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TRAVELLING WAVES IN INHOMOGENEOUS BRANCHING
BROWNIAN MOTIONS. II'

BY S. LALLEY AND T. SELLKE
Purdue University

We study an inhomogeneous branching Brownian motion in which indi-
vidual particles execute standard Brownian movements and reproduce at
rates depending on their locations. The rate of reproduction for a particle
located at x is B(x) = b + By(x), where By(x) is a nonnegative, continuous,
integrable function. Let M(t) be the position of the rightmost particle at
time ¢ then as ¢ — oo, M(¢) — med(M(t)) converges in law to a location
mixture of extreme value distributions. We determine med(M(#)) to within a
constant + o(1). The rate at which med(M(¢)) = oo depends on the largest
eigenvalue A of a differential operator involving B(x), thecases A <2, A =2
and A > 2 are qualitatively different.

1. Statement of principal results. An inhomogeneous branching Brownian
motion (IBBM) is a branching process in which individual particles execute
independent Brownian motions and undergo binary fission at a rate B(x)
depending on the spatial position x. At time ¢ = 0 there is a single particle
located at x = 0. In [6] (cf. also [4]) we showed that if B is continuous and
% B(x) dx < oo, then the distribution of M(t), the position of the rightmost
particle at time ¢, approaches a travelling wave as ¢ » co. In this paper we
consider the case B(x) = b + B(x), where b > 0, By(x) >0, B, is continuous
and [, By(x) dx < co.

The asymptotic behavior of the distribution of M(¢) depends on B(x) pri-
marily through the largest eigenvalue A and corresponding L2-eigenfunction
<p(x) [normalized so that ¢(0) = 1] of the differential operator g(x) - 1g”(x) +

b~ 'B(x/ Vb)g(x). Since b B(x/Vb) =1 and [®_ By(x)dx < o0, A > 1; also
@(x) > 0 everywhere (cf. [3], Chapter 9). Set p = X{2(A — 1)} ~1/2,

THEOREM. If A > 2 there exists a cumulative distribution function F(x)
such that as t > o,

(1.1) P{M(t) < Vbpt + x} - F(x),
forallx € R. If A = 2 there exists a c.d.f. F(x) such that as t - oo,
(1.2) P{M(t) <Vb(V2t- (1/2v2)log ¢) +x} - F(x),
forallx € R. If A <2 there exists a c.d.f. F(x) such that
(1.3) P{M(t) <Vo(V2t - (3/2/2)log t) + x} - F(x),
for all x € R. '
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This result should be compared with the corresponding result for homoge-
neous (B = 1) branching Brownian motion (BBM). For this process it is known
(cf. [8], also [1]) that the distribution of the position of the rightmost particle at
time ¢ approaches a travelling wave, and the median m, satisfies m, = y2¢ —
(3/2V2)log ¢ + constant + o(1) as ¢ — c0. Comparing (1.1)-(1.3) when b = 1,
one sees that if A > 2 the right edge travels much faster than for the BBM, if
A = 2 the right edge travels a little faster and if A < 2 it travels at essentially
the same rate. Thus there is a “threshold” effect: When the enhancement B(x)
of the base reproductive rate 1 becomes sufficiently “large” that the eigenvalue A
crosses from A < 2 to A > 2, suddenly the production of extra particles allows
the process to outrun the homogeneous BBM.

We shall refer to the different cases A > 2, A = 2 and A < 2 as the superecriti-
cal, critical and subcritical cases, respectively. We shall assume throughout the
rest of the paper that b = 1; the general case may be recovered by rescaling time
and space. Furthermore, we shall only consider the special case where B,(x) has
compact support: The general case may be obtained by a modification of the
argument similar to that in Sections 6-7 of [6]. For our analysis of the critical
case we shall borrow some delicate estimates from Bramson [2]. For the subcriti-
cal and supercritical cases, however, no such heavy machinery will be needed.

2. The basic argument for the critical and supercritical cases. Con-
sider an IBBM with branching rate function B(x) = 1 + By(x), where B, is
continuous, has compact support, B, > 0 and By(x) > 0 somewhere. Using an
auxiliary randomization, classify the particles of the IBBM as “blue” or “red” as
follows: If a particle is born at position x, label it blue with probability
Bo(x)/B(x) and red with probability 1/8(x). The original particle, which is born
at x =0, ¢t = 0, is labelled blue. Observe that all blue particles other than the
original are born in the (compact) support of S,,.

