n — 1,
(3.16) P(N(x;) > ry(x;), H) < cq'exp(—72/5D).
The lemma now follows from (3.9, (3.14) and (3.15). O
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Let A;,1 <i<n—1,beintervals in R, let 2> 0 and let
p(x, B, A;) = P(Z(B, ;) € A,),
q(Bys By has By, x) = P(Z(By, by) — Z'( By, By)l > x),
F={a: L7 € A;forsomel <i<n-— 1},

N(x;-y) N(x,)

Y, = Z Vi—l,j_ Z Vij
Jj=1 j=1

b

G = {w:|Yy| > zforsomel < i< }(n—1)}.

PROPOSITION 3.3. (a) Suppose that
0<ay<p(x;,B,A;) forl<i<n-—1,r(x;)=<B<nr(x).

Then

(3.17) P(F°n {1, < w}) < exp(— %nao) + c2exp( z 2).

=

S

(b) Suppose that
0 < & < q(Boi—1» Bois Rai—1s hais 2)

n
forl <ix< — ro(x;) < Bi<r(x;),1<j<n.

Then

1 —n2
(3.18) P(G°N {1, < »}) < exp('g"“l) * Czexp(?.%)'

ProoF. Set §; = 1, (L7:), so that
lyap = 1H:ijll (1-¢).
As H, B, J are s#V Y measurable, we have
P(HNB°N F°) = EchlH'if[ll(l -¢)

- E[1BC1HE(11;!](1 — £V @0)].

Since L% = ENV,,

the r.v. §; are independent, conditional on #°V ¥, and by
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Lemma 3.1(ii),
1E(1 - £V 9p) = (1 - p(x;, N(x;), A))1y
< (1p+ 15:(1 — @)1y
Hence
1HnB°E(il;!](1 — &)V go) < lyap(l = a)™
and so
P(HNF)<P(HNB)+P(HNB°NF)
<P(HN B) + Ely (1 — ay)*’
<P(HNB) + (1 —a,)”* as #J > inon B°
< P(H N B) + exp(—1ina,).

(a) now follows immediately.
We now turn to (b). Set §; = 1y . ,, so that

Ig,= IT (1 - &)
1<i<(n-1)/2

By the same argument as in (a),
P(HN B0 69 < Bt TT (1= £ 9|
2ie K

where K = {2i: {2i — 1,2i} € J,1 < i < (n — 1)/2}. On B° we have #K > n/5
and

lynpE(1 = &8V 9) < (1 — o)1y p-
So

P(HN G®) < P(HN B) + E |1y 5(1 — )"
< P(H N B) + exp(—ina,),
proving (3.18). O
LEMMA 3.4. Let0 < z < eN/2 If A, is either [0, A — zN/?] or [A + 2N/, o0),
then for each1 <i<n — 1, ryx;) < B < r(x;),

1+5¢(z+7)°
2 d

(3.19) P, B, A;) > cy(e)exp| -

ProoF. Let1l <i < n — 1 be fixed and write r, = r(x;), r, = r(x;), h=h,,
x = x;. First consider the case A; = [0, A — 2X'/2]. Then, for B € [r,, r],

p(x: By A) Zp(x, r, A) = P(Z(rl’ h) <\-— z}\1/2)
= P(Z(rl’ h) <rh - (z + n)A1/2) = -Y_(r’ u),
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where u is defined by uhr}’? = (z + n)A/% Now u = (z + )h~ "2 (\/A)/* <
(z + n)h~'/2, and so ‘
p(x, B, A;) =y~ (r, (2 +n)R~12).
Since (z + 7)hY/2 < 2eN/2h~1/2 < 2¢rl/?, we have by Lemma 1.1(iv),
(1+2¢) (2 +n)*
2 h ’

(3.20) p(x,B,A) > cl(2e)exp(—

and as h > d, this establishes (3.19) for this case.
Now let A = [A + zA/2, w0). For B € [r,, ;] we have
p(x7 B: A) 2I)(x7 rO: A) = Y+(r0: u):
where u = (7 + z)A/?%(hr}/?)~%. Then
(n+2) (A" n+2 _

u= i \n| <A A- = sy

Now u, < 3er/?, and so, by Lemma 1.1(iii),
p(x: :B’ A) 2 Y+(r0, uO)

1+ 3¢

1+ 5e (9 + 2)°
2 h ’

> cl(Se)exp(— u(z)) > ¢,(3¢)exp

proving (3.19). O

LEmMMA 35. Let 1 <i<g(n—1), and let r(x;) < B; < r(x;) for
j=2i—1,2. Then if z < Leh,

1+3
(3-21) Q(.Bzi—p Bais Bai_1, i, z) = 01(3)29XP( - (“\_de)zz).

