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ESTIMATES OF THE RATE OF CONVERGENCE FOR
MAX-STABLE PROCESSES

BY L. pE HaAN AND S. T. RACHEV

Erasmus University and University of California at Santa Barbara

Several estimates of the rate of convergence of normalized maxima of
random processes are exhibited by using the theory of probability metrics. In
contrast to the summation scheme, uniform estimates for normalized maxima
of random sequences will be derived.

1. Introduction. Let B = (1 [T] | |l,), 1<r=< o0, be the separable
Banach space of all measurable functions x: T — IR (T is a Borel subset of R)
with finite norm ||x||,, where

1/r

(1.1) I, = {fT|x(t)|'dt} , l<r<om,

and if r = o0, 1_(T'] is assumed to be the space of all continuous functions on a
compact subset T with the norm

(1.2) llll = sup|x(¢)].
teT

Suppose X = {X,,, n > 1} is a sequence of (dependent) random variables taking
values in B. Let # be the class of all sequences C = {c/(n); j,n=1,2,...}
satisfying the conditions

(1.3) c(n)>0, ¢(n)=0,j=12,..., Z ¢;(n) =1.

For any X and C define the normalized maxima X, := V% -1¢(n)X;, where
V := max and X (t) =V c(n)X(t), t€T.
We will be interested in the ]nmt behavior of X To this end, we explore an
apprommatlon (Y,) of X, with a known limit behav10r More precisely, let
= {Y,, n>1} be a sequence of iid. r.v.s and define Y, =V%_,c(n)Y,
Assummg that

(1.4) Y,=,Y, foranyCe ¥

(Y, =, Y, means Prg = Pry,), we will be interested in estimates of the deviation

between X, and Y,. The class of r.v.’s Y, satisfying (1.4) was introduced by
de Haan (1984) and will be called the class of simple max-stable processes.

ExAMPLE [de Haan (1984)]. Consider a Poisson point process on R, X[0,1]
with intensity measure (dx/x?)dy. With probability 1 there are denumerably
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652 L. DE HAAN AND S. T. RACHEV

many points in the point process. Let {£,, 7.}, £ = 1,2,..., be an enumeration of
the points in the process. Consider a family of nonnegative functions {f(-),
t € T} defined on [0, 1]. Suppose for fixed ¢ € T the function f(-) is measurable
and [§f(v)dv < co. We claim that the family of random variables Y(t) :=
sup,, .., f(m)¢, form a simple max-stable process. Clearly, it is sufficient to show
that for any C € € and any 0 < ¢ < -+ <, € T the joint distribution of
(Y(¢,), ..., Y(¢,)) satisfies the equality

o
j]:[l Pr{c;Y(t,) <y,...,c¥(t,) < 3}

= Pr{Y(t,) <y,...,Y(¢,) <3}, wherec;=c,(n).

Now

o
1—[1 Pr{cY(t)) <y,...,c;Y(¢,) < 5}
j=

o0

H r{ft(nm)g z=1,...,k;m=1,2,...}

8

ITPr {there are no points of the point process above the graph
J=1

of the function g(v) = (1/c;) mi}:y,-/ft‘(v), v € [0, 1]}

Sielt

exp( - j‘;l(cjl?sa;‘ ft,(v)/yi) du)

s n:ls

exp ). cj(— fo llglsagf,,.(v)/yi) do

j=1

eXP( - fO l(r?sag ft,(v)/yi) dv
=Pr{Y(¢) <y,..., Y(t,) <3}

In this article we seek the weakest conditions providing an estimate of the
deviation p(X,,Y,) with respect to a given metric p. Such a metric will be
defined on the space Z(B) of all rv.s X: (9, &, Pr) > (B, £g), where the
probability space (Q, &7, Pr) is assumed to be nonatomic. In particular, if the
sequence X consists of iid. rv’s we will derive estimates of the rate of
convergence of X, to Y, in terms of the minimal metric ji defined by

(15) A(X,Y) = p(Pry,Pry)
’ = inf{p(X",Y): X', Y € Z(B), X' =, X, Y =, Y}
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[see Zolotarev (1976, 1983a), Dudley (1976), Rachev (1985) and Rachev and
Shortt (1988)].