Clearly, each particle (blue or red) produces red descendants at constant rate
1. Thus, for each blue particle, the movements and reproductive histories of itself
and its direct red descendants (i.e., those without an intermediate blue parent)
constitute a homogeneous BBM (constant birth rate 1). Thus, the IBBM is the
superposition of a sequence of homogeneous BBMs. If M;(t) is the position of
the rightmost particle among the ith blue particle and its direct red descendants,
then

M(t) = max(Ml(t)’ Mz(t),”-’ MNB(t)(t))’

where Npg(2) is the number of blue particles born by time ¢.

The process of blue particle births looks approximately like an inhomoge-
neous, doubly stochastic Poisson process for large ¢. This follows from a theorem
of Watanabe [9], which implies that for each bounded interval oJ,

(2.7) lim N(t; J)/eM = Z [ p(x) dx as.
t—o00 J

Here N(t; J) is the number of IBBM particles in J at time ¢ A > 1 [since
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Bo(x) > 0 somewhere] is the leading eigenvalue of the differential operator
g — 1g” + Bg, o(x) the corresponding L*-eigenfunction such that ¢(0) = 1 and

e fR ¢(x)N(t; dx)
Z = lim
e [ d

[Note: In Section 2 of [6], we did not normalize properly in our definitions of Z,
and Z. There also, one should divide by [pe*(x) dx.] Because of (2.1) and the
continuity of 8, and ¢, blue particles are born in dx at rate (approximately)

ZeMBy(x) p(x) dx,

for large t. Therefore, conditionally on the value of Z, the process of blue
particle births is approximately an inhomogeneous Poisson process. It also
follows that the number Ny(t) of blue particles born by time ¢ grows
like ZA~'e*By(x)p(x) dx.

Consider now a process in which blue particles are born in spacetime at rate

ze*B)(x)p(x) dxdt, t=0,

where z > 0 is a constant, and each blue particle gives rise to a homogeneous
BBM of red particles started at the birthplace (in spacetime) of the blue particle.
Call this process a “Poisson wave” of BBMs. Observe that the process of blue
particle births is an inhomogeneous Poisson process. The evolutions of the
various BBMs in the wave are independent of each other and of the blue particle
birth process. Let M;*(¢) be the position at time ¢ of the rightmost descendant
of the ith blue particle, Ng*(¢) the number of blue particles born by time ¢
and M*(t) = max(M*(¢),..., My (t)). For each ¢t > 0 the positions
M*(t), Mg*(¢),..., Mgy, (t) constitute a Poisson point process on R with inten-
sity measure

>0 a.s.

o [ [ Bolx)p(@)ole = 5,y = x) s by,
where
o(t, x) == %u(t, x)

and 1 — u(t, x) is the cumulative distribution function of the position of the
rightmost particle in a homogeneous BBM at time ¢. Thus

(2.2) P(M*(t) <y} = exp{—z [ B e ()ule = 5,5 = x) dxds}.

In Proposition 2 we will prove that if A > 2 (the supercritical case) and
= AM2(A — 1)} '/2 then

t— o0

i [ MBu(5)p(e)ule - 5, i + 3 - ) dede = KooV,
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for a certain constant 0 < K; < oo. Consequently,

(2.3) tlin:OP{M*(t) <pt+y}= exp{ —zKle“/my}.

In Proposition 3 we will prove that if A = 2 (the critical case), then
(2.4) tl_i{?o [)t'[naezsﬁo(x)w(x)u(t —s,x,+y—x)dxds = Ke V2,

where x, — m, > oo as t - oo, m, being the median of the distribution of the
rightmost particle in a homogeneous BBM. Hence

(25) Jim P(M*(¢) < x, + y} = exp{ —2zK e "?}.

Observe that in both the supercritical and the critical case the “center” of the
wave (pt in the supercritical case, x, in the critical case) diverges to co faster
than m,. This implies in both cases, for any £, < oo,

lim P{leading particle at time # is a direct descendant of a

(26) °
blue particle born before time ¢,} = 0,

because with probability 1 only finitely many blue particles are born before ¢,.
But this is true also of the IBBM, and we have already remarked that for large
time the production of blue particles in the IBBM, conditional on Z, is nearly
the same as in the Poisson wave of BBMs. Consequently, (2.6) must hold for the
IBBM as well. Now (2.6) implies that for large ¢ the distribution of M(t) is
practically unaffected by the blue particles born before ¢,; therefore, conditional
on Z = z, the distribution of M(¢) is essentially the same as that of M*(¢). It
follows from (2.3) and (2.5) that