ProOF. We have B;h; > ry(x;)h; = Ay = M1 — &), and so z < &;h;. Thus by
Lemma 1.2,
(1 + ¢)22
2k ’

where & = B,,_h3,_| + By;h%;,. However k > Ay(hy;_; + hy) > 20 od, and (3.21)
now follows. O

q(Bzi-1» Bai» hoi—15 By, z) > 01(3)29XP( -

THEOREM 3.6. Let A, ¢ and X satisfy (3.1)—(3.4). Let
(3.22) 2o = eN/2 A (2d(1 — 8e)logn)"?,
(3.23) 2z, = (1eN/2) A (4d(1 — 8e)log n)"/?
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and let
FO={ min Lz <A},

l<i<n-1

F(+’={ max L% >\ + N/% }

l<i<n-1
G = { max I x2l. —_— L':2i—l| > Al/zzl}.
1<i<(n-1)/2 A
Then there exist c (), c5(&) such that, if F is either of F(*) or F(O),
et

(824) P(F%m <o)< czexp( (A Adlog n)) + exp(—c,(e)n®),

.2

A
(3.25) P(G% 1 < ) < czexp( ) ) + exp(—c;5(&)n*).

PROOF. Let n = ez, so that 7 satisfies (3.5), and set

1+ 5¢ (7I+20)2)

2 d

Take F = F) and let A;=[A + N/?z,,0) for 1 <i <n— 1. By Lemma 3.4
p(x; B, A;) = a for r(x;) < B < r(x;), and so, by Proposition 3.3,

a= c3(s)exp( -

1 —112
(3.26) P(F% 1, < ®©) < exp(— Ena) + c2exp( D )
Now
1 1 (1 + 5¢) . s
—gna= - Eca(s)exp[logn - Td—(l +¢)z3

< — %ca(e)exp[(log n)(l — (1 +5e)(1+¢)°(1 - 88))]

1
< - §c3(s)n',

since 1 — (1 + 5&)(1 + €)%(1 — 8¢) > &. Also
2 4
n e%2?2 ¢
—= — A
50 ~ 5D > 5p M dlogn);
and substituting in (3.26) we obtain (3.24). The case F = F(7) is exactly the
same.
We now turn to (3.25). Set 1 = e\/2 and let

(1 + 3¢)
a = c1(£)2exp( - W)\zf) .



1414 M. T. BARLOW
Then as —27 > —4d(1 — 8e)log n,
na, > ¢,(¢)’exp[(log n)(1 — (1 + 3¢)(1 — 8¢))]
> c,(¢)’exp(elog n).

By Lemma 3.5 and Proposition 3.3, since X%z, < eN/2, we have

&2\ 1
P(G% 1, < ) < cexp| — — | + exp( 3 al)

5D
ZA\ 1
< cexp| — 5—D} + exp(— gcl(e) n ) O

4. Sufficient conditions for discontinuity. Throughout this section X
will be a Lévy process satisfying (0.4), (0.5) and (0.15). Until the end of Lemma
4.4 we will also assume that X is recurrent. Let ¢ and p be the functions defined
by (0.12) and (1.3). Set

(4.1) H(u) =logl/p(u), u>0.

Let u, = p(27%), so that ¢(u,) = 27% Writing = for “converges or diverges
with” we have

o(u) du (u) du
) N

+ u(logl/u)l/2 Hu(logl/u)l/2

el Uk +1 1 ~1/2
= Y2k u“(log—) du
n u

Uy,

~ Z2—k2(H(2—(k+1))1/2 _ H(2—k)1/2)
k

= LHE ™M) 2%~ [ H(u)"* du
k 0+
and thus, as I(¢) =

(4.2) : f H(u)"?du = +oo.
0+
LEMMA 4.1. Let ¢ =1/20 and let a, b, A, z be chosen so that

0<a<b<iy(0)"?  p(b)/p(a)>20, A>20a?

