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A THEOREM OF FELLER REVISITED!

By Z. D. Bar
University of Pittsburgh

In 1946 Feller proposed and proved a famous law of iterated logarithm.
Unfortunately his proofs were found to be incorrect, although the main result
was true. In this paper the author gives a new proof of the main result.

1. Introduction. Let X, X,,... be a sequence of iid random variables with
mean 0 and variance 1 and let S, = ¥_, X,. Following Lévy (1931), a sequence of
positive numbers {¢,} is said to belong to the upper class (with respect to {S,}) if
with probability 1 the inequality S, > ¢, holds for only finitely many n and is
said to belong to the lower class if with probability 1 the same inequality holds
for infinitely many n. Throughout this paper, these two cases will be denoted by
{¢,} € % and {¢,} € Z, respectively. The law of iterated logarithm proved by
Khintchine (1924) established that

Y, ifa>2,
(1.1) Janlog,n € {g’, ifa<2

for the special case where P(X; = —1) = P(X, = 1) = 1/2. Hereafter, let us
denote log, = log and log,,, = loglog,.
Following Khintchine (1924), Lévy (1933) proved that

%, ifa>3,
&£, ifa<a3.

Later, Kolmogorov [see Lévy (1937)] and Erdos (1942) showed that

/2nlogyn + anlogsn € {

o, if ff°t“1¢(t)exp[—§¢2(t)] dt < o0,

Vno(n) € {y, if [°¢"9(t)exp — 3¢°(1)] dt = co,

for the same sequence S, where ¢(-) is an increasing and positive function.

In the iid case, Hartman and Wintner (1941) proved (1.1) under the minimal
condition that EX, = 0 and EX? = 1. In Feller (1946), an attempt to extend the
upper and lower function results of Lévy and Erdés to random variables
satisfying only the minimal conditions was made. More precisely, Feller claimed
that if, as x = oo,

(F5) f‘t I>xt2dF(t) = O(1/log,x),
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386 Z.D. BAI
then the sequence {\/77 #(n)} belongs to the upper (lower) class if and onlv if

3 n-p(n)exp{— et} <o (= o)

where {¢(n)} is a nondecreasing sequence of positive numbers and F(¢) is the
distribution of X,. Also, he pointed out that if (F5) is not true, then the
statement is false. His proof is based on Theorem 2 in the same paper. But
Feller’s proofs were found to be incorrect. This error was implicitly pointed out
by Robbins and Siegmund (1970) and K. L. Chung communicated to Feller about
this error. However, Feller was too ill to take up this project.

The main mistake in Feller’s paper is that, according to his definition of
Xi,’ Xi// and Xi”/’ R
(1.2) X, +# X+ X+ X",
Also, the primed X ’s do not have vanishing expectation. In his notation, Lemma
2 and Lemma 4 are not correct. A similar way to make (1.2) hold and to impose
zero expectation for the new variables is to define them in the following way:

X,- [ xdF(x), iI1XJ<n,
"’, |x|<7h
Xi =
- f xdF(x), otherwise,
[x[<m,
X, - f xdF(x), ifn; <|x;)<Vi,
5., m <lel< Vi
Xi =
- xdF(x), otherwise,
m,<lxl<Vi
X, - f xdF(x), if |X)|>Vi,
> x1=V3
Xi/// e
- / xdF(x), otherwise,
lx|= Vi

where 7? = i/(log,i)*.
If we use the new notation defined here, Feller’s Lemmas 3 and 6 are false
although the exchange of definition makes his Lemmas 2 and 4 true. We have the

following counterexample.

