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THE LAW OF THE ITERATED LOGARITHM FOR B-VALUED
RANDOM VARIABLES WITH MULTIDIMENSIONAL INDICES!

By DELI L1 AND ZHIQUAN WU

Jilin University

Given independent identically distributed random variables {X, X5; 7 €
N? } indexed by d-tuples of positive integers and taking values in a separable
Banach space B we approximate the rectangular sums {3z ., Xz; 7 € N9}
by a Brownian sheet and obtain necessary and sufficient conditions for X to
satisfy, respectively, the bounded, compact and functional law of the iterated
logarithm when d > 2. These results improve, in particular, the previous
work by Morrow [17].

1. Introduction and results. Let N¢ be the set of d-dimensional vectors
n = (n,,..., ny) whose coordinates n,, ..., n, are natural numbers. The symbol
< means coordinate-wise ordering in N% For 7 € N¢, we define

d
7l = I1n,
=1
and
a; = (2d|7|Ly|n|)">.

Here Lx = logmax(x, e), Lyx = L(Lx).

Let B be a real separable Banach space with dual space B* and norm | - ||.
Throughout {X, X,, X5; n > 1, 7 € N¢} are independent identically distributed
(ii.d.) B-valued random variables, S, = ¥z _ ;X3 and S(n) = £, X, for n € N¢
and n > 1. We say X satisfies the bounded LIL{*) (and write X € BLIL(?)) with
respect to the normalizing constant a; if

ISl

S
(1.1) lim sup £ lim sup 155

7 as; m— + o0 R as;

< +o00 as.

We say X satisfies the compact LIL(Y) (and write X € CLIL(¥) with respect to
the normalizing constant a if

n

S
(1.2) P({ P ne Nd} is conditionally compact in B | = 1.

Obviously, BLIL® > BLIL® > CLIL® and CLIL® > CLIL®. If d =1, we
write BLIL and CLIL instead of BLIL® and CLIL®, We say X satisfies the
central limit theorem (and write X € CLT) if there is a mean zero Gaussian
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random variable W with values in B such that
(13) 2(S(n) /) » 2(W).

In the case d =1, under the assumption that EX =0 and E|X|%< +o0
Kuelbs [12] has shown that the compact (bounded) LIL is equivalent to the
sequence of probability measures {£(S(n)/ (2nL,n); n > 1} being uniformly
tight on compact (bounded) sets on B. However, it is well known that the
moment conditions EX = 0 and E||X||2 < + oo are neither necessary nor suffi-
cient for X € CLT or X € BLIL in the infinite-dimensional setting (see [11] and
[20]). In addition, under the assumption that X € CLT, Goodman, Kuelbs and
Zinn [4] and Heinkel [7] have shown that X € CLIL if and only if
E(]| X||2/Ly|| X|l) < + . Recently, Ledoux and Talagrand [15] have character-
ized the random variable satisfying the BLIL and CLIL; they showed that
X € CLIL if and only if E(||X||?/L,|| X|) < + o0, {|x(X)|% x’ € B*, ||z’ < 1}
is uniformly integrable and S(n)/ /2nLy,n —p 0.

In the case d > 2, if B = H (Hilbert space), Morrow [17] (the case B = R is
due to Wichura [22]) has shown that X € CLIL® if and only if EX =0
and E(|X||X(L||X|)?"/Ly||X]) < +o0. If B is a general real separable
Banach space and X is a B-valued random variable with EX = 0 and
E(| X% L|| X|)?"* < + o0, Morrow [17] has shown that X € CLIL if and
only if S(n)/ y2nLyn —p 0.

In this article we improve Morrow’s results and characterize the BLIL(®) and
CLIL® for d > 2 in the following way.

