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CHARACTERIZATION OF THE CLUSTER SET OF THE LIL
SEQUENCE IN BANACH SPACE!

By KENNETH S. ALEXANDER

University of Southern California

Let S, =X, + -+ +X,,, where X|, X,,... are iid Banach-space-valued
random variables with weak mean 0 and weak second moments. Let K be the
unit ball of the reproducing kernel Hilbert space associated to the covariance
of X. We show that the cluster set of {S,/(2n loglog n)'/?} either is empty or
has the form aK, where 0 < a < 1. A series condition is given which deter-
mines the value of a. In a companion paper, examples are given to show that
all « € [0, 1] do occur.

1. Introduction. Let X, X;, X,,... be iid random wvariables taking
values in a separable Banach space (B,|:|), S,= X, + - +X,, and
a, = (2nloglog n)/2. X is said to satisfy the bounded law of the iterated
logarithm (X € BLIL) if S, /a, is bounded almost surely, and the compact law
of the iterated logarithm (X € CLIL) if there exists a compact D C B such that

(1.1) C({S,/a,}) =D as.
and
(1.2) d(S,/a,,D) -0 as.,

where C({y,}) is the cluster set of the sequence {y,}, and d(y, D) = inf{||y — 2|:
z € Dj} is the distance from y to D.

When S, /a, stays bounded, the one-dimensional LIL tells us that X € WM¢,
that is, Ef(X) = 0 and Ef(X)? < oo for all f in the dual B*.

Kuelbs (1976) showed that there is only one possible compact cluster set D
when X € CLIL: The unit ball K of the reproducing kernel Hilbert space
H), C B associated to the covariance of X. That is,

(13) K = { [a1(x) dP(x): < B, U111 < 1),

where || - ||, is the L?(P) norm, B* is the closure of B* in L% P) and P is the law
of X. K exists as a subset of B whenever X € WM. It is easy to show that an
equivalent definition of K is

(1.4) K={yeB: {(y)<|fllyforall f e B*},
and that

(1.5) sup{||¥ll: ¥y € K} = o= sup{||flly: f € By} < o0,
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where B}* is the unit ball of B*. For details and more about Hp, see Goodman,
Kuelbs and Zinn (1981).

In contrast to the finite-dimensional situation in infinite-dimensional Banach
space (1.1) can hold, but (1.2) fail, for a nonempty D C B, or we can have
C({S,/a,}) # K as. when X = BLIL. (Examples from the literature will be
described below.) This motivates the question we examine here: What are the
possible values of the cluster set

A = C({S,/a,}),

and when does each occur?
Some remarkable recent results of Ledoux and Talagrand (1988) put our
question in clearer perspective. They showed that X € BLIL if and only if

(1.6) E|| X||*/loglog|| X|| < oo,

(1.7) X € WM}

and

(1.8) {S,/a,} is bounded in probability,
while X € CLIL if and only if (1.6) holds,

(1.7) {f(X)Z: fe Bl*} is uniformly integrable
and

(1.8) S./a, = 0 in probability.

It is known [see Ledoux and Talagrand (1988)] that (1.7’) is equivalent to the
compactness of K. It is also equivalent to the total boundedness (or equivalently,
compactness, since B} is closed) of B} in L?(P).

de Acosta and Kuelbs (1983) showed that (1.7) and (1.8") imply that A = K
a.s., while in Hilbert space, (1.6) and (1.7) imply (1.1) and (1.2) with D = K, even
if K is not compact. In contrast, however, examples of the following types have
been constructed:

(i) X € BLIL and A = K as., but K is not compact [Goodman, Kuelbs,
and Zinn (1981)].

(ii) X bounded, X € BLIL, K compact and A = K as., but X ¢ CLIL.
Thus necessarily (1.8") fails, and {S,/a,} clusters at points of K but makes
bounded excursions well outside of K [Kuelbs (1981)].

(iii) X bounded, X € BLIL and K compact, but A = @ as. and 0 <
liminf||S, /a,|| < limsup||S,/a,|| < co. Thus again (1.8") fails, and {S,/a,}
moves around in a spherical shell but never clusters anywhere [Kuelbs (1981)].

In all of these examples, the cluster set is either @ or K a.s. In a companion
paper [Alexander (1987)] it is shown that for each a € [0,1], there exists a
bounded, c,-valued random variable X for which the cluster set is aK a.s. The
following, our main result, shows that @ and these multiples of K are the only
possible cluster sets and characterizes those random variables X which have a
given cluster set.
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Some notation needed is

(1.9) ng = n(y) = [‘Yk] ) I = L(v) = [ng, npy).

When there is no ambiguity or when a result does not depend upon y, we will
suppress the y in this notation. Throughout most of this article we will think of
v as fixed but not yet specified.

THEOREM 1.1. Suppose X € WM. Define a € [0,1] by

o2 = sup{B >0: Y kR[S, /a, < 8 for some n € ]
(1.10) kot

= ooforall8>0}

whenever this set is not empty. Then

Ao aK a.s. if the set in (1.10) is not empty,
@ a.s. if the setin (1.10) is empty.

Consider the case of real-valued X with EX =0, EX2? =062 A normal
approximation would say

P[|Sn/anh| > ,31/201 =~ exp(—Bloglog n,) = k~P.

Some proofs of the one-dimensional LIL are of course based on this, together
with the Borel-Cantelli lemma and the fact that ¥,k # diverges exactly when
B < 1; it follows that the cluster set is [0, 6]. In Theorem 1.1 the same series
¥,k # appears, but with each term multiplied by a probability. Typically this
probability will be very close to 0 or 1, according as 8 is greater than or less than
the median of |S, /a,,| Thus heuristically Theorem 1.1 says that in Banach
space we still determine the cluster set from convergence or divergence of k4,
but include only those & for which ||S, /a,,|| is small in probability.