ExaMpPLE 1. Let
P(X1 = —exp{%expzk}) = cexp{ —k — expyk} = p,,

0
P(X1=a)=1_ D
& ' k=1
where exp, = expexp and exp; = expexpexp, a and c¢ are positive constants
to be chosen such that EX, =0 and EX?=1. Let X, X,,... be an iid
sequence. Then it is obvious that (F5) holds. When n/(log,n)? < expsk <
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10(n + 1)/logy(n + 1))%, we have

> (—EXiind{ni <X < \/z_}) > (n - [10n logg3n])\/10g2n/n
i=[10nlog; %n]
2 (1/2)Vn 10g2n ’

where [x] denotes the greatest integer which is less than or equal to x and
ind( A} the indicator function of the set A. The above term cannot be ignored in
the proofs of Lemmas 4 and 6 (Feller) if we use X;” and X/”, respectively.

Now let, for i > 3,

y; = {Xi, if |1X,| < /ilogyt,
0, otherwise,
Y=Y -EY

and for i=1,2,3, P(Y;= £1)=p(Y/ = +1)=1/2. Write o? = EY? and
B? =Y 6% We have the following theorem.

THEOREM 1. If {X,} is a sequence of iid random variables with mean 0 and
variance 1 and if {¢,} is an increasing sequence of positive numbers, then
{B,¢,} € %(or &) if and only if

(1.3) i n”'gexp{ — 52} < o0 (or = ).

n=1

If assumption (F5) holds, i.e.,
(1.4) [ £2dF(t) = 0(1/l0g;x), asx — w,
t|=x
then we have the following theorem.

THEOREM 2. Suppose (1.4) holds. Then {\/rf(pn} e ¥ (or &), if and only if
(1.3) holds (correspondingly).

One may notice that our Theorem 1 is different from Feller’s Theorem 2 due
to the different definition of the B,’s. But this difference is not essential. In
Section 3, we shall give a corollary to Theorem 1, Theorem 3, which includes our
Theorem 1 and Feller’s Theorem 2 as special cases. In limit theory, a well-known
fact is that the truncation location can be arbitrary up to a multiple constant.
Our Theorem 3 shows that the range of this arbitrariness can be much larger,
even up to an arbitrarily high power of logn.

2. Lemmas.

‘LEMMA 1. In proving Theorems 1 and 2, without loss of generality, we can
assume that

(2.1) 2log,n + logsn < ¢2 < 2log,n + 4logsn, forn > 3.
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Proor. Define, for n > 3,
Pn> if 2log,n + logsn < ¢ < 2log,n + 4log,n,

or = { J2logyn + logzn,  if 2log,n + logsn > 42,

J2log,n + 4log,n,  if ¢ > 2log,n + 4logyn,

and ¢ =1,i=1,2,3.

Using the same approach as in Feller (1946), we can prove that the conver-
gence of the series (1.3) does not change if the sequence {¢,} is replaced by {¢*}.
Therefore Lemma 1 holds. O

LemMma 2. If X, X,,..., X,, are independent random variables with mean 0
EX? =02 E|X)|® < 0, i=1,2,...,n, then there exists an absolute constant C
such that

() = 0(x)| < € X B/ [ B0 + ],

where B2 =Y" 02, F(x)= P(S,< B,x) and ®(x) is the standard normal
distribution function.

The proof of this lemma can be found in Bikelis (1966).

LEmMA 3. Let X, X,,... beiid random variables with mean 0 and variance
1 and let the Y’s be as defined in Section 1. Then we have

() 24 P(X,, # Y;) < oo,
(ii) |7, EY | = o(/n/log,n).

The proof is trivial and is omitted.
LEMMA 4. If the sequence {¢,} satisfies (2.1), then (1.3) is equivalent to

(2.2) Y log"?kexp{—3¢*(2*)} < 0 (or = oo, correspondingly).

k=1
Proor. If the inequality of (1.3) is true, then we have
00 0 2k+l
Y bep(-11) > T L 27U e{ - 1e(2h)
n=1 k=1 p=0k+1

0
>3 T log"2h exp{ ~ 167(2")).
k=2
Hence the inequality of (2.2) holds. Conversely, suppose the equality of (1.3) is
true. Then we have
0 o0 2k+1
fo XnThep{—je) < X L 27%(2%)exp{ - 14%(2*))
n=>5

k=2 p—0k )