(4.3) 1/2 1/2

z=eN? A la(H(a) — H(b)) "
Let A = {xy, xy,...,x,_,} be a set satisfying (1.4) and (1.5) and let F be either
of the events

{mmL

l<i<n—1 T (xo)

<>\—}\1/2z}, { max L,'(x)>}\+>\1/2}

l<i<n-1
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Then if 6 = ec,(e) A (¢*/40),
2

. Oa
(44) P(F ) < Cg€Xp| — 7

% A (H(a) - H(b))]).

Proor. Let h;, d and D be given by (3.1). Then, by Corollary 2.3,

2

u,(0)

and if x; is such that ¢(x; — x;) < a(l + &), we have

-1
4
h(x, x;) < b2(1 - ) < §b2 < 2b%,

h;<h(x;,x;) <a’(1+ 3)2(1 —-a?(1 + 8)2/u1(0)) < 2a?.
By Proposition 2.4, h; > h(x;, A — {x;}) > 1a® So we deduce that
la? < d, maxh; < 2a?, D < 2b°.
We also have A > 10max; A,. Since
1 p(b)
—a?(H(a) — H(b)) < d?2(1 — 7e)log—,
{a(H(a) - H(b) < d°2(1 - e)log 3

we have z < z,, where 2, is defined by (3.22). Therefore, by Theorem 3.6,
because n > p(b)/p(a) and P(7\(x,) < o) = 1,

P(F) < czexp( o (x A %(H(a) - H(b))))

+exp(—c,(e)exp(e( H(a,) — H(b,)))).

Writing H = H(a) — H(b), we have c,(¢)e* > c,(e)eH > 0a’b~%(H A Aa™?),
and (4.4) follows. O

4

REMARK. Though it will be obscured by the proof of Proposition 4.2, the
proof of discontinuity really breaks into two cases, according to whether

(4.5) limsup a?H(a) > 0
al0

or

(4.6) limsup a%H(a) = 0.
all

The first case follows almost immediately from Lemma 4.1. If a,, |0, with
a’H(a,,) > 8, and z,, = 2(a,, b) is given by (4.3), then 2, > eA"2 A §/2 >0
for all m. By Lemma 4.1 there exists a countable set D such that, if B =
{7 ¢(y) < b},

1 6
Pl sup (Lz —L%) <eN?A —8) < csexp(— —(AA 32)).
x€DNB 2 b
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Letting b0, it follows that L, has an oscillation of at least eX/? A (8/2)
around 0, and from this it is possible, as in [22], to deduce that L, is unbounded.

This argument is along the same lines as the proofs of discontinuity in [12]
and [22]. It would be interesting to know whether (4.5) is equivalent to their
condition

lim sup (log a)u,(0) > 0.

a— o0

If (4.6) holds, then z(a, b) — 0 as @ — 0 and the preceding simple argument
does not work.

PROPOSITION 4.2. Let X, be a recurrent process satisfying (0.4) and (0.5).
Suppose that I(¢) = . Then there exists a countable set D C R such that

(4.7) sup{L¢,ac DN [-n,1]} = forallt>0,7>0,a.s,
(4.8) inf{L¢,ae DN [-n,0]} =0 forallt>0,7>0,a.s.

ProoF. It is sufficient to prove (4.7) and (4.8) for a fixed n > 0. So let 7 be
fixed and set J = [—n, n]. Let £ = 1/20, K = log20, 8 = ec,(¢) A (¢*/40), A > 0
and 8 > 0. By Lemma 1.8 there exist sequences (a,),(b,),(r,) decreasing to 0

and satisfying (1.13)-(1.18). Clearly b, can be chosen as small as we like: We
choose it so that

2Ob¥ <A P(b1) < %, b, < %ul(o)l/2
and

{y:0(y) <2b} cd.
Now let (A,),(z,) be chosen by

AM=X\, 2= N2 A (3a,(H(a,) - H(b,))")

and
(4.9a) either A ,,=A,+N/%,, alln
(4.9b) or A,,,=max(\, — N/%,, p,,20a2), alln.