(2.7)  lim P(M(¢) < pt + y} = Eexp{ —ZK,e V**"D7}, A > 2,
t— o0

and
(2.8) lim P{M(t) < x,+y} = Eexp{ ~ZKpe "}, A=2.
t— o0

A rigorous proof of (2.7) and (2.8) may be fashioned from this argument by
coupling the IBBM with Poisson waves of BBMs as in [6], Section 5. (In this
coupling, blue particles from the IBBM are paired with blue particles from the
Poisson wave; once two blue particles are paired, they give rise to the same BBM
of red descendants.) We shall not give the details of the construction.

In the subcritical case (2.6) does not hold, so the distribution of M(¢) cannot
be approximated by mixing distributions of M*(¢). For this case a different
approach is needed (cf. Section 4).

3. Asymptotics for the critical and supercritical cases. The cumulative
distribution function 1 — u(¢, x) of the position of the rightmost particle in a
homogeneous (B =1) BBM solves the Kolmogorov—Petrovskii-Piscounov
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(KPP) /Fisher equation
u,= su, +u(l —u),
with the initial condition u(0, x) = 1{x < 0} (cf. [8] and [1]). It is known that
u(t, x) approaches a travelling wave with velocity v2 : In particular,
(3.1) u(t,m,+x) > w(x) ast- o,
where u(t,m,) =1, m,= V2t — (3/2/2)log ¢t + constant + o(1) as ¢ > oo, and

w(x) ~ Cxe V2% as x > oo [2]. Moreover, the Feynman-Kac formula implies
that

(3.2) u(t,x) = e‘E"exp{—/(;tu(t - s, X(s)) ds}l{X(t) <0},

where X(s) is a Brownian motion started at x under E* ([8] and [2]). Condition-
ing on X(t) and reversing time, we may rewrite (3.2) as

(33) eu(t,x) = [ plt, %, y)alt, y,x) dy,

— 00
where
p(t, x, y) = (2mt) e~ =0'/2
&(t, y,x) = E"""exp{_ [u(s, X(s)) ds}
0

and under E% > * the process X(s), 0 < s < ¢, is a Brownian motion conditioned
by X(0) =y, X(t) = «.

(3.4)

PROPOSITION 1. For each p > V2 and t > 0,

(3.5) u(t, pt) < p~Y(27t) " exp{ —t(p2/2 — 1)}.

Furthermore, there exist constants C, depending continuously on p € V2, )
such that

(3.6) u(t, pt) ~ C,t~%exp{ —t(p*/2 — 1)}
as t — oo, uniformly for p in any compact subset of (2, ©).
This is a large deviations theorem for the rightmost particle in a homogeneous

BBM. Similar results may be obtained for solutions of u,= ju,, + f(u) for
certain f by similar methods.

ProoF. Since u > 0, (3.2) implies that )
u(t, tp) < e’P*{X(t) <0},
from which (3.5) follows easily. -
Let X(s), 0 < s < t, be a Brownian motion conditioned by X(0) = y, X(¢) =

pt. If p> V2 and s, is large, then with probability near 1 the path X(s),
S < s < t, lies entirely above the straight line from (0,0) to (¢,(V2 + ¢)t),
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¢ < p — V2. Relation (3.5) therefore implies that for sufficiently large s,
E»>Hexp{ — [§ou(s, X(s)) ds}
Eb»rexp{ — [fu(s, X(s)) ds}

1< <1l+n,

where 7 is small and ¢ > s,.

As t —» oo the distribution of X(s), 0 < s < s,, conditional on X(0) =y,
X(t) = nt, approaches that of a Brownian motion started at y with drift p.
Hence
lim E* J""‘exp{— fsou(s, X(s)) ds'} = E"yexp{— fsou(s, X(s)) ds'},

0 0

t— o0
where under E?, X(s) is a Brownian motion started at y with drift p. Once
again, if p > V2 and s, is large, then with P?-probability near 1 the path X(s),
8o < 8 < 0, lies entirely above the line x = (V2 + ¢)s. In view of (3.5),

- E,;Vexp{—f{: u(s, X(s)) ds} c14q
Eexp{ - [5° u(s, X(s)) ds}

Letting s, — oo (and therefore n — 0), we obtain

lim E* y”“exp{— j:u(s, X(s)) ds} = E”yexp{— /:ou(s, X(s)) ds} > 0.

t— o0

A routine argument based on likelihood ratios shows that this holds uniformly
for y in any compact subset of (— 00, 00) and p in any compact subset of (V2 , c0).
We now apply (3.3), expanding the exponent in p(¢, y, ut), to obtain

V2ate Y 2y(t, ut) = fo ery =Y /2R Y, "‘exp{— ftu(s, X(s)) ds} d_):
0

— 00
0 )
- f_ ooe"yE,;Vexp{—j(; u(s, X(s)) ds'} dy.