All proofs are postponed until Section 2.

Theorem 1.1 remains true, with mild additional assumptions, if B is not
separable, but the technicalities involved obscure the main ideas, so we will do
the proof for the separable case and then mention the modifications necessary
for the general case. :

Under the stronger moment assumption, there is an alternative, more natural
characterization of those random variables for which the cluster set is empty: If
EX =0and E||X||? < o0, then A = @ as. if and only if liminf E||S, /a,| > 0
[Alexander (1987)].

The following are fairly direct consequences of Theorem 1.1. Corollary 1.2 was
proved by Goodman, Kuelbs and Zinn (1981) under an additional assumption
on X.

COROLLARY 1.2. Suppose X € WMZ and suppose that for each ¢ > 0 there
exist 8 > 0 and a subset J(&) of the positive integers such that

P[11S,/a,ll <e]l =8 foralln e J(e)
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and

Y 1/n(logn)f = o0 forall B <1.
ned(e)

Then A = K a.s.

CoroLLARY 1.3 [de Acosta and Kuelbs (1983)]. Suppose X € WM? and
S,/a, = 0 in probability. Then A = K a.s.

2. Proof of the characterization. Before we begin, it is worth examining
the heuristics for why K should generally be the cluster set of {S, /a,}. Suppose
B is partitioned into finitely many sets E;, most of which have small diameter,
with the jth having (small) probability p; and let y; be a point of the jth set.
Further, let

n
P,==n"'3 8¢ and »,=n"*P,—P)

n
i=1

be the nth empirical measure and empirical process,
f;=v(E;) /Dby, b= (2loglogn)"?,
and let f be the function given by
f=1f onkE,.

Then, approximating each X; in E; by ¥, we expect that roughly
S./a, = Ly, (nPAE)))/a, = Ly E))/by = Loty = [9(5) dP(y).
J J J
Here the second approximation uses the fact that £ ;y,p; = EX = 0. Setting

u= [¥(y)dP(y),

we observe that
(2.1) Up= Uy,

where 7( f ) is the projection of f onto B* in L?(P). Thus we obtain the form in
(1.3); we may think of f(x) as the signed normalized “density” of excess or
deficient points X; near x, with the excess or deficiency being relative to
expectation, and we may think of the partition as producing a simple-function
approximation to this “density.”

Further, by Bernstein’s inequality [(2.14) below; see Bennett (1962)], if f € B*,
then

P[v.(E;)/pb, = f;] = exp(—f2p;loglog n).
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Since the »,(E;) are approximately independent, we expect that
(2.2) IP[Sn/an = u,] = exp( - ij2pj log log n) = exp(—||f||Zloglog n).
J

Summing over a geometrically increasing subsequence of values of n, we get
convergence if and only if || f||, > 1, which leads to the cluster set K.

Our proof makes this argument rigorous, by showing that the errors made in
the approximations above are sufficiently small sufficiently often. As (2.2) hints,
the success of this approach depends in a sense only on || f |5, which leads to the
possible forms aK for the cluster set, since aK = {u;: || f ||, < a}.

Our first lemma is due to Kuelbs (1976); we present here an alternative proof
which works even if B is not separable. Let

K®:={yeB:d(y,K) <8}.
LEMMA 2.1. If X € WMZ, then A C K a.s.

Proor. Observe that

[AzK]
c U [d(Sy/ai, K) = 30/m; d(S,/a,,Sy/a,) < o/mio. (in n)]
k,m>1
= U Cpn-
k,m>1
If o :=(X,,..., X,) satisfies
(2.3) d(S,/a,, K) > 30/m,

then there exists an f = f, € B* such that f <1 on K°™ but f > 1 on the ball
B(S,/a;,20/m). Since K/™ > (1 + m~")K, it follows that f < m/(m + 1) on
K, so || f|lg < m/(m + 1). Therefore, letting " = (X, 1, Xpior---)s

Plw”: f((S, — Sp)/a,_;) = 1i.0.in n] = 0.

But if (', w”) € C,,,, then d(S,/a,,(S, — S,)/a,_;) <26/m i.o. Hence
from the definition of f, P[w”: («, &) € C,,] = 0 for each «’ satisfying (2.3),
and the lemma follows. O

The following is an immediate corollary, as in Kuelbs (1981), Lemma 1.

LEMMA 22. If K is separable, then there exists a nonrandom closed set
D c K such that A = D a.s.

To establish Theorem 1.1, it is therefore sufficient to establish the following
result, which shows that whether or not u, € A a.s. depends only on ||A||,.
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THEOREM 2.3. Suppose X € WMZ and h € B*. The following are equiva-
lent:

(1) u, €A a.s.
(ii) For each B <||h||2 (for B=0 if h =0) and each 8§ > 0, there exists
y > 1 such that

(2.4) Y k7 EP[|1S,/a,ll < & for somen € I,(y)] = w.
k=1

(iii) For each B < ||h||5 (for B =0 if h =0) and each § > 0 and y > 1, (2.4)
holds.

The proof of this theorem depends on careful choice of a partition of B, as in
the heuristic preceding Lemma 2.1. For this we will need some notation and
definitions. We say a partition II = {E,,..., E;} of B is bounded if all but one
of its blocks are bounded sets. E, will always denote the unique unbounded
block. Given I, we let .# denote the (finite) o-algebra it generates, p; = P(E)),
and, when p, > 0,

Y% = —Pq "P(E§)E(X|Eg).
When X € WMZ and p, > 0, y, is the weak mean of X given X € E; that is,
(2.5) f(%) =E(f(X)X€E,) forall f< B*.