THEOREM 1. Let {X, X,, X;; n>1, n € N} be i.i.d. B-valued random
variables and d > 2. Then

(1.4) X € BLIL@®
if and only if

(15) E(IXI2(LIXI) /LX) < +o0
. and the sequence {S(n) /y2nLyn; n > 1} is bounded in probability.
THEOREM 2. Let {X, X,, X;; n>1, n € N} be i.i.d. B-valued random
variables and d > 2. Then

(1.6) X € CLIL@
if and only if
E(IXI(LIXI)*™" /Lyl X)) < +o0
(1.7)
andS(n)/|2nLyn —p 0.
We give the proofs of Theorems 1 and 2 in Sections 8 and 4, respectively. The

methods of proof used in Theorems 1 and 2 are by now classical in probability in
Banach spaces and rest on the ideas of [4], [7], [3] and [13]. Note in particular
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that since d > 2 the moment condition E(||X||%(L||X|)?"!/Ly||X]|)) < + o0 im-
plies that E||X||> < + oo, which is not the case when d = 1. With respect to [15]
the whole approach is simplified by this property and in particular no weak
moments have to be studied. This cutoff between the cases d =1 and d > 2 is
already apparent on the real line as observed by Wichura [22]. By way of
comparison, it is of interest to note that there is no such discontinuity with
regard to d in the strong law of large numbers (see Mikosch and Norvaisa [16]).

The covariance function T(-, -) of a B-valued random variable X is defined
by

(1.8) T(f,8) = E(f(X)g(X)), f,g< B,

and X is said to be pre-Gaussian if its covariance structure is realized by some
Gaussian measure on B.

Let Cg([0,1]%) denote the Banach space of B-valued continuous functions f
on [0,1]¢ with

(1.9) I fllo="sup IIf(E)I.

tefo,1]¢

For 72 € N? and £ € [0,1]¢ define f, € Cx([0,1]%) by

m.
—1 _ i, — =
a; S5, fort,=—,i=1,...,d, m<n,

1
0, if t;=0forsomei=1,...,d,
(1.10) fz(2) = { (Lagrange interpolation indtl,. e by
over the cube {Z e [0,1]%
(m;=1)/n;<t;<myn;,i=1,...,d},
e<m<n,

where e = (1,...,1). Let H; be the reproducing kernel Hilbert space in B
generated by the covariance function T' = T(-, -) and K be the closed unit ball
of H; (see Kuelbs [10]).

We say that X satisfies the functional LIL®) (and write X € FLIL®) if

(1.11) EX =0, Ef%(X)< 4+, VfeB*
) K is a compact set on B,
1.12 lim inf | f; — =0 a.s.
(112) m inf | = fll =0 as
and
P({f e Cy([0,1]1%); fisa| - ||,-limit
(1.13) (7= cf )

point of { f; 7 € N9}} =3rT) =1,

where ). is the set constructed on page 269 in [17].
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Under the assumption that X is pre-Gaussian, E(||X||%(L||X|)%"!) < + o0
and S(n)/ {2nLyn —p 0, Morrow [17] has shown that the rectangular sums
{S# 7 € N?} can be approximated by a Brownian sheet {W(%); # € [0, + c0)?}
in B (for the details see [17], page 266). Under the assumption that
E(|X|IA(LIX|D*" ") < + o0 and S(n)/2nLyn —p, 0, Morrow [17] has shown
that X € FLIL® and conjectured “that the moment condition of this theorem
can not be improved”; however, for B = H he obtained an optimal moment
condition ([17], Theorem 4).

We improve Morrow’s results and obtain the following theorems.

THEOREM 3. Let {X, X;; 7 € N?} be i.i.d. B-valued random variables.
Then there is a Brownian sheet {(W(%); t € [0, + )%} in B with covariance
function T(-, ) determined by (1.8) such that

S, — W(n
(1.14) lim 125~ WU Il _ 0
n a,—,
if and only if
X € CLIL®,
(1.15) { and X is pre-Gaussian.

THEOREM 4. Let X be a B-valued random variable. Then

(1.16) X € FLIL@®
if and only if
(1.17) X € CLIL®,

Since in type 2 spaces random variables X such that EX = 0 and E||X||%2 <
+ oo satisfy the CLT and are therefore necessarily pre-Gaussian (cf., e.g., [19]),
the preceding theorems imply the following corollary.

COROLLARY 1. Let d > 2 and X be a random variable taking values in a
space of type 2. Then the following statements are equivalent:

(1.18) EX=0, E(IXI2(LIXIN?"/Lyl X]l) < +oco.
(1.19) X € BLILY,
(1.20) X € CLIL®,
(1.21) X € FLIL,

There is a Brownian sheet {W(t); t € [0, + )%} in B with
covariance function T(-, -) determined by (1.8) such that
S; — W(n

o 185 = WOI

7 a;

(1.22)
0
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Theorems 3 and 4 are proved in Sections 5 and 6, respectively. The proofs of
Theorems 3 and 4 are obtained via an application of Thoerem 4 of Morrow [17]
and our Theorem 2.