This implies (3.6). O

Recall that for a Poisson wave of BBMs the distribution of the position of the
rightmost particle at time ¢ is given by (2.2). The following result shows that this
distribution converges to a travelling wave in the supercritical case.

PROPOSITION 2. Assume A > 2; let p = M2(A — 1}7/2 As t - oo,
@B7)  [[ e Bo(x)p(x)u(t s, pt +y - x) dxds > Kpe”POD,

0 'R .

where

(3.8) K, = oo p(m/(A = 1))"* /.. Bo(x) () eV*A =D gy,

uniformly for y in any compact subset of R.
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Proor. Consider the function
h(s)=(A-1)5-p2/21-5), 0<s<l
The maximum of % on [0,1] is attained at 5, = (A — 2)/2(A — 1) > 0 and
h(5,) = -1, H(3,) =0, h'(5.)=—4A-1)°/\
Relation (3.6) implies that for 0 < s < (1 — )¢, any & > 0, as t > oo,
eMu(t—s,pt) ~ Cq_gn1(t— s) V2exp{\s + (¢t — s) — p?t%/2(¢ - 5)}
= Cu-5(1 - §) V2t Ve%exp{t(1 + h(5))},
where § = s/t. Similarly, (3.5) implies that for (1 — &)t <s < ¢,
eMu(t—s,pt) <p '(1 - §) V%t V%exp{t(1 + h(5))}.
Therefore,
j:e"su(t — s,ut)ds ~ t/? /:E*J;SCF(I_;;)-I(I — §) /2t +hG) g5

~ C’L(l—E,)"l(l - §*)_l/2(_277/h"(§*))l/2
= C2,L(>\—1)/A(7’/(7\ - 1))1/2

by Laplace’s method of asymptotic expansion. A similar but somewhat messier
analysis shows that

¢ -y2(A-Dx
j(;exsu(t —s,pt+x)ds ~ C2p.()\—1)/)\(77/(>\ - 1))1/29 A=z

uniformly for x in any compact set. Since By(x) has compact support, (3.7)
follows directly. O

The result (3.5) implies that there is a solution x, of the equation
(3.9) fte2‘u(t —s,x,)ds=13.
0

LemmA 1. lim,_  u(¢ x,) = 0.

PROOF. Suppose u(t, x,) > ¢ for arbitrarily large ¢. Since w(x) ~ Cxe™ V2% as
x = o0, (3.1) would imply that u(t — s, x,) > ee /2 for C; < s < Cy(?), with
C,(t) - oo as ¢t = co. But this contradicts (3.9). O '

Lemma 1 implies that x, — m, > oo as ¢ = co. An easy calculation based on
(3.5) shows that limsup,_,x,/t < V2; since m,/t - V2, it follows that
x,/t > V2.

: PROPOSITION 3. Ast — oo,
(3.10) x,— m,= (1/v2)log ¢ + constant + O(1)
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and
(3.11) /Otezsu(t —8,%,+x)ds > le V2%,

uniformly for x in any compact subset of R.

Since B, has compact support, (2.4) follows from (3.11), and we get that the
distribution of the position of the rightmost particle in a Poisson wave of BBMs
approaches a travelling wave as ¢ » o in the critical case A = 2.

ProoF. First we show that the primary contribution to the integral in (3.11)
comes from 0 < s < KVt, where K is large. For z > /2¢, (3.5) implies that
u(t, z) < (4nt)""%xp{t — 22/2t}. Let y,=m,+ (1/vV2)logt; recall that
m, = V2t — (3/2v2)log t. Hence for large ¢ and all x in a bounded set

¢ 2 ® —1/2,-s? ® -2
e*u(t—s,y+x)ds<C| t V% */tds=C| e * ds,
[ ety mzf f

for some constant C < co. By choosing K sufficiently large we can make this
arbitrarily small.