Note that E(X|¥) is well defined as. for X € E§; in a convenient abuse of
notation we define

E(X|¥#) =1y, when X € E,.

Though we have not yet specified it, let us consider the partition II as fixed,
with p, < 1, and set

X' =E(X}¥), X'=X-E(X¥),
n n
S=YX,  Si=YX/
i=1 i=1

By combining blocks if necessary, we may always assume p; > O forall1 <j < /.

Heuristically, S;/a, is the signal, and S./a, the noise, in S,/a,. The
following special construction will help us to elucidate the dependencies between
the signal and the noise, and between the bounded and unbounded parts of the
signal, which we will show are quite weak. The idea is that, thinking of
E,,..., E; as “bins,” one can construct {S,, n > 1} by first deciding which r.v.’s
X, go in which bin; the numbers of the r.v.s X;,..., X, in each bin have a
multinomial distribution for fixed n. Given this information, the r.v.’s in bin E i
form an iid sequence with law P(-|E;), so we may then choose their locations in
E; independently with that distribution.

Further, it is useful (see the proof of Lemma 2.15) to know that in allocating
the r.v.’s among the bins, one may first decide which of X, ..., X, go in E,, then
do an independent allocation of the remaining ones among E,,..., E.



CLUSTER SET OF THE LIL SEQUENCE 743

Thus let X, X, X,,..., be iid with distribution P(-|E¢), and let B, be the
corresponding empirical measure. Let {(’f‘i,,,..., ’f}n): n > 1} be random vari-
ables with the same joint distribution as {(nB(E)),..., nB(E,)): n > 1}, that
is, multinomial with parameters n, p,/(1 — p),..., p;/(1 — p,) for each n. Let
{Ty,: n =1} be independent of the ’_f}n with the same joint distribution as
{nP(E,): n > 1} and let

T. =T

in=Tj ety 1=<j<dJ,nx=1.

Then

{((Tons - Typ): n 2 1} £ ((nP(E,), ..., nP(E,)): n > 1}.

For each 0 < j < J let {§;: I > 1} be iid with distribution P(-|E;), independent
of the T}, and T, and independent for distinct j. We may then assume that

J Tn J T J T
S, = Z Zgjl’ S, = 2 Egjl’ S, = Z Z(gjl_Egjl)’
Jj=01=1 Jj=01=1 Jj=01=1

where, continuing our abuse of notation, E£, should be interpreted as the weak
mean Yy,.

The following fact is isolated here for easy reference, as it will be used several
times. The proof is completely straightforward, so we omit it.

LEMMA 24. Let (F,,n>1} be any sequence of events and B > 0. Then
convergence or divergence of

Y. k"PP[F, occurs for some n € I,(y)]
k=1

does not depend on y > 1.
The following result underlies many of the operations performed in our proofs.
LEmMA 2.5 [Kuelbs (1981)]. Lety € B. Theny € A a.s. if and only if

o0
Y P[|1S,/a, — y|| < 8 forsomen € I,] = oo forall & > 0.
k=1

We can now take one of the main steps in proving Theorem 1.1, by showing
that if S,/a, goes near u, infinitely often, it is because the noise S./a,
becomes small infinitely often when the signal S//a,, is near u,. The underlying
idea is then that for any g with ||g||, <||Al|,, since the signal is near u, at least
as often as it is near u, and since the signal and noise are nearly independent,
the noise will also become small infinitely often when the signal is near u,, which
ensures u, € A as.

PROPOSITION 2.6. Let X € WM¢ and 6 > 0, and let T be a bounded parti-
tion of B. Suppose h € B* and u,, € A a.s. Then the partition I1 can be chosen



744 K.S. ALEXANDER

so that
(2.6) I1 refines T
and

o0
(27) X P[IS;/a, — u,ll < 6 and ||S;’/a,|| < 6 for somen € I,] = .
E=1

ProOF. We will construct a sequence I1,, IT,, ... of bounded partitions of B,
each a refinement of the previous one, in such a way that eventually (2.7) holds.
Let II, :== {B} and II, := T. Given an increasing sequence II,, I,,..., let

Y= E(X)%) - E(X\%-,),  i,l>1,
where &, is the finite o-algebra generated by II,, and let

U= 3 Y.
i=1
Let U® = Y = 0.

Since Y := E(X|#,) is finite-dimensional with mean 0 and weak (hence
strong) second moments, {a, 'U"} is, with probability 1, a bounded sequence in
a finite-dimensional space, so there exists v, € B as. such that (v, uy) is a
cluster point of {a, (U™, S,)}. Applying Lemma 2.2 to the random variable
(Y™, X)), we see that v, may be taken nonrandom.

Suppose now that for some & > 1, I1,,..., IT, have been constructed so that

._, for each j < k and

(1) II; refines IT;
(i) some (v,,..., v, u,) € B**!, with ||v;|| > 26/3 for all 2 < I < &, is, with
probability 1, a cluster point of {a, (U.",..., U®, S,)}.

These are true for & = 1. If

(2.8) <4,

k
Up — Z vy
=1

then, since by (ii) (Z}- v, 4, — Zf.,v,) is a cluster point of a; (S}, S,) a.s., (2.6)
with II = II, follows from (i) and (2.7) from Lemma 2.5 applied to (X', X").
Thus we must show (2.8) holds for some £ > 1.

One may think of

Up =0+ -+ +o, +

k
up— 2 Uz)
=1
as a decomposition of u, corresponding to the decomposition
k
Sn - Z Un( I))
=1
of S, into increments arising from the successive partitioning of B. The idea is to

choose the refinements so that if (2.8) fails, a quantity, which roughly speaking
approximates the “total variation” L¥_ ||v,|l, grows at least linearly in k, while

S,=ULP+ ... +UP +
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the corresponding quantity for the decomposition of a'S, can only grow like
k'/%; this limits the size of & for which the two quantities can be equal, forcing
(2.8) to hold eventually.