2. Preliminary lemmas. For the proofs of Theorems 1 and 2 we need the
following lemmas.

LEMMA 1. Let {Z;; 7 € N?} be a collection of B-valued independent sym-
metric random variables. Then for any t > 0,
1),

(2.1) P( max| Y Z| > t) < 2dP(
mrlz<m

Proor. This is a generalization of Lévy’s inequality. For d > 2, it is easily

found that

Y 7

k<h

(2.2) P(glay_( Z; < 2P| max Y Zy, |2t
msn _Sm m, S 1 dend
i=1,..., - k.<m
i=1,...,d—1
where 7 = (n,,...,n;) € N? and the conclusion follows by iterating this in-

equality. O

The following Lemma 2 is due to de Acosta [3], page 275. Further references
for the B-valued case can be found in [12] and [23].

LEMMA 2. Let{Z,; k= 1,..., n} be independent B-valued random variables
such that ||Z,)| < b, a.s., k=1,...,n. Let ¢ be a seminorm on B such that
g <| | Then for all A > 0,

n n n
(2.3) Eexp{K(q( ) Zk) - E‘I( ) Zk))} < exp{2}\2 ) qu(Zk)ez)\b"}.
k=1 k=1 k=1
LEMMA 3 (Pyke [21]). Let X be a B-valued random variable. Then
X P(IX| > 2%7l)

< _/:w"' L+wP(||X||zx1 e Xg)dxy e dxy

(2.4) X
= E( n*” E(M) - (-D)E(XI-1)"
< _EdP(uXu > 7)),

where a*= max(0, a), L*x = max(0, log x).
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LEMMA 4. Let {X, X,; n>1)} be i.i.d. B-valued random variables and
S(n)=X,+ -+ +X,, n> 1. Then

() {S(n)/{2nLyn; n =1} is bounded in probability if and only if
sup, ., E||S(n)/ y2nLyn| < + c0; and

(i) S(n)/ y2nLyn —p 0 if and only if E||S(n)/ 2nLyn|| — 0.

Proor. This fact is due to Pisier (cf. [19], Proposition 2.1 with \2nL,n
instead of Vn ). O

The next lemmas will take into account what happens above the level

VInl/Lyin .

LEMMA 5. Let {X, X;; n € N%} be i.i.d. B-valued random variables with
E(IXIXLNXID?" /Lol XD < +co. Let

(2.5) Us = Xalyx,» fmigmy 7€ NY

Then

(2.6) lim ) U3/ \2|n|LyR| =0 a.s.
n k<n

ProoOF. This follows since
(2.7) Y P(U;#0) = ¥ P(IX]| = 2RIL,JA]) < +oo
neN? rReN?

by Lemma 3 and E(|| X||2(L|| X|)? /Ly X]|) < +o0. O

LEMMA 6. Let (X, X,, X;; n>1, n € N?%} be symmetric i.i.d. B-valued
random variables with d > 2. Let

(2.8) Va = Xal fmyL,m <iXq1< Zmitam)
and
(2.9) =YXV

k<h

for n € N Then we have:
(I) Under (1.5),

(2.10) limsup||T;||/y2|7|Ly|72| < +o0 a.s.
7
(I1) Under (1.7),
(2.11) m T/ 27| LR =0 a.s.
n

The idea of the proof used in Lemma 6 can be found in Goodman, Kuelbs and
Zinn [4], Heinkel [7] and Kuelbs and Ledoux [13].
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Proor oF LEMMA 6. We only give the proof of (II), as the proof of (I) is
analogous. For 7 = (n,,...,n,;) € N% let I(7) = {(ky..., kg); 2% 1< k; <
2m —1,i=1,...,d}, |All=n, + --- +n, and

(2.12) ARy = ¥ E[
' weron | 2IRIL,JRI |

It is easy to check

A(R) < B{IXI T <y s } /2 L2

(2.13) X112
< cE ml(zﬂﬁ"sc,||X||2Lz||XII2}

where aj = 2/Fl=d/[ 2I7 B = 9. 2IRI[ 2%l and ¢, > 0, ¢, > 0 are constants
such that for all x >0, Ly(x/2%L,x) > (2%/c,)Lox and 2L,(x/2%*'Lyx) >
(1/cy)Lyx. If X’ is an independent copy of X, then .