[The first choice of the (A,) is for proving (4.7); the second for (4.8).] For
each n; a,, b, \,, z, satisfy the hypotheses of Lemma 4.1. Since
Y,a,(H(a,) — H(b,))/? = w0, if (A,) are chosen by (4.9a) then A, — oo,
while if (A,) are chosen by (4.9b) then A, — 0.

We now construct a sequence of finite subsets of R as follows. Given x € R,
let I'(x, a, b) be a set constructed by Lemma 1.6, so that I'(x, a, b) satisfies (1.4)

and (1.5). Set

A, = {0},

A= U I(x,a,b,) forn>1,
x€A,_,

D= UaA,.

n=1
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Recall from Section 1 that ¢ defines a metric on R. Since ¢(y — x) < b, for
y€T(x,a,b,), we have ¢(y) < X'b; < 2b, for y € A,,. Thus D C {y: ¢(y) <

2b} c d.
Let v, = #I'(x, a,, b,); by the construction of T,
o(b,
Y, < ::((a )) = exp(H(a,) — H(b,)) < expH(a,).

Hence #A, =111y, < expE} H(a,)). Forn>1,x € A,_,, let
Ef(x) = {L(y, "'k,.(x)) >\, + N/%, for some y € I'(x, a,, b,,)},
F (x) = {L(y, "'A,.(x)) <X, — N{%z, for some y € I'(x, a,, bn)}
and let F,(x) be either F/(x) or E, (x). Set
G,= ) F(x).

x€A,_,

By Lemma 4.1,
P(G) < ¥ P(F(x))

xX€A,_,

n—1

< com| T Har) = 35( A aX(Hla,) - H(5)|

By the choice of (a,) and (b,), £, P(Gf) < 8 < 0, and so by Borel-Cantelli,
P(liminf G,) = 1. Set N = min{n: X7 15. = 0} and let R = 7, (0). Then N < oo,
R < xwas.and PIN=1)>1-.

Now let (A,) be given by (4.9a), and let E(x) = E;(x) for all x, n. Let
w € liminf G, so that w € F,(x) for all m > N(w), x € A,,_,. We define a
(random) sequence of points in D by setting xy =0€ Ay_, and, given
Xpnyees X, With x, €A, |, N <k <m, we choose x,,,, € I'(x,,, a,,b,) so
that

L(xm+1’ T)\m(xm)) > )\m+l;

such a point exists since w € F,(x,,). It follows that 7, _(%,,41) <7\ (¥,) <
- < R, and thus we have

Ly > A, forallm> N.

As A, = oo, we have sup, . , L} = . Thus sup, c g~y L% = o by Lemma 1.5,
and so by Lemma 1.4, sup, c q LY = oo for all ¢ > 0 a.s. Choosing ¢ small enough
so that sup, _,|X,| < n, we obtain (4.7).

Now let (A,,) be given by (4.9b) and let F,(x) = F, (x). We choose a random
sequence in D in the same way as before: Let x, = 0 and, given x, ..., x,, with
x; €A;_y,let x,, ., € I'(x,, a,, b,) be chosen so that L(x,,.1, ) (X)) <A, —
Np?2, <Ay Thus 7y (%,,01) = 7 (%,) = -+ > R, and therefore,

m+1

Ly <A, forallm=> N.
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Hence inf,., L3 =0 and so inf,.qn; L% =0 by Lemma 1.5. Since
P(R = 1(0)) = P(N =1) >1 - §, we have

P inf L% =0)>1-3.
x€QNJ

As §, A are arbitrary, this implies that inf, .o, ; L7, = 0 a.s. for each A > 0, and
(4.8) now follows easily. O

COROLLARY 4.3. Let ¢ > 0. Then
(4.10) {a€Q: L <e}isdenseinR forallt >0 a.s.

ProoF. For x € R let

K7 = liminf L.
a—-x
aeQ

It is sufficient to show that K} = 0 for all ¢ > 0, P%as., for each x € Q. Let
x € Q be fixed. By Proposition 4.2, K? = 0, P%as., and so, using the spatial
homogeneity of X, Ky = 0, P*a.s. Therefore Ky o0, < K, 5 =0forall ¢ >0,
P*-as., and thus, using the strong Markov property of X at T, we deduce that
KF=0forall t>0, Pas.O

LEMMA 44. {Lf,a € QN [—n,n]} is dense in R* for each >0, t> 0,
Plq.s.