Fix k and suppose (i) and (ii) hold but (2.8) fails. Let f,,..., f,., € B be
such that

(2.9) fi(v)) =20/3 forall2 <1<k,

k k
(2.10) fk+1(uh -2 Uz) =llup— 2 v

=1 =1
Let II, ., be a bounded partition which refines IT, and satisfies
(2.11) E( fuer(X) = E(for X)n))” < 6%/9.
Letting

1
s T U,
j=1

we have by (2.11)
limsup f,.,(a; (S, — S*V)) <6/3 as.,

n—x

while by (ii), (2.10) and failure of (2.8),

k
limsupka(a,;rl(Smr - S,‘,,’:’)) > fkﬂ(uh -y v,) >0 as.
rooc =1
for some random sequence (m,) along which the limit behavior in (ii) occurs.
Therefore
(2.12) lim sup fk+1(a;}U;,f+1’) >26/3 as.
Now {a,'U** P} is a:s. a bounded sequence in a finite-dimensional subspace of
B, so from (ii) and (2.12) we obtain v,,, € B such that |c,_,|| > 26/3 and
(vy, ..., Uy, Uy) is, with probability 1, a cluster point of a, YU, ..., U*~Y, S )
in B*¥*2, As with v,, v,,, can be taken nonrandom, establishing (i) and (ii) for
k+ 1.

Thus one can make (i) and (ii) hold for arbitrary large &, so long as (2.8)
continues to fail. Consider the random variables

k n
Z; = Z fl(Yi(l))’ R, = Z Z,.
1=2

i=1

The summands in Z; are orthogonal [see (2.5)] so

k k
EZl2 = Z Efzz(Ylm) = Z Ef12(X) < (k- 1)02
=2 =2
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and hence

limsupa,'R, < (k—1)"%c as.
But by (i), ¢= X} ,f(v,) is a cluster point of a,'R, as., while by 2.9),
t > 2(k — 1)8/3. Therefore 2(k — 1)6/3 < (k — 1)/% so we have shown
(i) and (ii) imply & < (30/26)% + 1.

This means that (2.8) must hold for some finite &, which, as we have mentioned,
proves the proposition. O

The next lemma is also standard; we include it for ready reference. Define
Ly = Ly(y) = L _o(v) U L(y) U L.\ (y).

LEmMA 2.7. Let Y,Y,Y,,... be iid B-valued random variables with weak
mean 0, and s? == sup; ¢ gy Ef %(Y). Let N be an I,-valued stopping time and let
M > 0. Then )

N [OTS
(2.13) p[ Y Y| >Mai?| <2P|| X Y| > (M-2(y - 1)"%s)ny?|.
i=n, i=ny

The same result holds if I, n;, n,,, and y are replaced by L, n,_,, n,,, and
3
Y°.

PrROOF. Let F = (f,, f,,...} be a countable norm-determining subset of B}*.
When the first event in (2.13) occurs, define T to be the least I > 1 such that

N
fz( X Yz) > Mnj/>.

i=n,

By Chebyshev’s inequality,

p[f’( ) Y") =2y - 1)‘/2sn‘/2] <1/2

i=n+1

for all /> 1 and n € I, so the lemma follows by conditioning on N and T. O

We will need the following variant of Bernstein’s inequality [see Bennett
(1962)]: For Y,,...,Y, iid mean zero real random variables bounded in magni-
tude by b > 0 with var(Y;) < s, 8§ > 0and 0 < M < 3n'/%s2§ /b,

n
LY,

i=1

(2.14) P[ > M] < 2exp(—(1 - 8)M?/252%).

LEMMA 2.8. For every § > 0,

Np-1

Y P[I(S; - S, )/a,, || > 8 forsomen € Ly(v)] < o,
k=1
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provided v — 1 is sufficiently small. The same result holds if n,_, and L, are
replaced by n, and I,.

ProoF. Let H be the (finite-dimensional) span of the range of X’. There
exist f},..., fy € B}* such that for y € H, max,f,(y) > ||y||/2. Hence by Lemma
2.7 and Bernstein’s inequality (2.14), for large &,

Pii(s: - s

nh—l)/ank_lll > § for some n € Lk]

IA
z

k 2P[ fl(s’:nz - S’:k—l)/ank—l > 8/2]
1

< 4Nexp(—8%(loglog n;_,)/8(¥% — 1)a?).

One now need only take y to satisfy §2/8(y2 — 1)6%2> 1. O

LeEMMA 2.9. Suppose h, € B* and h,, = h a.s. Then h has a version h such
that:

(i) % is linear.
(ii) A(y) = h(y) for all y such that h,(y) converges to finite limit.

PROOF. Let F:= {y € B: h,(y) converges to a finite limit} and let W}, be a
Hamel basis for the (not necessarily closed) subspace F. Define A, on F by
hy(y) =1lim,h (y). Then P(F)=1 and h=h, as. on F. Let Wy be an
extension of W to a Hamel basis for B. Let % be the linear function on B
determine by the values

(o) = ho(v) if v € Wy,
7o if v e W, \ Wp.

Since A, is linear on F, we have h, = A on F, and the lemma follows. O

Henceforth, therefore, we will assume that all elements of B* mentioned are
linear. The linear version of A need not, of course, be continuous.

LEMMA 2.10. Suppose h € B*. For each 1> 0 there exists > 0, not
depending on the partition I1, such that

P[|IS;/a, — u,ll < 7] < exp(— (1 — 1)||A||% loglog n)

for all sufficiently large n.