Y A7)

rneN?

XX
2E{ LI X |12 L) X'|? L Lomcopxipraxe,ixi<ixn

reN?

(2.14)

<9 E{ X1 1x* e(LIXI)I }
B LI XN L x Haxn 1)

IXIPCLAXI) ™ X UCLIX)
< 2cjc,E - ,
Lol X1l L)1 XN

where c¢; > 0 is a constant such that (2L(c;x2L,x2))? < cy(Lx)? for all x > 0.
When d > 2, we get

E

(2.15) Y A7) < 2ck,

rReN?

XX
Lyl X

By standard methods and symmetry (2.11) is equivalent to

(2.16) lim Y W/y2-2lIL2 =0 as.
n kel®n)

Using the Hoffmann-Jergensen inequality [8], pages 164-165, in order to estab-
lish (2.16) it is enough to show that

(2.17) > P( max ||Vk|| > g2 - 2PIL 2""") <40, Ve&>0,
kel(n)

reNd
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and

(2.18) Y

rneN?

2
Y W “ > g2 - 2"ﬁ"L22""‘“)) <+, Ve>0.

kel(n)

P(

It is easily seen how E(|| X||%(L|| X|)?"*/L,|| X|]) < + oo implies (2.17). Concern-

ing (2.18), note first that, by symmetry and the contraction principle (cf. [8])
X "

kel(n)
=< E(”S(gllﬁll—d)"/\/w).

Hence, by Lemma 4 and (1.7), we have

/]/2 . 2IInIIL22IIﬁII) =0.

Now, (2.18) is equivalent to saying that for any & > 0,

2
P( > s‘/2 . 2IIﬁIIL22IIﬁII)

The quadratic inequality of de Acosta [2], Theorem 2.1, shows that

g
(2.19)

LV

(2.20) lim E (
n kel(n)

-E

(221) X

reN?

LV

kel(n)

LV

kel(R)

< +o0.

p( Z Vil - E Z Vil = 51/2 . 2II7tIIL22IIﬁII)
kel(n) kel(R)
(2.22) 4
< i o = EIVaI?,
2.¢2.9l IL 217 Felm

so that, by definition of A%(%2), in order for (2.21) to hold, it suffices that
Y5 endA%(7) < + co. But this has been proved in (2.15); the proof of Lemma 6 is
therefore complete. O

The following lemma is a generalization of a result of de Acosta [3], Lemma
3.2

LEMMA 7. Let {Z; 7 € N¢} be a collection of B-valued random variables.
Assume

(2.23) P({Z;; n € N} is bounded ) = 1
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and for every € > 0 there exists a finite-dimensional subspace F such that

(2.24) P(limsuqu(Z,-,) < e) =1,

where qp(x) = inf  pllx — y|, x € B. Then
(2.25) P({Z,; n € N?) is relatively compact in B) = 1.

PROOF. Let A be a subset of B. It is easy to prove that A is relatively
compact in B if and only if sup,  4||x|| < + oo and for every ¢ > 0 there exists a
finite-dimensional subspace F C B such that sup, c 4inf . z|lx — ¥|| < e. So the
proof of the lemma is straightforward. O

3. Proof of Theorem 1. By a standard symmetrization procedure (cf., e.g.,
[1]), it suffices to prove the theorem under the assumption that X is symmetric,
so we do this. Since X € BLIL(* implies

. Il Xl
(3.1) lim sup

—— < +® a.s.
a o y2(|Ly|7]

by the Borel-Cantelli lemma there exists a constant ¢; > 0 such that

Y P(I XAl = ey2[RIL,07 )

neN9
= X P(“X” 2 ¢ 2|ﬁ|L2|ﬁ|) < 4+ oc;
reN?

hence E(|| X ||2(L|| X|)?"!/Ly|| X|l) < + co by using Lemma 3. It remains to show
that (1.5) implies (1.4). Now, following [3], we truncate as follows:

(3.2)

Yi(7) = XﬁI<||xi||sr,/|m/L-_)|ﬁ|)’

- d
(39 Wir) = T %i(r), nEN
k<n

where 7 > 0 is a parameter. By Lemmas 4, 5 and 6, we have
(3.4) limsupw <+ as

' 7 y2|n|L,|n| '
and

Wa(r S(n)