In addition, all considered metrics p will be such that fi-convergence implies
the weak convergence in the space #(B) of distributions Pry. Further, let
Z,,Z,,... be a sequence of i.id. r.v.’s taking values in the Hilbert space H =
(R>,|| - ||2) with EZ, = 0 and covariance operator V. The central limit theorem
in H states that the distribution of the normalized sums Z, = n=V/?%7_,Z,
weakly tends to the normal distribution of a r.v. Z € Z(H) with mean 0 and
covariance operator V. However, the uniform convergence

o(Fy, F;) == sup |Fz(x) - Fy(x)| >0, n- oo,
XeR®
where

o0
Fy(x) = Pr{ N[x9 < xw]}, X= (X0, X)), x = (z0,2®,...),

i=1

may fail [see, for example, Sazonov (1981), pages 69-70]. In contrast to the
summation scheme we will show that under some tail conditions the distribution
function (d.f.) of the normalized maxima X, of i.i.d. r.v.’s X; € Z(R*) converges
uniformly to the d.f. of a simple max-stable sequence Y. Moreover, the rate of
uniform convergence is nearly the same as in the univariate case (X; € Z(R"))
[see Omey and Rachev (1988)]. Moreover, in our investigations we will not
assume that R® has the structure of Hilbert or even normed space.
Our method is based on exploring compound metrics for which

l"’r(c(Xl v Y)’ C(X2 v Y)) = crp‘r(Xl’ XZ),

1.6
(1.6) X, X,,Ye Z(B), c>0,

where r is an arbitrary positive number [see Rachev (1987)]. This is actually the
main difference between our approach to the maxima scheme and Zolotarev’s
approach to the rate of convergence of normalized sums [see Zolotarev (1976,
1983a)], because metrics v, with the property

Ur(c(Xl +7), C(X2 + Y)) =< c'vr(Xl, Xz)s

1.7
(1.7) X, X,,YeZ(R),c>0,

for r > 1, take values 0 and oo.

The outline of the article is as follows. In Section 2 we will list the main
structural and topological properties of the metrics we will use further on.
Section 3 (Section 4) deals with the convergence rate problem for normalized
maxima in terms of minimal (resp. uniform) metrics.

2. Preliminaries: probability metriecs. In this section we summarize the
facts on probability metrics which we need in the sequel. For general acquain-
tance with the theory of probability metrics we refer to Zolotarev (1976, 1983a),
Dudley (1976), Rachev (1984b, 1985) and Rachev and Shortt (1988).
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Let (R, &7, Pr) be a nonatomic probability space, U = (U, d) be universally
measurable separable metric space with metric d and &= 2 (U) be the space of
all rv.’s X: (R, &,Pr) = (U, BU)) [Z(U) is the Borel o-algebra generated by
d]. Note that any complete separable metric space is universally measurable.

Using the convention X =Y, X, Y € Z(U), iff Pr(X = Y) = 1, we say that
p: Z? - [0, 0] is a compound (probability) metric if p is a metric in 2 possibly
taking infinite values. Since the set #,(U) of all probability measures on the
Cartesian product (U X U, #(U X U)) coincides with the space £ Z,(U) of all
laws Pry y, X,Y € & [see Rachev and Shortt (1988)], any compound metric p is
well defined on the set #,(U) and we will use the notation u(P), P € Py(U),
and u(X,Y), X,Y € Z. Further, let #(U) be the set of all probability measures
on (U, 8(U)). Then P(U) coincides with the space L% (U) of all laws Py,
x € Z. So, each metric v on P(U) = L% (U), possibly taking infinite values,
will be called a simple (probability) metric and we will use the notation v( P, P,)
P, P, e PU), and v(X,Y) == v(Pry, Pry), X,Y € Z(U), interchangeably.

The main relationship between compound and simple metrics is realized by
the notion of minimal metric. Namely, the simple metric i is said to be a

minimal metric with respect to the compound metric p if
gn PPeP) = intu(P): PES(U), PAXU) = P(4),
) P(UX A) = P(A) forany A € (U))

[see also (1.5)].

One of the main parts of the theory of probability metrics concerns the dual
and explicit representations of the minimal metrics i as well as the topological
structure of the spaces (#(U), {i). In the next sections we will use the following
probability metrics and relations between them [see (i), (ii) and (iii)].

(i) Compound probability metrics.
(i.1) Ky Fan metric (distance in probability):

(2.2) K(X,Y)=1inf{e> 0: Pr(d(X,Y) > ¢) < e}.
(i.2) &,-metric (1 <p < oo):

(2.3) Z,(X,Y) = (Ed?P(X,Y)}"”, 1<p<oo,

(2.4) Z.(X,Y) =esssupd(X,Y) == inf{e > 0: Pr{d(X,Y) > ¢} = 0}.
(i.3) my-metric:

(2.5) (X,Y) = Ed(QX,QY),

where @: U — U is a homeomorphism of U.
(i4) x,-metric (p > 0):

1/1+p)
(2.6) x,(X,Y) = [supt? Pr{d(X,Y) > t}]
t>0

LEMMA 2.1. For any p > 0, X, is a compound probability metric.
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Proor. Let us check the triangle inequality. For any a € [0,1] and any
t>0,
Pr{d(X,Y) >t} <Pr{d(X,Z) > at} + Pr{d(Z,Y) > (1 — a)t}
and hence
XETHX,Y) <a™PxE*NX,Z) + (1 - a) Px2*(Z,Y).