PRrROOF. Since & € B*, we cannot have u, = uy for any function ¢ with
l¥lle < ||2l|ls- Thus ||A||, = inf{a: u, € aK}. Therefore given n > 0 there exists
¢ € B* such that ¢ <1 on (1 — n/3)||h|,K but ¢(u;) =1+ & for some § > 0.
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Letting 7 := §/||¢|| 3« we have by Bernstein’s inequality (2.14)
PLIS,/a, — ull < 7] < P[lo(S; /a,) — (1 + 8)| < 7l9ll 5]
<P[lo(S;/a,) > 1]
< exp(—(1 — n/3)(loglog n) /l|9|i3).
But

Il = @(%g/101,) < sup @(y) < ((1 = n/3)|1R,) "
Y€K
and the lemma follows. O

The next lemma is an immediate consequence of Lemma 3.2 of de Acosta
and Kuelbs (1983), since |u, — EX'h(X’)| < sup, c pp E(X)R(X") <
O(Ehz( X"))l/2.

LEMMA 2.11. Suppose h € B*, § > o(ERA(X"))/2 and n > 0. Then

PLIIS,/a, — sl < 8] 2 exp(— (1 + )|k} loglog n )
for all sufficiently large n.

The next lemma is a technical variation on Proposition 2.6.

LEMMA 2.12. Suppose X € WMZ, 0> 0,0 <p<B<1l(orp=B=0), Ais
a bounded partition of B and for every § > 0,

[~ <]

(2.15) Y. k7PP[|1S,/a,ll < & for somen € I,] = .
k=1

Then the bounded partition 11 can be chosen so that I1 refines A and

o0
Y E*PLIISy/a,|l < 8 for somen € I,] = .
k=1

ProoF. For p = B = 0, this is an immediate consequence of Lemma 2.5 and
Proposition 2.6, so we may assume 8 > 0.

Let V,Y,,Y,,... be iid with P[Y=1]=P[Y= —1]=1/2, and let V, =
I ,Y. Let X € (p*/2, B'/2). It suffices to consider # small enough so that

(2.16) (A —36)% > p.
By (2.15) and Lemma 2.11,

o0
EIP[W" a,, — Al < 8]P[IS,/a,|| < & for some n € I,] = o
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for all § > 0, so by independence and Lemmas 2.8 and 2.4,
0
Y P[IV,/a, — A + 1S, /a,| < 38 forsome n € I,] = oo
k=1

for all 6 > 0.

Thus by Lemma 2.5, (A,0) is as. in the cluster set of {a;'(V,,S,)}. By
Proposition 2.6, applied with I’ = {{ —1},{1}} X A, there is a partition II of B
such that for the decomposition (Y, X) = (Y, X’) + (Y”, X") corresponding to
the partition {{—1},{1}} X II, we have Y” = 0 and

2 P[IV,/a, = Al +IS;/a,|l < 6 and ||S;’/a,|| < 6 forsome n € I,] = co.
k=1
By Lemma 2.8, independence, Bernstein’s inequality (2.14) and Lemma 2.4, then,

o= Y P[IV,/a, ~ Al <20 and |IS;"/a,| < 0 for some n & L]
k=1 .
< X kB[S /a,|| < 6 for some n € I,]
k=1

and the lemma follows from (2.16). O

LEMMA 2.13. Let §,,&,,... beiid with n™'Y? ¢, > 0 a.s., let § > 0 and let
{m.} be an increasing sequence of positive integers such that for some ¢ > 0,
my > e XkZim; for all k > 1. Then

0
Yp
k=1

my

L&

i=1

>dm, | < 0.

PROOF. We may assume ¢ < 1. Let r, = T*_,m . If

X &

i=r,_,+1

> dm,,

then either
IS,/mull > 8/2 or |IS,,_/myll > 8/2.

Since m, > er,/2, the former implies IS, /7|l > €8/4, while the latter implies
IS, ,/7&-1ll > €8/2. The assumed SLLN says each of these two events can
happen only finitely often, so the lemma follows from the Borel-Cantelli lemma.

O

Of course for separable B the assumption that n='X? £, — 0 a.s. is equiva-
lent to the assumption that E||¢|| < oo and E£ = 0, but this is not true for
nonseparable B.
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Next we will give some facts about our special construction of the random
variables X;. Define
tjn = [npj ]’

mj, = [8p}%a,],

W, = (rez,:|r—ty| < mg,),

R, = {(rp..., rJ) € Zi: 75 = il < M jn foralll <j < J}’
Qn = VVnXR,,,

Un = (Tln,...,TJn)’

Vn = (TOn"“’TJn)
and define the event
C,=[V,eQ,forallneL,].

LEMMA 2.14. IF_,P(C§) < co.

ProOF. We may assume y3 < 2. Then for large %k, by Lemma 2.7 and
Bernstein’s inequality (2.14),

P[IT;, = t;.l > m;, for some n € L,|
< P[|Tj,, - ET;,| > 4p}’?a,, for some n € Lk]
< 2|P[n;j§2|fl} - ET;,, | > 2p;/*(2loglog nk_l)l"lz]

Ng+2 k.2
< 4exp(—3loglogn,_,)
< 4k7?
and the lemma follows. O

Now define events
A, (8) = [|IS;/a,l|| < 8 forsome n € I, ],
A¥(8) =[S/ /a,ll < & forsome n € L, ],
By(8, k) = [IIS;/a,, — u,ll < 8].