(3.5) sup E IWL()Il B 1Sl ,

neN’ V2|n|L2|n| n>1 v2nL2n
Let I(n), ||n|| be as in Lemma 6; then there exists a constant ¢, > 0 such that

for all 7 € NY and all k € I(n), \/2|7e|L2|7e| > ¢,y 2 - 2I7IL, 217 By applying
Lemma 1 and Lemma 2 with A = (2a?) ™ 'tL,2!™ (where a® = E||X||* is finite
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under the necessary integrability condition and d > 2) we have
sup IIW_’;(T)H Sty

ke I(7) \/W Cs
< 2P((IWin (7)1l = ENWis(7)1) /)2 - 2L, 270 > ¢)

(86) < 2% ME(exp{M(IWss(r)ll - EIWia(r)l)/y2 - 271,277 })

< 2de->“eXp{2}\2 Z (E||177¢||2/2 . 2|IﬁIIL22IIﬁI|)e2)\b2,—.}
k<2®

P

< 2dexp{ - ( %)2(2 — exp( t'r/v/Z—az))L22"’_‘“} ,

where 72 = (n,,...,n,) € N% 27 = (2™,...,2") € N¢ and by = 7/ 2 L2,
Take ¢t = 2(d + 1)a and 7 > 0 such that 2 — exp(2(d + 1)7/a) > 1. Then

wp I 2d+ Da+y
kel | 2k|L, | c
3.7) d+1)?
. < 2dexp{ _ (_T)— L22llﬁll}
< 2%(log2) ~“"(JIm)) ~“*P.
Since '
- (38) T (1R~ < + oo,
rReNd
we get
W,
(3.9) lim sup IWL()Il

== < +0 as,
R V2|n|L2|n|

which together with (3.4) implies that X € BLIL(®), The theorem is proved. O

4. Proof of Theorem 2. That (1.6) implies (1.7) follows easily from Kuelbs’
(compact) LIL ([12], Theorem 4.1) and (3.1). By [1] it suffices to prove that (1.7)
implies (1.6) under the assumption that X is symmetric. Let Y;(7), Wi(r),
il € N be as in the proof of Theorem 1. Since (1.7) and d > 2 imply E|| X||? <
+ o0, we have

W,
lim E [Wa()ll

41) === =0
“D n 2[RI Ly|n]
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and
Su— Wilr)

lim ————— =0 as.
7 y2|n|Ly|n|

by applying Lemmas 4, 5, and 6. Let ¢(-) be a seminorm on B such that
q(-) < | - |); then we have

(4.2)

(4.3)

y2[7| Ly| 7]

Let I(n), ||n|| and the constant ¢, > 0 be as in the proof of Theorem 1.
Proceeding as in that proof, for every ¢ > 0 we get

P( sup q(W’;(T)/\/2|7e|L2|7e|) > (2(d + 1)a + e)/cl)

kel(n)

: ( Wi(7)
m Eq

(4.4)
<2?/(log2) '(IaIN ",  |ml>1,

by using Lemmas 1 and 2, where a? = Eq%(X) and 7 > 0 is a constant such that
2 — exp(V2 (d + 1)7/a) > L. Therefore by using (4.2), we get

2(d + 1)( Eq¥(X))"?
(4.5) P limsupq(S-,,/\/2|r_z|L2|r't|) < ( )(cq (X)) =1.
n 1
In particular,
S, 2(d + 1)(E| X)12)""*
(4.6) P| limsup 3 2+ DEIXIH) T
7 y2[n|Ly|n| ¢

Given & > 0, choose a finite-dimensional subspace F such that E(g2(X)) <
e%c2/4(d + 1)% hence

(4.7) P( limsup g,( S,/ 2RIL ) < e) -1
R
By applying Lemma 7, we have X € CLIL'%), so the proof is complete. O

REMARK. Let {X, X;; 7 € N’} be i.i.d. B-valued random variables, d > 2,
and X € CLIL®), Then

n
— —x
ap

(4.8) lim inf

n xekK

=0 as.,

S _
(4.9) P(C{a—; ne N"} =K) =1

n
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and

S
UPM-_— =vyd sup||x| as.,
7 y2|n|Lyin| xeK

where a; = |2d|n|Ly|n|, K is the closed unit ball of the reproducing kernel
Hilbert space Hy and T(f, g) = Ef(X)g(X), (f, g € B*), and C{x5; 1 € N%)}
denotes the all limit points of the sequence {x5 n € N?}. Indeed, under the
assumption that X € CLIL®) Wichura’s LIL lmphes that

(4.10)

(4.11) mn_supf(;j”'_i) (Ef(x))"* as, VfeB*

The remark then follows from the argument provided in [10] for d = 1.