<2 ) -log'/%k exp{ — $¢*(2%)},
k=2
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which, together with the equality of (1.3), implies the equality of (2.2). The proof
of Lemma 4 is complete. O

3. Proof of main results.

3.1. Proof of Theorem 1. By Lemma 1, without loss of generality, we can
assume that the sequence {¢,} satisfies (2.1). By (i) of Lemma 3 and the
Borel-Cantelli lemma, we have P{X,, # Y/, i.0.} = 0, hence we have

n n
(3.1) Y X, — Y Y =0(1), as.
i=1 i=1
By (ii) of Lemma 3 and (3.1) we have
n n
(3.2) YX,- Yvy= o(\/n/logzn), as.
i=1 i=1

Note that the convergence of (1.3) does not change if we replace ¢, by
¢, + D/¢, for any real D. Thus if we can prove Theorem 1 for the sequence of
{Y,}, then Theorem 1 follows from (3.2). To this end, we need a result of Feller
(1970). The following paragraph will be devoted to introducing Feller’s notation
and his result. The reader should note that some notations in the following
paragraph may differ from those we used earlier, even though the same symbols
are used.

Let X, X,,... be a sequence of independent random variables with the
common mean 0 and variances 62, 05,..., respectively. Put S, = X, + -+ +X,,
st=o02+ - +02 Also, let {a,) and {B,} be two sequences of positive numbers.
Write a, = s,a, and b, = s, 8,. We make the following assumptions on the two
numerical sequences.

AssuMPTION A (Condition on {a,}). There exist constants A > 1 and C such
that

(3.3) Sk—SiS C(ak_ai)/ai, ifl Sak/aisA.

Furthermore «, — o0, and {a,} is monotone.
It is easy to see that (3.3) is true when {a,} is nondecreasing.

AssumpTION B (Condition on {8,}). (i) There exists a constant w > 0 such
that
(3.4) a,> B, > wa, .
(ii) To each n > 0 there corresponds a § > 0 such that
(3.5) 1-n<by/b<l+n ifl<aya,<1+8.
(iii) To each ¢ > 1 there exists a 7, > 0, such that
(3.6) bk/bi > Tgs if1 < ak/ai <t
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Let I = (L,, L,), with —o0 < L, < L, < o0, be a interval and denote
p(I)=P{S}el,io.},

S(I) = 3 min(L (an,, — a,)/B) P(SF € T),

n=1
where S* = (S, — a,)/b,. Also, for each real 7, define I,, = (L, —n, L, + ).
Feller (1970) proved the following theorem.

THEOREM (FELLER). Under the assumptions stated in the above paragraph,
we have:

(i) If =(I) < oo for some interval I, then p{I _,,} = 0 for every n > 0.

(i) If I = (L, Ly) with 0 <L, <L, < o0 and Z(I) = oo, then p{I,,} =1
for each n > 0.

Now we proceed to our proof by using the above result. Define
a,=¢, and B, =1/¢,.

Since {¢,} is nondecreasing, Assumption A is satisfied. (3.4) is automatically true
by the definition of B8,. Also, by (2.1) and the fact that n — B2 = o(n) we can
easily verify the validation of (3.5) and (3.6).

By Lemma 2, for any interval I = (L,, L,), we have

|P(sF e I} — [0(L*} - ®(L,)]| < C Y BIY{'B"L,
i=1

< Cn~Y%og;3?nE|Y,?,

where L, = a, + B,L, > |2log,n for all large n, L* = &, + B,L,, and ®(x) is
the distribution function of the standard normal random variable. Moreover, we

have
L ] [ee]

Y min{1,(a,,, — a,)/b,}n"?log; *’nE|Y,?

n=3

<CY Y (a,,- a2)27%/2log=*?kE| Yy |®

[oe]

< CY E)X,)’ind{|X,| € [A,4,,1)) Z 2 k/21og =12k

=1 k=

< Y 27 V2log™ VAE|X,Pind (1 X,| € A, Ayyy))