Minimizing the right-hand side of the last inequality over all a € (0,1), we
obtain

Xp(X’Y) SXP(X,Z) +Xp(Z’Y)~ d

(i) Simple probability metrics.

(ii.1) Prokhorov metric:
(2.7) 7(X,Y) =inf{e > 0: II(X,Y) <¢},
where I1(X,Y) = sup{Pr{X € A} — Pr{Y € A*}: A€ %U)} and A is the
e-neighborhood of A.

Lemmas 2.2-2.5 will deal with the dual and explicit representations of the
simple metrics under consideration as well as the convergences in #(U) which
these metrics metrize.

LEMMA 2.2. K = 7 metrizes the weak convergence in P(U).
Proor. See Prohorov (1956), Strassen (1965) and Dudley (1976). O
(ii.2) I,-metric (1 < p < ) for p € (1, ):
I2(X,Y) =sup{Ef(X) + Eg(Y):/: U >R, g: U > R,
1£1lo = sup{| f(x): x € U} < o0, [Igllp, < 0,

Lo ) = swp L= 12

f(x) + g(y) <d?(x, y)foranyx, y € U},

< o0, Lip(g) < oo,

and for p =1, p = oo,
L(X,Y) = sup{|Ef(X) - Ef(Y)|: f: U >R,
(2.8) Il < o0, Lip(f) <1},
1 (X,Y)=inf{e>0: II(X,Y) =0}.

LeEmMA 2.3. (a) The functional 1, has the following dual representation:

(2.9) l,=%, foranyp € [1,0]
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and, in particular, 1, is a simple probability metric.
(b) Let p € [1, ), a be some fixed element of U and
ox(N) = (Ed”(X, a)[{d(X,a) > N}}'”,  N>0,XecZ(U).
Then for any N > 0, X, Y € x(U),
(2.10)  I(X,Y)<#(X,Y)+2Na"/P(X,Y) + wx(N) + wy(N),
(211)  I(X,Y) > a@*V/P(X,Y), 1(X,Y)>7(X,Y)
and
(2.12) wx(N) < 3(1,(X,Y) + wy(N)).
In particular, if L(X,, a)+ L(X,a)< oo, n=1,2,..., then
(2.13) [(X,,X)-0 iffr(X,, X)— 0and A}l_l)noo Sl'llpwxn(N) =0.
(© If U=R, d(x,y) = |x — y|, then l, has the explicit representation
1/p
(2.14) (X,Y)= [follF,i(“"(x) - F}""(x)|pdx] , 1<p<oo,

(2.15) 1 (X,Y)= sup{lF,i(“"(x) - F(x)|:x € [0,1]},
where F3™ is the function inverse to the d. f. Fy of X.

Proor. (a) See Rachev (1984b) and Kellerer (1984a, b).
(b) See Zolotarev (1975, 1976) and Rachev (1982, 1984a, 1985).
(c) See Cambanis, Simons and Stout (1976) and Rachev (1981). O
(ii.3) Q-difference pseudomoment [see Zolotarev (1976)]:
ko(X,Y) =sup{|Ef(X) —~Ef(Y)|: f: U >R, |, < oo,
| f(x) = f(¥)] < d(Qx,Qy) forall x, y € U},
where @: U — U is a homeomorphism of U.

(2.16)

As a corollary of Lemma 2.3 one can easily obtain the following metric and
topological characterizations of k.

LEMMA 2.4. (a) Forany X,Y € Z(U),

(2.17) ke(X,Y) = L(QX,QY) = #(X,Y).
(b) If EQX, + EQX < 00, n=1,2,..., then

(2.18) ko(X,, X) =0 iff n(X,, X) - 0 and EQX, > EQX.
(C) If U= R, d(x’ y) = |x _yl, then

(2.19) kg(X,Y) = f_°°°o|FQX(x) — Fpy(x)| dx.
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(ii.4) The minimal metric w.r.t. x » [see (2.6)]:
(2:20) £(X,Y)=3%,(X,Y), p>o.

LEMMA 2.5. (a) Leta € U,

1/(p+1)
(221)  Gy(N) = [sup t? Pr{d(X, a) > t}] ,  N>o,
t>N
and
1/a+p)
(2.22) 7,(X,Y) = [sup tPILL( X, Y)] .
t>0

Then for any N > 0 and p > 0,
/0*P fp > 1,

(2.23) LI PES IR {l}’/(up) ifp <1,

where 1,, p <1, in the space (U, d) is defined as 1, [see (2.8)] in the space
Z (U, dP)). Moreover,

(2.24) Bx(N) < 22/0*P [ (X,Y) + Gy(N/2)]

and

(2.25) £2*Y(X,Y) <max[77(X,Y),(2N)"n(X,Y),27(3§(N) + 3§(N))].