Proor. This follows from (4.7) and (4.10) by the methods of [3, Proposition
4.2]. The hypotheses in [3] are stronger: It is assumed that X has a nowhere
dense range, which implies that {x € Q: L} = 0} is dense in R for all ¢ > 0.
However [apart from (4.7)], all that is needed is that given u > 0 and given a
stopping time S there exists a sequence (A,) of %,-measurable random variables
with A, € Q, A, » Xg and L~ < u, and this is guaranteed by (4.10). O

ProorF oF THEOREM 1. All that remains is to remove the hypothesis that X
is recurrent. Let X be any Lévy process satisfying (0.4), (0.5) and (0.15). Suppose
that the conclusion of Lemma 4.4 fails for X. Then there exists n > 0 and an
interval (u, v) C [0, o) such that

P(there exists t > 0 with L? € (u, v)° forall x € (—7,7) N Q) > 0.
Hence, as t — L is continuous for all x € Q, there exist ¢ > 0, § > 0, such that
P(L; € (u,v) forall x € (-n,7) N Q) >8> 0.

Now let K > 0 and let Y be the recurrent Lévy process constructed in Section 1.
By Proposition 1.7, Y = X on [0, S), where S = inf{t > 0: |AX,| V |AY,| = K}
and Y satisfies (0.4), (0.5) and (0.15). Therefore the conclusion of Lemma 4.4
holds for Y. Let K be chosen large enough so that P(S < ¢) < 6/2: This is
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possible by the remark following Proposition 1.7. Then, since Li(X) = L}(Y) if
t<S,
P(LXY) & (u,v) forany x € (—n,7) N Q) > 1§,

giving a contradiction. O

5. Modulus of continuity of x - L. In this section we consider Lévy
processes for which I(¢) < oo, and which therefore have a jointly continuous
local time, and will look at the modulus of continuity of x — L}. Upper bounds
for this were given in [1] and [3] (see Theorem B); the estimates of Section 3 will
enable us to obtain lower bounds. In many cases these differ from the upper
bounds of [1] only by a constant factor. If in addition ¢*(x) is regularly varying
at 0, but not slowly varying at 0, then a little extra work on the constants for the
upper bound gives an exact modulus of continuity.

Set

(I)O(x) = lnf ¢(y)’
yz=|x|

(5.1) ¢,(x) = sup o(y).

y<lx|

Thus ¢, and ¢, are monotone and ¢, < ¢ < ¢;, ¢, < ¢ < ¢,. Throughout this
section we assume

(5.2) I(¢) < oo.

From time to time we will make the following assumption on ¢, which will
enable us to obtain sharp results:

(5.3)  ¢*(x) = |x|*f(x), where a > 0and f is slowly varying at 0.

LEMMA 5.1. (a) Suppose (5.2) holds. Then, for any & > O there exists u, > 0
such that

-1/2
o(u) < 8(log;) for 0 < u < u,.

(b) Suppose (5.3) holds. Then

do(x)
¢i(x)

-1 asx—0.

PROOF. (a) is elementary, while (b) follows by standard properties of regu-
larly varying functions. O

Now let A > 0,0 < & < 75, and let # > 0 be chosen so that
(5.4) ¥(2) =1 —-¢ forz| <8.

[This is certainly possible, since ¢,(0) = 1 and ¢, is continuous.]
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Since ¢(x) = 0 as x = 0, ¢(x) > 0 for x > 0 and ¢ and ¢, are continuous
there exists a sequence 8, |0 with ¢(8,) = ¢4(5,) for all n > 1. We take §, < 6.
Let K > 1 be an integer and let

0-38
(5.5) A, = {rKSn,(rK +1)8,,0<r< %5 "}

so that A, c [0,0] and #(A,) = 2[(0 — §,)/(K8,)] + 2. Set
d(n,K) = nEuE h(x,A, - {x}), D(n,K)= me:.\xh(O,x).