Next we appeal to results of Bramson [2] to analyze e?*u(t — s, y, + x) for
0 < s < Kyt. It follows from (8.64) and (8.65) of [2] that for r > 0, r/¢ < & and
m,+8r<z<V2¢t+Kt,

B(8) '(r)'C(r)(z — m)exp( V2 (2 = m,) - (2 - V21)’/21)
<u(t z)
< B(O)v(r)C(r)(z = m)exp{~V2(z — m,) - (= = V28)"/21),

where C(r) = 2/7 [§° yeﬁyu(r, ¥+ V2r)dy < o0 and B(§) - 1, ¥(r) > 1as
6 — 0, r - 0. Consequently, as ¢t = oo,

fK‘/;eésu(t -8,y +x)ds
0
~ Cooe_\/z—(yt_mt"'x)fK‘/Z(yt - m, +x+ ‘/Es)
0

—(yn+x—V2(¢t-s))
Xexp( 2t ) )ds

~ Cwe“/g"t‘l( th\/is'e‘("')2 ds"),
0

where C, = lim,_,  C(r) € (0, 0). Relations (3.10) and (3.11) now follow di-
rectly, with the fact that the constant coefficient in (3.11) is 1 following from the
definition of x, in (3.9). O

4. The subcritical case. Consider now the subcritical case A < 2. As in the
critical and supercritical cases we assume that the branching rate function
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B(x) = 1 + By(x), where B(x) > 0, By(x) > 0 somewhere and B, has support in
a bounded interval J*. Since B > 1 the rate of production of new particles in the
IBBM is greater than or equal to that for a homogeneous (8 = 1) BBM.
Consequently, if M(t) is the position of the rightmost particle in the IBBM,

(4.1) P{(M(t) >x} >u(t,x), Vt>0,x€R,

and therefore the distribution of M(¢) “travels” at least as fast as the travelling
wave for the BBM.

Recall the classification of IBBM particles as “red” or “blue” (Section 2). For
a given blue particle call a red descendant a direct descendant if there are no
intermediate blue descendants. Recall that the direct descendants of a blue
particle constitute a homogeneous BBM.

PROPOSITION 4. For any & > 0 there exists t, < o such that for all t > 0,
P{rightmost particle at time t is descended from a blue
particle born after time t,} < e.

ProOF. Watanabe’s theorem [cf. (2.1)] implies that N(t, J*) ~ C’Ze:. Blue
particles are only born in J*, and the intensity of the blue particle birth process
is [By(x)N(t, dx). Consequently, there is a constant C” < o and a time s < oo
such that

P{ # blue births during [s + j, s +j + 1]
<C'eMtNVYj=0,1,2,...} >1—¢/3.

Consider now a blue particle born at time r > 0. The position at birth is in
J*, hence to the left of ¢ £ sup J*. The direct descendants make up a homoge-
neous BBM; the probability that the position of the rightmost direct descendant
is greater than or equal to x at time ¢ > r is less than or equal to u(¢t — r, x — £).

It therefore follows from (4.2) that if M (t) is the position of the rightmost
particle at time ¢ descended from a blue particle born after time r > s, then

(4.3) P(M(t) 2 x} <e/3 + ftC”e“u(t —r,x—§)dr.

(4.2)

Recall that u(t, m, + x) = w(x) as t = o0, w(0) = %, w(x) ~ Cxe~ V25 a5 x -
o0, and m, = V2t — (3/2V2)log t + constant + o(1) as ¢ — oo. In fact, some-
what more is true:

(4.4) u(t,m,+ x)tw(x), forx>0,
(4.5) u(t,m,+x)| w(x), forx <0

* (cf. [2], page 32, Corollary 1). Choose x so that w(x)> 1 — ¢/3; then (4.5)
unphes that u(¢, m,+x)>1 — ¢/3,Vt> 0, and (4.1) implies that

P{M(t)>m,+x} >1—¢/3.

Now consider [!C”e*u(t — r, m, + x — §)dr. If ¢ is sufficiently large, then for
0<r<vtlogt, m,=m,_,+ y2r + o(1), so by choosing t, large we can make
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[by (4.4)]
/‘/—k’gtC” Mu(t—r,m,+ x — &) dr

< f‘/_bgtC "er(x — £+ \/fr)e“/f’ dr
te

< ¢/6,

since A < 2. On the other hand, the inequality (3.5) implies that as ¢ — oo,

ft eMu(t—r,m,+x—§¢)dr - 0.