(b) In particular, if limy_, (8x(N) + Gx(N)) = 0, n > 1, then the follow-
ing statements are equivalent:

(2.26) £(X,, X) >0,
(2.27) 'qp(Xn, X) -0,
(2.28) 7(X,,X) >0 and lim supGy(N)=0.

—® p>1

REMARK 2.1. Note that the equality ny = §, may fail in general. The
problem of getting explicit representation for £ » 18 still open.

(iii) Further, let U =R* and consider the space of £ = Z(R*®) of all
random sequences X = (X, X®, .. .). We will use the following simple metrics
in £ and relations between them.

(iii.1) Lévy metric:
(2.29) L(X,Y)=inf{e > 0: Fx(x — &) — e < Fy(x) < Fy(x + &) + ¢}

for all x € R*, where Fy(x) == Pr{NZ,[ XD < x¥)]}, x = (x@, x®,...), is the
df. of X and == (1,1,...).

(iii.2) Kolmogorov (uniform) metric:
(2.30) p(X,Y) = sup{|Fx(x) — Fy(x)|: x € R>}.
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(iii.2) Weighted Kolmogorov (semi-)metric:
(2.31) p,(X,Y) = sup{MP(x)IFX(x) — Fy(x)|:x € IR°°}, p>0,

where M(x) = inf;, ,|x®], x € R*®.

LEMMA 2.6. (a) ForanyB >0, X, Y € &>,

(2.32) LE*Y(X,Y) <E|X - Y8,
where ||x||, = sup;,|x®),

(2.33) L(X,Y) <p(X,Y)
and

(2.34) LP*Y(X,Y) < 2P,(X,Y).

() If Y= (YD, YD,...) has bounded marginal densities pyw, i = 1,2,...,
with A; == sup, cg Py»(x) < 00 and A == L2 | A,;, then

(2.35) o(X,Y) < (1+A)L(X,Y).

Moreover, if X,Y € £* = Z(R%) (i.e. X,Y have nonnegative components),
then

(2.36) LP*Y(X,Y) < pp(X, Y)

and

(2.37) p(X,Y) < A(p)AP/C+Pp/A+P(X,Y),  p>0,
where

(2.38) A(p) = (1 + p)pP/@*P),

PROOF. (a) The inequalities (2.32) and (2.33) are obvious. One can obtain
(2.34) in the same manner as (2.36) which we are going to prove completely.

(b) Let L(X,Y) < . Further, for each x e R® and n=1,2,..., let x,:=
(xD, ..., 2™ 00, 00,...). Then

Fx(x,) — Fy(x,)
<e+ Fy(x, + &) — Fy(x,)
<e+ [FY(xn +a) — Fy((x@,x® +¢,...,x™ + ¢, 00, oo,))]
+ oo [Fy((x®,.., 2070, 2™ 4 ¢, 00, 00,...)) — Fy(x,)]

<e+[A + - +A,]e

Analogously,

Fy(x,) — Fx(x,) < Fy(x,) — Fy(x,— &) +e<e+ [A + --- +A, ]e.
Letting n — o0, we obtain p(X,Y) < (1 + A)e which proves (2.35).
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Further, let L(X,Y)>¢> 0. Then there exists x, € R such that
|Fy(x) — Fy(x)| > ¢ for all x € [x,, xo + &] (ie. x® e [x§?, 2 + €] for all
i > 1). Hence,

pp(X,Y) = sup{MP(x)e: x € [xo, % + &1}
>einf sup MP(x)=¢ sup MP(x)=¢*P.

2€RY xe[z, z+a] x€[0e, &t]
Letting ¢ » L(X,Y), we obtain (2.36).
By (2.35) and (2.36), we obtain
(2.39) p(X,Y) < (1 +A)p/M*P(X,Y).
Next, we shall use the homogeneity of p and p, in order to improve (2.39).
Namely, using the equalities
(2.40) p(cX,cY) =p(X,Y), po(cX, cY) = cPp,(X,Y), ¢>0,

we have, by (2.39),

1 1+p c
.41 o(X,Y) < (1+ ;A)p;,/( )X, cY)

= (cP/A+P) 4 ¢ V/A+PA)/ P X, Y).
Minimizing the right-hand side of (2.41) w.r.t. ¢ > 0 we obtain (2.37). O

REMARK 2.2. The inequality (2.39) was proved by Zolotarev (1983b) in the
case of real-valued X and Y. The inequality (2.37) is an improvement of (2.39).
For example, if p — 0, then the right-hand sides of (2.39) and (2.37) tend to
1 + A)p(X,Y) and p(X,Y), respectively.

3. Convergence rate for maxima of processes. Let U=B:=1][T],
d(x, y) = ||lx — I, [see (1.1) and (1.2)] and, as in (2.3), (2.4) and (2.5), define the
following compound metrics in % (B): For any r € [1, o],

(3.1) 2, (X,Y)= [EIX-YIZ]?,  p=1,
(32) %, (X,Y) = esssup|| X - Y|,

(3:3) 7,(X,Y) =E|QX - Q}Y|,, s>0
where the homeomorphism @, on U is defined by

(3.4) (@,x)(t) =|x(2)|" sign x(2).