[oe]
Z E\X,’ind{|X,| € [4;,4,,,)} < CE|X,|* < oo,

I/\
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where A, = }/2'log! and ind{A} denotes the indicator function of the set A.
Hence =(I) < (or =) is equivalent to

(3.7) §3min{1,(an+l ~a,)/b,)(B(L*) - ®{L.}) < (or =)o,

for any interval I = (L,, L,).
Now suppose that

Y n7'exp{ — 12} < 0.

n=1

We shall prove {B,$,} belongs to the upper class with respect to T, =
Y, +---+Y,. We need only to verify that the inequality in (3.7) is
true for the interval I = (—1,00). In this case we have L* = c0 and L, =
o(n) — ¢~ Y(n) = ¢(n). It is well known that

1 - ®(x) < (2x) 'exp{ —3x?}, asx - 0.
Noticing that the convergence of (1.3) does not change by replacing ¢, as o(n),
we have, by Lemma 4,

S min(1, (@, — a,)/b,) (1 - 9{é(n)})

n=3

< CY n(a,,, — a,)exp{ — 3¢ (n)}

n=3
0 2k+1
(3.8) <CY L (au,—a,)2 " %exp(-14(2"))
k=1 p=2k41
x A,
< C Y a(2*+1)2 % %exp{ — 16%(2*)}
k=1

< C Y logkexp{—1¢%(2%)} < oo.
k=1

Thus, by (3.7) and (3.8), £(I) < 0. Taking n = 1, Feller’s theorem yields that
P(T, > B,¢,;i.0.} =0,
i.e., {B,$,} belongs to the upper class of {7,} and consequently belongs to the

upper class of {S,}.
Finally, suppose that

(3.9) Y n_1¢nexp{—§¢fl} = 0.
n=1
Take I = (1,3) and write' L* = ¢, + 3/¢, and L, = ¢, + 1/¢,. Then we
have, for large n,

(3.10) (an.y = @,)/b, = (ahiy = @)/ [(aniy + a,)b,] = (40) " '¢%(n).
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From (3.9) and (3.10), applying Lemma 4, we have
Y. min{1,(a,,, = a,)/b,}(2{L*} — ®(L,})
n=3

>

™8

n~%(n + 1)(27) " *(L* — L,}exp{ — 1L*?)

n

Ms =

> C Y ¢¥(2¢ Vlog~ 2k exp<_%(¢(2k+1) + 3/¢(2k+1))2}

k=1

8

> C Z log'/2k exp{_%(qs(zk-!-l) + 3/¢(2k+1))2} — w0,
k=1

which, together with Feller’s theorem, implies that p{(0,4)} =1 and hence
implies that
P{T, > B¢(n),i0.} =1.

Here we use the fact that (3.9) holds for L* = ¢(n) + 3/¢(n) instead of the
original ¢(n). The proof of Theorem 1 is complete. O

3.2. Proof of Theorem 2. Suppose that (1.4) holds. Then

2 _
o =1

O~ o0

>1-2 t>dF(t)
{11>filog,i }
> 1 — D/log,i, forsome D > 0.

Hence we have, for some D > 0,

(3.11) n>B2> Y o?> ) (1— D/logyi) > n(l — D/log,n).
i=1 ‘

i=1

Now suppose that

3 np(n)exp( - 14(n)) < .

n=1

Then by Theorem 1, {B,¢(n)} € . Since B, < Vn, we get {\/ﬁ(b(n)} EX.
Next, suppose that

(3.12) % no(n)exp{ — ¢¥(n)} = oo,

n=1

By Lemma 1, we can assume that log,n < ¢*(n) < 4log,n. By (3.11), we have
B, > Vn[1 — D/¢*(n)], which, together with (3.12), implies that

S n(n)exp{ — 1d(n)} = o,

n=1
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where ¢(n) = ¢(n) + 2D/¢(n). By Theorem 1, with probability 1, there are
infinitely many n such that S, > B (). Hence Theorem 2 follows from the fact
that B¢(n) > Vné(n), for large n.O

REMARK. To illustrate that if (1.4) is not true then Theorem 2 is false, we
have the following example.