Let Y,Y,Y,,... be an independent copy of the sequence X, X,, X,,... and
recall that X, X, X,,... are iid with distribution P(-|E(). Let
Y=Y +Y and X=X +X"
be the decompositions induced by the partition II.
The next two lemmas provide the required degree of independence between
the signal S/ and the noise S;’. The underlying idea is the following: B,(8, )

affects A,(8) only through the values of the T;,,, which give the numbers of
random variables §;, — E£; to be summed in forming S,'. By Lemma 2.14, the

variation in the T}, is O(a,,). But the SLLN says that changing the number of



CLUSTER SET OF THE LIL SEQUENCE 751

summands by O(a, ) should change the sum S,/ ' by only o(a,,); the effect of
this on A,(9) is neghglble

Of course the SLLN does not apply to the unbounded variable &, — E¢,, in
general, which introduces some complications.

Throughout our remaining proofs, we will make statements which, though we
do not explicitly say so each time, are valid only for sufficiently large k.

LEmMMA 2.15. Suppose h € B* satisfies ||h||, < 1, and 8 > sE(h2(X"))?,
where o is as given in (1.5). Suppose also that p, < 1,/100. Then

1) X [P(4(0) - P(AF#0)1B,- (0, )] < o,
provided vy — 1 is small enough.

Proor. The idea is that the conditional probability in (2.17) can be ex-
pressed [see (2.24)] as a convex combination of conditional probabilities
P(A}(40)|V,, | = q). Terms with ¢ & @, contribute negligibly [see (2.24) and
(2.25)], so it 1s enough to show that, up o summable error terms, these latter
conditional probabilities exceed P(A,(8)) uniformly over ¢ € Q,, - First, this
uniformity is shown to hold (modulo changing 8 to 38) when the conditioning is
only on the first coordinate g, not on all of g [see (2.20)]. For this a coupling of
the conditional and unconditional distributions of portions of the sequence S;’ is
used. Then, using another coupling, it is shown that (modulo changing 38 to 48)
the conditional probability is the same, up to summable error terms, for all ¢
with a given first coordinate g, [see (2.21)]. This gives uniformity over all
9€Q,, .

Supﬂoée first that p, > 0. Fix £ > 2 and ¢ = (qo, 97) €Q,, .Let N be
the least n such that T, =gq,. N is finite since T,,/n — p, a.s. Then in
distribution, jointly for all n € L,,

N-gq, n—ng_,

9o
SN+n o1 Gn = E (‘501 EgOl) + Z X” + E Y”
=1

i=1 i=1

This just says that the X;”’s which occur after N may be replaced by Y, Yy", ...,
which is true because N is a stopping time. In contrast, if we condition on
Ton,_, = 9o then jointly for all n € L,,

Rp-1—4q0 n=n,_,

Sy < H, —E(goz_Egoz)"' Z X+ Z Y.

The r.v.’s G, and H, give us our coupling between the conditional and uncondi-
tional distributions of certain groups of the r.v.’s S/’. The key property is that
the unbounded parts of G, and H, are the same, while the SLLN heuristic
preceding this lemma works for the bounded parts.
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Specifically, N is independent of {X,-”: i>1},so
IN—n,_4

E Xi"
i=1

'.

Further,if n€ [, and m=n - N + n,_,, theneitherme L, or |n,_, — N| >
np—ng,_,>(y—1n,_,/2; the latter implies the event C;_, [see (2.19)].
Therefore, provided y — 1 is small,

P(AL(d)) < P[”SI(’,+m—nh_./ank+.” < & for some m € Lk]
+P[ln,_, = NI > (v = 1)n,_,/2]
< P[||G,/a,,|l < 28 forsome m € L,] + P(C{_,)
< P[|H,/a,|| < 38 forsome n € L, ]

d
max||G, — H,|| £
nel,

(2.18)

IN=ng_4|

Z X~i//

i=1

+P

> Sank_l] + P(C¢_,).

It is easily verified that

(2.19) IN = ny_y| > 17p; ?a,,  implies Cf_,.
In fact, if N <r:=n,_, — [17p; /%a,, ], then since g, € W,,
Tor2qo=ton, , —Mop, , 2N 1Pp— 1 - 8P<1)/2an,,_,,
while
to, < 1Py < My_1 P — 17py%a,,  + 1,
s0

TOr — b, 2 9p(1)/2ank_, -2> my,,

and C,_, fails. Similarly, N > s=n,_, + [17p, /%a,, ] implies T, — ¢,, <
m,.

Thus, letting m, == [17p; '/%a,, ], we have by (2.18), (2.19) and an analog of
Lemma 2.7,

P(AL(8)) < P(AF(30)|T,,, . = q,)

(2.20) % i
kIXl”

i=1

+2p[ > da,, ./2] +2P(Cf ).

Letting

my
’”
XX

=1

+ 2P(C_,),

A= 2p[ > 8a,, /2

we see from Lemmas 2.13 and 2.14 that £7_ A, < .
We wish to condition on all of V, not just on T(m,, .- To this end, let

ng-y?