A

Let I, , =%, and «, =17, , (see Lemmas 2.3 and 2.4). Further, let X =
(X;, i21), Y = (Y, i > 1} be two sequences of dependent r.v.’s on Z(B) and
let us fix a sequence C € ¥ [see (1.3)].
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Define the sample maxima with normalizing constants cj(n) by

(3.5) X, = chj(n)Xj, Y, = Vlcj(n)y}

(see Section 1). In_the next two theorems we will obtain estimates of the
closeness between X, and Y, in terms of the metrics %, , and 7,,. In
particular, if X and Y have iid. components and Y] is a simple max-stable
process [see (1.4)], we will obtain the rate of convergence of X, to Y, in terms of
¢y, » and k, .. With this aim in mind we need some conditions on the sequences
X, Y and C.

(C.1) Let

it P 1 p<li
3.6 = P f € (0, , P = ’ -
( ) ap(n) []glcj (n)} or p € ( °°) b {l/p, p>1,
and
(8.7) a,(n) = supcy(n).

j=1

Assume that

a,(n) < o for some fixed a € (0,1) and all n > 1,
a,(n) =1 foralln>1,

(38) a,(n) >0 asn— ooforall p> 1.

The main examples of C satisfying the condition (C.1) are the Cesaro and Abel
summation schemes.

Cesaro sum:
— l/n: j=1,2,...,n,
(3.9) Cj(n)_{o’ j=n+1,n+2,...,
n'"?  forp € (0,1],

3.10 a.ln)=
(3.10) (1) {nl/,,_l for p € [1, o].

Abel sum:
(3.11) ci(n)= (eV"—1)e /", j=1,2,..., n=12,...,

f(l _ e_l/")p/(l _ e—p/n) _ (1/p)n1—p
as n - oo for any p € (0,1),

(3.12) ay(n) ={ (1 — e V/m)(1 — e »/n) /7 ~ p-1/rp1/p-1

as n — oo forany p € [1, »),

l1-e"~1/n asn — ooforp= 0.
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The following condition concerns the sequences X and Y.

(C2) Let a € (0,1) be such that a(n) < oo [see (3.8)] and assume that

(3.13) supE| X;(¢) Ia <o foranyteT,
Jj=1

(3.14) supEIYj(t)Ia <o foranyte T.
Jj=1

Condition (C.2) is quite natural. For example, if Y, j21,are independent
copies of a max-stable process [see de Haan (1984)], then all one-dimensional
marginal d.f’s are of the form exp{—B(¢)/x}, x = 0 [for some B(¢) = 0] and
hence (3.14) holds. In the simplest one-dimensional case T' = {to} {X; = X(%),
j =1} areiid. rv.’s as well as {Y; = Yi(%,), j =1} areiid. r.v.’s with Fy(x) =
exp{ —1/x}, x > 0], one can easily check that the condition (3.13) is necessary to
have a polynomial rate of the uniform convergence of the df. of 1/n)V}_,X; to
the extreme-value distribution Fy [see Omey and Rachev (1988)].

TuEOREM 3.1. (a) Let X, Y and C satisfy (C.1) and (C.2). Let1<p <
r < oo and

(3.15) 2, (X,Y) <%, (X,Y)) <o forallj=1,2,....
Then
(3.16) 2, (X,.Y,) < a,(n)¥, (X,Y) >0 asn— co.

n»—-n

}w(b) If X and Y have i.i.d. components,1 <p <1 < © andl, (X, Y;) < oo,
then

(3.17) 1, (X,,Y,) <a,(n)l, (X,Y)) >0 asn— co.
In particular, if Y satisfies the “max-stable property ”

(3.18) ?n =4 Y1

then

(3.19) L, (X, Y,) < a,(n)l, (X,,Y;) >0 asn— co.

ProOF. (a)Let1 <p <r < o.By (C.1),(C2) and the Tchebycheff inequal-
ity, we have

Pr{X,(t) > A} < A% (n)supEX; ()" >0 asA—> o

Jj=1
and hence

Pr{X,(t) + Y,(¢t) <o} =1 foranyteT.
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For any w €  such that X (¢)(w) + Y, (t)(w) < o, we have

m

X (8)(w) = V ¢i(n)X;(t)(w) + eo(m),  lim e(m) =0,

V0 = V em¥(e)e) +am),  lim 8,(m) =0
and hence
I,(6)(6) - B(0)@)| = V [omX00) - ¢(m¥e()]

+e (m)] +8,(m)].
So, with probability 1,

(3.20 1.0 - %) = V ()| %,(0) - ¥(o)].