ExampPLE. Let X,, n=1,2,..., be a sequence of iid random variables with
the common probability density function

p(x) = {c/{|xl3log|xllog2|x|log§|x|}, if |x] > a,
0, otherwise,

where a is a large positive number such that log,a > 0 and ¢ is a positive
constant such that, together with a, p(x) becomes a density with unit variance.
We can easily see that for large x (x > a),

/ t2p(t) dt = 2¢c(logex) ™!
18> x
Therefore for large n,

n n

Bl= Y o= Y (1-2/loggilogyi) < n(l — 8(logyn) ~?).

i=1 i=[a?]+1

Hence
(3.13) B, < \/ﬁ(l - (log3n)_2).
Take q§n = ‘/2 log,n + 4log,n, for n > 8. Thus by Theorem 1, we have

{Bg(n)} e 2.
Let ¢(n) = ¢(n)1 — (logsn)~2). Note that ¢(n) > qu(n)/\/r? and from
(3.13) we obtain that {\/_ ¢-(n)} € %. On the other hand, one can easily verify
that

i:‘,sn‘1¢(n)exp{~§ 2(n)} = o0

3.3. Proof of Feller’s Theorem 2. Let §,:8,, <8, <8,, be a sequence of
constants, where 81n = (log n)=% 8,, = (logn)® and b > 0. Let

Zvar{de[|X| <,/“3]} + 3.

Then we have the following theorem which is more general than Feller’s Theo-
rem 2.

THEOREM 3. Under the conditions of Theorem 1, {l_3n¢n} € % (or Z) iyf 1.3)
holds.
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PROOF. As in proof of Theorem 1, we assume (2.1) holds and X, is replaced
by Y,. Write

E = {k: thereisn € {2*7' + 1,...,2*} such that |B?/B? — 1| > 1/log,n)

and write B, = B,,if n € {21+ 1,...,2%} and k & E, = B,, otherwise. Since
for any ﬁxed real constant D, replacmg ¢, by ¢, + D/, does not change the
convergence of the series in (1.3), Theorem 1 implies that {B ¢,) € U (or 2) iff
(1.3) holds. Thus, to prove Theorem 3, it suffices to show that

2]1

U (S,=%B¢,),io.forke E|=0.

n=2k"141

(3.14) P

By Lévy’s maximum inequality [see Loéve (1977)] and Lemma 2, we have

2k
Pl U (S,21iBg,) P[Sy > 1Byrdpy]
n=2¢"141
(3.15) <2[1 - ®(Lop)] + C27*%(log k) > E| Yy|?

< C[kV® + 27%2(log k) "2 E| Yy?].

In the argument given above (3.7), we have actually proved

(3.16) Y 27%%(log k) ¥ E|Yy|? < oo.
k=1

Using the same approglch as used in Feller’s Lemma 4, one can get

=]

Y i~ Y(log,i) 'EX2ind[Vis,; < |X,| < Vidy] < oo,

which implies by summation by parts that

) ok
(3.17) 2 k(log k) ™' Y EX2ind[Vid,; < |X,| < Vidy,| < o0.
1

k=1 i=1
If k € E, then there exists an m € {2*~! + 1,...,2*)} such that

2k
2 *(logk) ™' ¥ EXZind[Vi8,; < |X,| < Vid,]
(3.18) i=1

> 2 *(logk) B2 - B%| > C(log k) * = k~1/%2,
(3.15)—(3.18) imply that

ok

YPl U (821Bg.)]| <o,

keE n=2k"141

which, together with the Borel-Cantelli lemma, implies (3.14), an¢ hence com-
pletes the proof of Theorem 3. O

\
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Note added in proof. An earlier version of this paper claimed that
Theorem 2 in Feller (1946) is not correct. Theorem 3 was formulated after the
author read a preprint by Uwe Einmahl. The author thanks the Editor for his
communication about this matter.
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