LEMMA 5.2. (i) 1¢%(8,) < h(x, A, — {x}) < (1 — &) '¢*(8,) foreachx € A,
(i) 16(5,) < d(n, K) < (1 — &) %%(3,).

(iii) D(n, K) < (1 — &)7'/$1(0).

(iv) Suppose that (5.3) holds. Then, for all sufficiently large n,

d(n,K) > (1 — 8K *)¢*(8,).

ProoF. By Proposition 2.4, forx € A,
 h(n A, (2) 2 bmin{@(y - 2), y € A, - (x))
2 $46(3,)-
Also, if y is the unique element of A, with |x — y| = §,, then
h(x,A, — {x}) < h(x, ¥)

< ¥y - x)hy(x, y)

< (1-¢)7'¢%(8,),
by (5.4) and Corollary 2.3(a), which proves (i). (ii) follows immediately from (i).
Similarly,

R0, x) < ¢~ Y(x)¢*(x)
<(1-2)7" sup ¢*(2),

0<z<#@
proving (iii).
Now suppose that (5.3) holds. Let n be small enough so that f(Kx)/f(x) >
1 = ¢), $%(n) < (K*— 5)K and ¢3(Kx)/$*(Kx) > 1 — ¢ for 0 < x < n. Then if
x€A,, yeA,, with|x -y =8, 2€ A, - {x,y}and §, <n,
¢ (x — 2) > ¢5(x — 2) = $5(K8,)
> (1 - £)¢*(K3,)
f(K3,)
f(8,)

> (1 — &)’ K%?(8,).

=(1-¢)K"

$*(8,)
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By Proposition 2.5 and Corollary 2.3(a), we have
h(x, A = (x)) 2 hy(x, A = (x))

> (1 -6(1 - e)"2K"“)hl(x, {»})

2(8
>(1-601- e)_ZK_“)(l - LK”))&(B,,)
> (1 — 8K7%)¢%(8,)- O
Now let
(5.6) Yo =d(n, K)*/¢(8,), v = liminfy,.

The last lemma has shown that y > j, and that if (5.3) holds, then y >
(1 — 8K~ %)!/2 1t has also shown that for sufficiently large n, A, satisfies the
conditions of Section 3. Define z = z(n, K) by

z(n, K) = (4d(n, K)(1 — Te)log(#A ,))">.

Now log(#A,)/log(1/8,) - 1 as n — oo, and therefore z(n, K) <
c¢?(8,)(log1/8,)'/2 for sufficiently large n. Thus, by Lemma 5.1(a) 2(n, K) <
1eN/2 for all large n. Let

1/2
p(2) = ()| 1oe
and let p,, p; be defined similarly in terms of ¢, ¢,, respectively. By Lemma
5.2(1),
z(n,K)
p(8,)

log #A e
> v.(1 = 7)) ——=
zm( =) (1og(1/a,,)) ’

and therefore

z(n,K) 1
liminf ——— > 2y(1 — 7¢ 2,

Set
G(0,n) = { sup |L2*% — L2| > N/%z(n, K)}

0<a<f-3§,

Let y € R. By Theorem 3.6,
Py(G(ﬂ, n)Sm < oo) < exp(—c5(e)(2n)£) + czexp(_:.}fi_)
5D(n, K)
and thus, using Lemma 5.2(iii),

—Aée?
P’(limsqu 0,n); ™ < oo) < cexp| =—— 1.
menpG(f.n): o : "(e&;(o))
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Write H(8) = limsup, _, , G(0, n)5; clearly if 8, < 8, then H(6,) 2 H(0). There-
fore

PY(H(6); 7, < ) < limsup P(H(6,); 7 < o)
6,10

= 0.