Using the Minkowski inequality and the fact that p/r < 1, we obtain
i p/r /P

%, (% %) - [B[ [ %0 - R0 @] )
1/p

i r p/r
E jT [j!lcj(n)|Xj(t)—lG(t)|] dt} }

o 1p/m\ VP
E fTvc;(n)|X,.(t)—Y,.(t)|'dt }

Jj=1

p/r} P

E éc;’(n)wxj(t) - Y}(t)]rdtj

S 1p/m\ VP
<{E j Y i(n)| X,(8) - Yi(¢)| dt
["Tj=1 )

I 1/p
Z cf(n)’?pl,’r(Xj’ Y;)}
= ap(n)gp,r(Xl’ Yl)'

The statement for p < r = 00, p = r = o can be proved in an analogous way.
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(b) By the definition of the minimal metric [see (1.5) and (2.1)], we have

p,r

2 (X,7,) < inf{.?, (X,7): X= Vc,(n)X;, Y=V ¢i(n)Y,,

= ap(n)"é;J,r(Xl’ Yl)’

By Lemma 2.3 [see (2.9)] we obtain (3.17).
Finally, (3.19) follows immediately from (3.17) and (3.18). O

Even in the univariate case the estimate (3.19) is new and seems to be very
hard to obtain using traditional techniques.

COROLLARY 3.1. Let (X}, j = 1} and {Y;, j = 1} be random sequences with
i.i.d. real-valued components and Fy(x) = exp{ —1/x}, x > 0. Then

(3.21) l,,(ﬁ'?c,-(n)x,-,n)sa,,(n)z,,(xl,m, pellel,

where the metric 1, is given by (2.14) and (2.15).

Let «, be the Prohorov metric [see (2.7)] in the space Z(B, || - ||,)). Using the
relationship between 7, and %, , [see (2.11)], we get the following rate of
convergence of X(n) to Y; under the assumptions of Theorem 3.1(b).

COROLLARY 3.2. Let the assumption of Theorem 3.1(b) be valid and (3.18)
hold. Then

(3.22) 7(X(n),Y,) < ap(n)p/(1+p)lp’r( X,, Y,)” 4P,
_ The next theorem is devoted to a similar estimate of the closeness between
X

and Y, but now in terms of the metric T, » Lsee (3.3)], p >0, and its
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corresponding minimal metric K, » Moreover, we shall relax the restriction
1 < p <r < oo imposed in Theorem 3.1.

THEOREM 3.2. (a) Let (C.1) and (C.2) hold, p >0 and 1/p < r < . As-
sume that

(3.23) (X, Y) <7, (X, V) <0,  j=1,2,....
Then
(3.24) 1 (X Y,) < ap(n)7, (X,Y)) >0 asn— oo,

where ay(n) = ):jf;lc}’(n), p = pmin(l, r).
(b) If X and Y consist of i.i.d. r.v.’s, then «, (X,,Y) < oo implies

(3.25) o (X V) < ap(n)x, (X,Y) >0 asn— .
Moreover, assuming that (3.18) holds, we have
(3.26) kp, (X, Yy) < a5(n)k, (X,,Y)) >0 asn— co.

Proor. (a) By (C.1) and (C.2),

Pl‘( ch}’(n)(QpXj)(t) + ch}’(n)(Qij)(t) < 00) = 1.

Hence, as in Theorem 3.1, we have

Q,,( Y; cj(n)xj)(t) - Q,,( Y, cj(n)Yj)(t)

Jj=1 Jj=1

|V e2(m)(Q,%)(1) - V e2(n)(Q,%,)(2)

j=1 j=1
< V ¢f(n)|(@,X,)(t) - (,%)(2)].
j=1
Next, denote 7 = min(1,1/r) and then

o (X

v

E[T ({? n)X)(t) p(chj(n)lG (t) dt}

<E /T V e (m)](Q,X,)(¢) - (Q,%)(¢)| dt

J=1

3
n

<E z:l Lerm(@,x,)(0) - (@,¥)(8)[ dt

<X c}’ﬁ(n)fp,r(Xj’ YJ) = aﬁ(n)"' ,r(Xl’ Y,).

Jj=1
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(b) Passing to the minimal metrics, as in Theorem 3.1(b), we obtain (3.25) and
(3.26). O

Note that (3.26) may be viewed as infinite analog of the following well-known
estimate of the convergence rate for the univariate maxima.

CoOROLLARY 33. Let X and Y consist of i.i.d. real-valued r.v.’s and
Fy(x) = exp{—1/x}, x 2 0. Then

(3.27) kp(Xnr V1) S a(n)i, (X1, Y)),  p>1,

where a,(n) = X7_,cP(n) and

(3.28) k(X,Y)=p j_ww|x|"‘1|Fx(x) — Fy(x)|dx.

The proof of (3.27) follows immediately from (3.26) and (2.19) with @: R - R
given by @Qx = |x|? sign x.