Vilogt
Hence for ¢, sufficiently large

P{M,(t) >m,+x} < 2¢/3
and
PM(t)>m,+x} >1—¢/3,

for all ¢ > ¢, This proves the proposition. O

Consider a branching diffusion process that evolves as follows. Until time ¢,
the movements and fissions occur in exactly the same manner as in the IBBM;
after time ¢, individual particles move and reproduce as in a homogeneous BBM.
Thus in the new process individual particles execute independent Brownian
motions; before time ¢, the instantaneous rate of reproduction of a particle
located at x is B(x), whereas after time ¢, the reproduction rate of any particle
is 1. Let X,(2), X\(2),.. N(t)(t) be the pos1t10ns of the particles in his new
process at time ¢ and let M(t) = max, _; < N X.(t).

The conditional distribution of M(t), t > t, given the positions

X(t),..., X e, (t.) is as follows:

P(M(t) < xIZy(), -, Xey(2)

I=—[ (1 —u(t—t,x- X',-(te))).

Now as ¢t > o, u(t — t, m, + x) > w(x + y2t,); consequently, as ¢ > oo,
N(t)

(4.6) P{M(t) <m,+x} > ET] (1 - w(x - X(2,) +2¢,)).
i=1

Thus the distribution of M(¢) approaches a travelling wave, and the “location”
m, of the wave is the same as for a homogeneous BBM.

Now consider the IBBM. By Proposition 4 the distribution of M(¢) is very
little different from that of M(¢), in particular,

P{M(t) > x} < P(M(t) > x}

(4.7) .
< P{M(t) 2 x} +¢,Vx.
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Moreover, the distribution of (Xy(t,),..., X ne(t)) is the same as that of

(Xy(2,), ..., Xp.,(t.)), because the two processes evolve the same way up to time

t.. Now (4.6) and (4.7) imply that for each x € R,

N(t,) -

(4.8) o(x) = lin%)E Il (1 —w(x - X,(¢,) + ﬁte)) >0
e=0 =1

exists and
lim P{M(t) < m,+ x} = v(x).
t— 00

REMARK. The convergence in (4.8) follows on other grounds. For a homoge-
neous BBM the process [TY9(1 — w(x — X,(¢) + v2t)) is a bounded, positive
martingale (cf. [5]). Because of the occasional production of “blue” particles and
the fact that 0 < 1 — w < 1, for the IBBM, ITY9(1 — w(x — X,(¢) + V2¢)) is a
supermartingale. Hence (4.8). Observe that in the subcritical case this super-
martingale has a strictly positive limit, whereas in the critical and supercritical

cases it converges to 0.

5. Concluding remarks.

1. The methods of this paper can be adapted to show that M(t)/t — p as. in
the supercritical case and M(t)/t - V2 as. in the critical and subcritical
cases.

2. We have assumed throughout that the IBBM starts with a single particle
located at x = 0 at time ¢ = 0. Replacing B(x) by B(x — x,), we see that our
results are also valid for an IBBM started with a single particle at x, at time
¢t = 0. However, the shape of the limiting waveform changes with x,. In a
subsequent paper [7] we shall investigate the dependence on initial conditions
in a more general framework.

3. It is natural to inquire about the possibility of characterizing those continu-
ous functions B(x) such that an IBBM run with branching rate B(x) will
exhibit the travelling wave effect. We believe that if lim,_ B(x) and
lim, , _B(x) exist and are finite, then the travelling wave phenomenon
should occur. It seems unlikely that this is a necessary condition, though. We
conjecture that a sufficient condition for the existence of a travelling wave is
that for every & > 0, lim,_ [*"® B(y) dy exists and is finite,
limsup, , ,x 7! [°, B(¥)dy < co. We have been able to prove that if 8(x) —
o0 as x — oo, then there can be no travelling wave.

4. Burgess Davis asked us about the “genealogy” of the rightmost particle at
time £. Our methods lead to the following picture. In the supercritical case,
the rightmost particle at time ¢ (¢ large) is descended from a particle located
at distance O(1) away from the origin at time {(A —2)/2(A — 1)}t +
O(Vt log t), but has no ancestors that were O(1) away from the origin at any
time after {(A — 2)/2(A — 1)}¢ + /2= In the critical and subcritical cases,
the rightmost particle at time ¢ has no ancestors that were within O(1) of the
origin after time #/2*¢,
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