Consequently liminf, G(8, n) occurs P”-a.s. on {7\ < o0}.
Thus there exist %, -measurable random variables A,, B,, with 0 < A, <
B, < 0 such that |A, — B,| = §, and

(5.7) |L(Am T)\) - L(Brv T)\)| 2 2Y>\l/2(1 - 7£)p(An - Bn)

for all large n, P’-a.s.
We now show that (5.7) continues to hold for a short time after 7,. Let

k,=loglogl/8, and let p> 0. Given a, b with |b — a| = §,, we have, by
Lemma 1.3(i) and (iii),

Py( sup |L%— L% > k,9(b- a)) < 2exp(

0<s<m(a)

kig*(b—a)
45+ (b — @) (e, b))
< 2e

provided n is sufficiently large and §, is sufficiently small. Set R, = 7(A,, p +
L(A,, 1)). By the strong Markov property of X we have, for all sufficiently
large n,

Py( sup |(L(An’ t) - L(An"r)\)) - (L(Bn’ t) - L(Bn"r)\))l 2 kn¢(8n))

n<t<R,
< 2e kn,
Passing to a (random) subsequence n;, we have
(L(A,, ) = L(A,, ) = (L(B,, £) = L(B,,n))| = k,9(8,)
forall , <¢t <R, ,forall i, P-as.
Therefore,

sup |L(A,,i, t) — L(Bni, t)|

n<t<R,
2 IL(An,’ T)\) - L(Bni’ T)\)I - kn,¢(8n,)
= 6(8,,)(2vX/2(1 - 7e)log(1/8,,) — loglog(1/8,))

> (1 — 8¢)2yN/%(8,,) foralllarge i, P>-as.
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For any interval IC R, t > 0, p > 0, let

S(I,p) = 1 \Lg ~ L}

,p) = lim sup ——-,

¢ 810 4 per P(b—a)
la—b|<é

o(t, I, p) = inf{s > ¢ sup (L7 — L?) > ,L}.
xel
Since o(7y, I, p) > R, , we have proved that
(5.8) S,([0,0],p) = 2YN/%(1 — 8¢) form < t<o(m,[0,0],p), P-as.
Now ¢ > 0 is arbitrary and X is spatially homogeneous, and therefore it follows
from (5.8) that

S,([a, b], p) > 2yN/2
(5.9)
for r\(a) < t < o(m(a),[a, b], n) for all rational a, b, A, , as.
Given t > 0, we can find A € @, with 1 — ¢)’2L¢ <A < L? and p € Q, with
t < o(m\(a),[a, b], p), and therefore S,([a, b], p) = 2y(1 — e)(L&)*/2 So (5.9) im-
plies that

(5.10) S([a, b],p) = 2y(L%)"? forallt>0,a,be Q" as.

Ifa=a,<a, < -+ <a, = b we also have, from (5.10),
S([a,b],p) = max S([a;_,a;],p)
1<i<m

> 2y max (L%)"? forall t > 0.

1<i<m

As L, is continuous, we obtain

1/2
(5.11) S,(I,p) = 2y(supL;‘) for all ¢ > 0, intervals I C R, a.s.
xel
We have proved (5.11) under the hypothesis I(¢) < oo. If however I(¢) = o0,
then by Theorem 1, S,(I, p) = + oo for all ¢ > 0.
We have proved

THEOREM 5.3. Let X be a Lévy process satisfying (0.4) and (0.5), and let
¢, ¢, be given by (0.12) and (5.1). There exists a constant y > ; such that

: L — L3 /2
lim sup Tz 2 2y(supL:)
(5.12) 340 q, bel o(b — a)(log|b — a| 1) xel
la—-b|<

foralls > 0, intervals I C R, a.s.
If, further, for some a > 0,
o(x) = x%f(x), where f is slowly varying at 0,
then (5.12) holds with vy = 1.
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REMARK. Suppose that ¢ is monotone in a neighbourhood of 0 and let
g(x) = fox(log u )" dg(u).

By [1, Theorem 1.1] for any interval I C R, we have

(5.13) lim e~ Ll _ ( L")l/2f all ¢ >0
. sup ——— < ¢,| sup or >0as.
810 4 ber g(lb - al) ! x !
la—b|<8
O0<s<t

Integrating by parts and using Lemma 5.1(i), we have

x du

x) =¢(x)(lo .1c‘11/2+l ¢(4) .
g( ) ¢( )( 8 ) 21;) u(logu-1)1/2
If ¢ satisfies (5.3) or, for example, ¢(x) = c(log(1/x))"# for some B > }, then
&(x) < cp(x), and the upper and lower bounds (5.12) and (5.13) differ only by a
constant. .