9’ € Q,, , with gj = g,. Because of the latter, we can make another coupling in
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which only the bounded parts differ, as follows. Given V, = q, jointly for all

n € L, we have e
d J 9 n—n,_;
SyE£Gr= Y (§ﬂ -Eg;)+ Y Y,
j=01=1 i=1
while given V,, = ¢/,
B J 9 Ny
SyLHr=Y Y (¢ -Eé¢y)+ YL Y
j=01=1 i=1
Therefore as in (2.18) and (2.20),
P(AZ(38)V,, , =4)
J |ei—ajl
<P(A;(48)V, =q)+P| X | ¥ (§:- E&)| > 8a,,_,
i=1| I=1
(2.21) !
J [ me"lc—l
<P(AF(43)V, =q)+ L 2P|| ¥ (& - EEy)| > da,, /2d
j=1 =1

=P(AE)V,, , = q) + X,
where X¥_,\}, < oo by Lemma 2.13. It follows that
lF’(‘41’:('?’8)|T0n,,_1 = QO)

< Y P(ArEV,_ = (g, )P(U,_ =T, =)
reR

Rk—1

+IP(U & Rn,,_llTOn,,_l = qO)

Np—1

(2.22)

< P(Ar8)V,, , =q) + X+ P(U,_ € R,, T, , =)

We must bound the last term on the right-hand side of (2.22). Now for

n = nk_l,
J ~
(223) P(Un & RnITOn = qO) < Z P[ITi,n—qo - tjnl > mjn] .
j=1
Since q, = [np,] + 8up}/%a, for some p with |u| < 1 when g, € W,, and since
Do < 1/100,
|tin = ET; n_g, < Inp; = (n = q0)p;/(1 = o)l + 1
< 8|I1'|P<1)/2Pjan/(1 - D) +2

1/2
<p/a,.
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Hence the right-hand side of (2.23) is bounded above by
J
Y IP[|fI~‘j,,,_q0 - ET; , .| > 6p}/2an] < 2Jexp(—3loglogn).
j=1
Thus for n =n,_,,
(2‘24) P(Un & Rnh_ll%nh_l = QO) < k_z'
Using Lemma 2.11 and the proof of Lemma 2.14 gives
P(‘fnh_l e an_llBk—l(s’ h))
=< P(Vnk_l $ an_l)/P(Bk—l(S’ h))
< 4exp(—5loglog n,_,)/exp(—2||h||3 loglog n,_,)

<k72
Since ¢ € @, is arbitrary, combining this fact with (2.20), (2.22) and (2.24)
gives :

P(AL(8) < X l"’(Ak(s))"“’(";,,_1 = q|B,_4(9, h))

k-1

(2.25)

9€Q,, ,
+P(V,, € Q, _|By_.(5, h))

(2.26) < X P(Ar@o)v,,  =q)P(V,_ =qB, (5, k)
9€Q,, |

A, + N, + 2872
< P(AF(48)|B;_(8, h)) + Ay + N, + 2k72

and the lemma follows.
If p, = 0, a simpler version of this same proof, with no need to first condition
on T;, ,works. O

The next lemma provides a converse to Lemma 2.15.
LEMMA 2.16. Under the hypotheses of Lemma 2.15,
T [P(4,0)B,1(8, 1) - P(4749)] < o,
provided vy — 1 is sufficiently small.
ProoF. This proof is similar to that of Lemma 2.15, so we will continue with
the notation of that proof and omit some of the details. In particular, let us

assume p, > 0.
Fix ¢ € Q,, . Analogously to (2.21), we obtain for all r € R,,

P(A(3)V,, , = q) < P(AF(20)V,,_, = (40, 7)) + X,
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so that
P(Ak(s)”,n,,_l = Q)
< X P(4;@9)V,_, = (4,7))

reRr,,

XP(V,, . = (20" Ton, , = 40, U, [ €ER,, ) + X,
= P(A2(20)| Ty, , = 90 Uy, , € R,, ) + Xy
Therefore, since g € @,, | is arbitrary,
P(Ax(8)IB,-1(8, h))

< Y P(A)V,,_ =q)P(V,  =qIB, (5, k)

9€Q,, |

+P(V,,_, € Q,, |Bi_1(3, h))
(2.27)

E P(A;:(28)IT0nk_1 =4y, Unk_l € Rn,,_l)
%EVVn,_l
XP(Tys,_, = 40> Uy, _, € Ry, |Bi_i(8, b))

+N, + R7E,

where (2.25) has been used. By (2.24),
P(A;:(28)IT0nk_l = gy, Un,,_l € Rn,,_l)

<P(A$(28), T, , = 20)/(1 — k™2)P(T,,,_, = qo)
< IF’(1‘1;:(26)[710;:,,_1 = ‘IO) +2k72,

which with (2.27) shows that
P(A(8)B,_1(8, h))
< P(AX(20)T,, =
(2.28) qoe;vn ( k( )l Ony_y QO)

xP(TOnk_l = qo|By_1(8, b)) + 372 + N,

An argument using the variables G,* and H,*, similar to that which produced
(2.20), gives

P(A}(28)T,,, , = qo) < P(A}(48)) + A,.
With (2.28) this leads to
P(AL(8)|B,_1(8,h)) < P(A}F(48)) + A, + 372+ N,

and the lemma is proved. O
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ProoF orF THEOREM 2.3. The equivalence of (ii) and (iii) follows from
Lemma 2.4, so we must show (i) implies (ii), and (iii) implies (i).

Suppose first u, € A as. If h =0, then (ii) follows from Lemma 2.5, so
suppose i #+ 0. Let 0 < B < ||A||Z and let n > O satisfy (1 — 1)||2||2 > B. Let 7 be
as in Lemma 2.10, and 6 < /2.

Now % € B*, so h is a limit in L%(P), and as., of a sequence A, of bounded
linear functions on B. We may assume # satisfies (i) and (ii) of Lemma 2.9. Then
regardless of what bounded partition is used, we have

lim hy(E(X?)) = lim B(h(X)¥) = E(H(X)),

which, by (ii) of Lemma 2.9, means
h(E(X|#))=E(h(X)¥) as.

From this and the linearity of & it follows readily that there exists a bounded
partition I', with unbounded block of probability less than 1,/100, such that
(ER*(X — E(X|¥)))!/? < 20/6 whenever II is a refinement of I'. Here o is as in
(1.5).