5. Proof of Theorem 3. That (1.14) implies X € CLIL® is clear and for
any f € B*, we get

(5.1) lim_supf(%) hmsupf( W(ﬁ)) a.s.

By applying the Hartman-Wintner LIL [5] and Wichura’s LIL [22] we have
(5:2) (Ef*(X))"* = (Ef*(w(e)))"”,

where & = (1,...,1) € N9 so for any f, g € B*,

(5.3) Ef(X)g(X) = Ef(W(e))g(W(e)),

that is, X is pre-Gaussian.

Now we prove that (1.15) implies (1.14). Let T( f, g) = Ef(X)g(X), f, g € B*,
T =T(,-) and {@}; v > 1} be a sequence of bounded linear functionals on B
with the property that the points ¢, = [pép*(£§)P(X € d§), v > 1, constitute a
CO.NS. {¢; v=>1} in H; and £ =Y2 1(p,’,"(&)q),,, for £ € H, (see, e.g., [10],
Lemma 2.1). The inner product (:,:) in H, is given by (¢, ¢,) =
J8PX(§)eX(§)P(X € d§). We first prove that for each § > 0, there is a Brownian
sheet {Wy(%); Z € [0, + )} in B with covariance function 7Y(-, -) defined by
T(f, 8) = Ef(X)g(X), f, g € B*, such that
(5.4) lim sup ————”Sﬁ Wo(®)] <6

n n

For this we employ the maps IT, associated to the covariance function T(:, -) of
X, Iy(¢) = Y. . 0*(£)9,, £ € B. Let Qy = I — II; as shown in Theorem 3.1 of
[10], given 8 > 0 there exists N, with

0
(55) sup @ (6)] < ;-
¢eK
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Hence X € CLIL® implies

(5.6) lim inf a7 'Qn(S;) — Qu(6)] =0 as.
and

0
(5.7) lim_supa,—:1||S,-, - (S| < 5 as.

Let p = min(Ny,dim Hy). Then IIy(B) is the Euclidean space R” equipped
with the norm |-|=| ||y induced by B-norm on H,c B. We define X =
N (X), S, = T3 . » X;; then there exists a Brownian sheet {(Wy(D); t € [0, + 0)?)
in B with covariance function T = T(-, -) of X such that

(5.8) n'_?)a;"ﬁ,, — Iy, (Wy(R))[| = 0 as.

by applying Theorem 4 of [17]. Therefore
1S5 — Wy(n)]|
p— <

(5.9) lim su

n

0

The rest is similar to [17], pages 282-283. O

REMARK. Let d>2 and {X, X,, X;; n>1, n € N9} be iid. B-valued
random variables. Then, as a corollary to Theorems 2 and 3, there is a Brownian
sheet {(W(?); t € [0, + 00)¢} in B with covariance function 7T(-, -) of X such that

S, — W(n
a0 LTI
n n

if and only if

’

IXN2(L) X))
E ( LiXI ) <

S(n)/y2nLyn —»p0

and X is pre-Gaussian,

(5.11)

where S(n) = X; + -+ +X,, n > 1.

6. Proof of Theorem 4. Since X € FLIL implies X € CLIL® is clear,
we only need to prove that X € CLIL® implies X € FLIL®, Let IT, be as in
the proof of Theorem 3, N > 1. Since IIy(X) € CLIL® and II,(X) is pre-
Gaussian, it follows that

(6.) fm inf [Ty(fs = ), =0 as.
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and
P({f € C4([0,1]%); f isa | - ||,,-limit point

(6.2) of {TIy(fy); & € N9} = Ty( 7))

=1
by using Theorem 3 and Morrow’s Theorem 2 in [17]. Furthermore,
(6.3) G Hm;upa; N1S: = Mn(S5)I =0 as.

yields X € FLIL® and the theorem is proved. O
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