If, on the other hand, ¢(x) = (log1/x)"'/*(loglog1/x)~#, where B > 1, then
g(x) ~ (1 — B) '(loglog1/x)'# as x — 0, so that g(x)/p(x) > o as x — 0.In
this case the upper bound (5.13) is undoubtedly of the right form, and the lower
bound (5.12) needs to be improved by some kind of “ladder” argument, as in the
proof of Theorem 1.

We now show that, if (5.3) holds, then the lower bound given in (5.12) is exact.
ProOF oF THEOREM 2. By Lemma 5.2(b), ¢,(x)/¢,(x) = 1 as x — 0, and so

S(I, py) = S(I, p) = S(I, p,). Thus by Theorem 5.3 it is only necessary to show
that

1/2
(5.14) S(I, p,) < 2(supL§) forall £ > 0 a.s.
xel
To simplify notation let I =[0,1] and let ¢ > 0, A > 0.
Set

8,=(1+e¢7* Ek>1,

xbi=rd, +ied,, O0<r=<&'0<i<e’,
K, (x)=AALj,
Vii= sup|K(xh)) — KJ(ab)|, 0<r<8l0<i<e
r
2, = (1 + e)N/?2¢,(8,)(log 1/8,)"%,
F,, = {Vrk,i <zyforO0<r<g;'- 1},
G.= N F,

O<i<e!
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By Lemma 1.3(ii),

—2z2
ki k
P(Vr >zk) s2exp(4>\h(0’8k)).

By Corollary 2.3, 2(0,8,) < (1 + €)¢$*(8;) < (1 + £)¢2(8,) for all sufficiently large
k.
Therefore, for large %,

: 2
P(VFixz,) < 2exp(—(1 +e) " :17;1_:_85)
= 2exp(— (1 + ¢)(log1/8;))
=283t =2(1 +¢) 0",
So
P(Fg,) <828} =2(1+¢) 7"
and hence
P(Gg) <2¢7'(1 + e) *e.

Summing over %, by Borel-Cantelli we have P(liminf G,) = 1, and therefore
there exists a &, = ky(w) such that

(5.15) |VEi <z, foralk>k,0<r<§;'—-1,0<i<e’
We also have, by formula (3.7) of [1], that

sup|K,(b) — K,(a)] < e;¥/% [ “(1og(1 + u~%))""* dey(u)
(5.16) s=o0 0

for a, b € I with |b — a| < §(w).
Since ¢ satisfies (5.3), [J(log(l + u~2))/2do,(u) ~ 2/*(log1/y)"%p,(y) as
y — 0, and so (5.16) implies that there exists k, = k,(w) such that

(5.17) sup|K (b) — K (a)| <2¢;N%,(b—a) fora,bel,|b—al<$,.

It remains to verify that (5.15) and (5.17) together imply (5.14). Let a, b € I,
with 0 < b — a <8, A §,. Then there exists n > max(k,, k,) such that §, <
b—a<$, andi rsuchthatx'” l<a<x™ <a+ed, Then |b— x| <
la — x| + |b—a—8,| <2é8,. We have, from (5.15) and (5.17),

sup|K,(b) — K(a)| < supO|Ks(b) — K (xm4) + Vi
§>

>0

+ sules(xi"") - K (a)|

<z, + 4¢,N"%,(2¢8,)
= 2XN/2[(1 + €)n(8,) + 2¢.p,(2¢8,)].
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Now p,(0x)/p(x) — 0% as x — 0 and, therefore,
(5.18) sup|K,(b) — K (a)| < 2(1 + & + 4¢,2%*)N/?,(b — a)
s>0

for all sufficiently small |b — a|. As ¢ is arbitrary we deduce that

(5.19) . ANA L= XA LY
. m sup sup
510 la—b|<8 s=>0 pl(b - a)
a,bel

< 2N/2,

Hence, for each fixed ¢ > 0, we have

(5.20) Ii L= L ol uprs)”
. m sup sup ————— < (sup ") as.
810 |a—bj<b 0<s<t p:(a — b) cel
a, bel

It remains to show that (5.20) holds simultaneously for all ¢ > 0. However,
t — sup, ¢ ; L} is continuous, while the left-hand side of (5.20) is increasing in ¢.
(5.20) holds for all ¢t € @, and this extends to arbitrary ¢ by a simple approxi-
mation argument. O ’
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