By Proposition 2.6, there exists a refinement IT of T such that (2.7) holds.
Let y — 1 be small enough so that Lemma 2.8 applies with § = §, Lemma 2.14
applies with § = 1260 and Lemma 2.16 applies with § = 36, and small enough
so that for large £ and all y € B, ||y/a, — u,|| < 0 for some n € L, implies
ly/@,,_ , — u4ll < 26. Then by Lemma 2.8 and (2.7),

Y P(AL(0) N B, (36, k) =
k=1
so that by Lemma 2.10,

3 £ AP(A,(30)|B,_ (30, b)) = .
k=1

Applying Lemma 2.16, we obtain

kPP(Ar(126)) = oo,
k=1

from which it follows easily that
(2.29) Y kAP(A,(120)) = .
k=1

Since X’ is finite-dimensional with a second moment, S//a, — 0 in probabil-
ity. Therefore from (2.29)

E‘, k™ AP(A,(120))P(B,_,(126,0)) = .
k=1
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Hence by Lemma 2.15,

[= 9]

Y kPP(A}(486) N B,_,(126,0)) = .

k=1
Then from Lemma 2.8,
o= ) kPP(A}(480); |IS./a,l <136 foralln € L,)
k=1

(2.30) -
< Y kPP(||S,/a,ll < 610 forsome n € L,).
k=1

The latter is then also infinite for L, replaced by I,; since @ is arbitrary, (ii)
follows.

Conversely, suppose (iii) holds. Let ¢ > 0 and ¢ = (1 — e)h. Let B, u, 7 >0
satisfy ||A|3>B>p> L+ 0ol (B=¢ =1=0if A =0). Let > 0 and let
T’ be as in the above proof that (i) implies (ii). Let y — 1 be small enough so that
(a) Lemma 2.15 applies with § = 6 and & replaced by ¢, (b) Lemma 2.8 applies
with § = 6 and (c) for large £ and all y € B, ly/a,,_ — ugll <28 implies
ly/a, — u,ll <360 for all n€ L,. By Lemma 2.12, there exists a bounded
partition IT which refines I' and satisfies

Z k—“P(Ak(a)) = 00.
k=1
By Lemma 2.11 we have £™* < 2P(B,,_ (6, ¢)) so that by Lemma 2.15,

T P(4(40) 0 By (8,9) = .

By Lemma 2.8 and property (c) of y — 1, this implies that
o ¢]
Yy IP[||S,,”/a,,|| <48, 1S,/a, — u,l| < 36 for some n € Ik] = 0.
k=1

Since 6 > 0 is arbitrary, this and Lemma 2.5 show that u, € A as. Since ¢ > 0
is arbitrary, this shows u, € A as. O

Since Theorem 1.1 is immediate from Theorem 2.3 and Corollary 1.3 is
immediate from Theorem 1.1, all that remains is to prove Corollary 1.2.

ProOOF OF COROLLARY 1.2. The assumptions imply that for each 8 < 1 and
e>0,

0 = ik'ﬁ Y 1/n

k=1 ned(e)Nl,
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so that

kAL, 0 J (&)l /1Ll

<

Mg T8

k—ﬁl[lkn J(e) = 2]

x>
I
—

<8 ' Y EPP[|S,/a,ll < ¢ for some n € I,].
k=1

This makes a [of (1.10)] equal to 1. O

3. The nonseparable case. Here the problem is best reformulated as fol-
lows. Let % be a collection of functions on a separable space T' with Borel field
@1, and Z a T-valued random variable with law P. Suppose % is bounded both
pointwise and in L% P). Let B = [*( %), endowed with the sup norm || - || &, and
X =48, so that X is B-valued. Any random variable £ taking values in a
separable Banach space E can be placed in this context by taking T = E, Z = £
and #= E*, where E}* is the unit ball of the dual of E. Suppose [X7_¢;8; — ull &~
is measurable for all n, all L?(P)-continuous u € [*(%) and all constants c,.
This makes all events used in our proofs measurable when they need to be. Let

K = {u,: Bg(Z) = 0, |lgll, < 1},

where u, € I°(F) is given by

u(f) = [H(y)e(y) dP(y).

Most proofs remain the same, with span(#) and its closure in L%(P) generally
used where B* and B* were previously used. Some definitions change, as follows.
{E,,..., E,} is now a partition of T, and

X'(f)=E({(Z2)¥),

X'(f)=X(f)-X'(f)=12) - E(f{(Z)}¥).
The £, now take values in E; C T with distribution P, = P(-|E;); we assume
they are coordinates on the product space (T*, 7, F7%)), to avoid measurability
difficulties.

All of this avoids the use of the previous definitions of X’ and the description
(1.3) of K, which would involve integrating over the possibly nonseparable
Banach space (%) using a measure not in general defined for all Borel sets.
The reformulation is natural in the context of empirical processes, where nonsep-
arable space of the form [*(%) arises naturally but T is generally separable.
With the new definition of X’ and X", Lemma 2.9 is not needed.

When Lemma 2.13 is applied, in a nonseparable space boundedness of §;, does
not guarantee that £, satisfies the strong law of large numbers. But it can be
shown that if X satisfies the SLLN, then so does 8‘5},1 for each 1 < j < J. We may

take E, to have the form {y: || y|| > M} for some M > 0. Therefore it is enough
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to add the assumption in Theorem 1.1, that either X, or for all M > 0,
X1 x) < m)» satisfies the SLLN.

It should be pointed out that in this nonseparable context, (1.4) need not be
valid. Here compactness of K is equivalent to total boundedness of % and not
necessarily to (1.7').

That Lemma 2.7 remains valid in the nonseparable context follows from
Lemma 3.2 of Alexander (1984).

In the nonseparable case the analog of (2.10) can in general only be made to
hold to within an arbitrarily small e but this is enough for the proof to work.
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