The main purpose of the next theorem is to refine the estimate (3.22). By
Lemmas 2.3 and 2.5, we know that [, is topologically stronger than

(3.29) gp,oo = Xp,oo’
where X, (X, Y) = [sup,s o ? Pr{|| X — Y||,, > £}]/¢*?), X,Y € Z(1,,). So, in

the next lemma we shall show that it is possible to replace [, ,, with £, ,, in the
right-hand side of the inequality (3.22) (r = ).

THEOREM 3.3. (a) Let (C.1) and (C.2) hold and X and Y be sequences of
r.v.’s taking values in (1) such that

(3.30) Xp,oo( Xjs ¥;) < Xp, (X1, Y1) < 00 forallj > 1.
Then
(331) X, (X, Y,) <afP(n)x, o(X,Y;) >0 asn— o,

where a, == ab, p > 1.
(b) If X and Y have i.i.d. components and (3.18) holds, then

(3.32) £p, oo Xy Y1) < /4 PUn)E, (X1, V).
In particular,

7o Xnr Y1) < /0 PAn)E, (X3, V)

(3.33)
< a}z/(l +p)(n)lp, oo( Xl’ Yl)p/(l +P)'
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Proor. (a) By (1.2) and (3.20),
10 (X,,7,)

Xp, o ny *n

IA

sup u” Pr{ sup V |cj(n)Xj(t) —c(n)Y(¢)| > u}

u>0 teT j=1

< supu? Pr{sup]Xj(t) - Y,(t)| > u/c;(n) for some j > 1}
teT

u>0

=]

Y supu” Pr{§:g|Xj(t) - Y(t)|> u/cj(n)}

Jj=1u>0

IA

=]

= X ()X 5(X, V) < ay(n)xXpE(X,, V).

j=1
(b) Passing to the minimal metrics in (3.31) we get (3.32). Finally, using the
inequality (2.23), we obtain (3.33). O

4. Uniform rate of convergence of the distributions of maxima of
random sequences. In this section we will always assume X = (X, X, j > 1},

Y = {Y,Y,, j > 1} are sequences of i.i.d. r.v.’s taking values in RY and
o0
(4'1) Xn = V cj(n)Xj’
j=1
_ [~e]
(42) Y,= Ve(n)y,
j=1

where the components Y, i>1, of Y have extreme-value distribution
Fyo(x) = G(x)=eV* x> 0.
Further, we shall consider C € € [see (1.3)] subject to the condition

o0
(4.3) a,(n) = Y cP(n) >0 asn— ooforanyp>1.
j=1
Denote acx = (aWx®, a®x®, ..), bx = (bx®, bx?,...) for any a =
(a®,a®,...) eR>, x = (x®, x®,...) € R, b € R. B
This section is devoted to the rate of convergence problem p(X,,Y) — 0 (as
n — o0) where p is the Kolmogorov metric (2.30).

First, note that the assumption, the components X }k) of X; are nonnegative,
is not a restriction since

P(Xn’Y) = P( ? cj(n)Xja Y)a

where X (®) := max(X(®,0), k > 1. First, we shall obtain an estimate, unimprov-
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able as a general estimate, of the rate of convergence of X, to Y in terms of
weighted Kolmogorov metric p,, p > 1 [see (2.31)].

LEMMA 4.1, Letp > 1. Then

(4.4) pp( X, Y) < a(n)p,(X,Y).

Proor. For any x € R™,

MP(x)|Fg(x) - Fy(x)| = M?(x)| Fx(x) - Fy,(x)|

< mﬁflep(x)ﬁlFXj(x/cj(n)) - ij(x/cj(n))l

< ilM”(x)lFXj(x/cj(n)) - Fg(x/cj(n))l
< ay(n)p,(X,Y). ]

REMARK 4.1. The estimate (4.4) was shown by Zolotarev (1983b) in the case
of real-valued r.v.’s X; and Y. The fact that such an estimate cannot be
improved, without additional assumptions, was shown by Omey and Rachev
(1988).

THEOREM 4.1. Let y>0 and a=(a®,a®,...) € R® be such that
A(a,v) =X2_(a®)"VY < 0. Then for any p > 1 there exists a constant
¢ = c(a, p,v) such that

(4.5) p(X,,Y) < cap(n)l/(Hm)pp(a o X, aoY)/4P,

REMARK 4.2. In the estimate (4.5) the “convergence index” a,(n)/®*P7
tends to the right one a,(n) as y — 0. The constant ¢ has the form

(4.6) c:= (1 + p)p PP A(a, y)N(y)] /P,

where j == py and
(4.7) Ay) = yexp[(l + %)(M(l + % - 1)]

Choosing a = a(y) € R® such that (a®)~ 1/")\(7) =%k7% for any £>1 and
some 6 > 1, one can obtain that

c(a(y), p,y) > 1 asy—0.

However, in this case, a® = a®)(y) - o0 as y = 0 for any % > 1 and hence
p(ae X, aeY) > o0asy—0.
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PROOF OF THEOREM 4.1. Denote

(4.8) Xj = qgo Xj, YJ =:q OY;-, pr(y) = sul())p(yu))x/v(x),
x2

where py(-) means the density of a real-valued r.v. X. Using the inequality
(2.37), we have that for any p > v,

00 /Y
o(X,,Y) - ,,(( v c,-(n)X,) Rz
j=1

o0
(49) -of Ve, va)
j=1
0 b/(1+D) 0
~ p /v ¢ 5
< A(p)( h pk(y)) p;~,/<1+p>( V ¢ (n) 1RV, 911,
=1 Jj=1

where A(f) is given by (2.38). Next we exploit Lemma 4.1 and obtain

0
Pﬁ( c/(n)" "XV, Ym) < a5, (n)ps( X7, T1)
J

(4.10) =1

= "‘f»/y(n)Pﬁ/v(Xj’ Y;)

Now we can choose p = py. Then, by (4.9) and (4.10),
_ ® B/A+P) o Laes
(411) o(X,.Y) < A(f»)(kzlpk(v)) a,(n)/ P (R, 7P,

Finally, note that since the components of Y have common d.f. G, then
Pu(Y) = (a®)~YY\(y), where A(y) is given by (4.7). O

In Theorem 4.1 we have no restrictions on the sequence of C of normalizing
constants c;(n) [see (1.3) and (4.3)]. However, the rate of convergence
a,(n)/@*P7) is close but not equal to the exact rate of convergence a,(n).

In the next theorem we impose the following conditions on C which allow us
to reach the exact rate of convergence.

(A.1) There exist an absolute constant K; > 0 and a sequence of integers
m(n), n=2,3,..., such that

m(n) o

(4.12) E}lcj(n)les Y. cin)

J=m(n)+1
and m(n) < n.

(A.2) There exist constants B € (0,1), 0§ >0, ¢,(n) and §,,(n), i=
1,2,...,n=2,8,..., such that

(4.13) Ciem(R) = en(n)ci(n — m) + 8;,(n)
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and

" 1/(1+8)
(414) | E It
i=1
foralli=1,2,...,n=2,3,... and m = m(n) defined by (A.1).
(A.3) There exists a constant K, such that
(4.15) a,(n —m(n)) < Kya,(n).

< fa,(n)

We shall check now that the Cesaro sum (for any p > 1) and the Abel sum
(for 1 <p <1+ 3[B/( + B)] satisfy (A.1)-(A.3).

EXAMPLE 4.1. Cesaro sum [see (3.9)]. For any p > 1 we have a,(n) = n'"?.

(A.1) Take m(n) = [n/2], where [a] means the integer part of a > 0. Then
(4.12) holds with K, < 1 and, obviously, m(n) < n. )

(A.2) The equality (4.13) is valid with ¢,(n) = (n — m)/n and §,,, = 0. Hence,
0 = 0 in (4.14).

(A3) K, =271,

ExXAMPLE 4.2. Abel sum [see (3.11)]. For any p > 1 we have
ay(n)=(1- e /")’ /(1 — e7P/") ~ (1/p)n* P asn — .
(A.1) Since Zf-_,lcj(n) =1 — e */™ one can take m = m(n) = [n1n2].
(A.2) Let ¢,(n) =[Q(n)/Q(n — m)]A,(n), where @, =e'/"—1and A, =
(n — m)/n. Then

Q(n)
Q(n—m)

= Q(n)[e_(”'")/" - Am(n)e—i/(n—m)].

8im(n) = (/" = 1)e"A+m/n A, (n)(e”Vin=m — 1)g=i/(n=m)

Hence, as n - oo,

00 s o ' | ,
)y [8,(n)|" = Q*(n) X |e‘(‘+m)/n - Am(n)e—L/(n—m)|
i=1 i=1

= Qﬁ(n)g1 (1 - HTm) -—Am(n)(l - - _t m) B
+Q#(n)O(n~%)
00 1 B
=Qfn) Y |In—-i- mlﬁ’; - A’"(n)n — m' + O(n=%).

i=1
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Since 1/n — A,(n)[1/(n — m)] = 0 for any n > 1 we have

{ g:l |8:m(n2) |ﬁ

Thus (4.14) holds if 38/(1 + B) > p — 1, thatis, p < 1 + 3[8/(1 + B)].
(A.3) Since a,(n —m)/a,(n) ~2P~! as n — oo, there exists K, such that
(4.15) holds.

1/(1+8)
} = 0(n~%¥/0*B) agn - co.

THEOREM 4.2. Let Y be max-stable sequences [see (1.4)] and C satisfy
(A1)-(A.3). Let a € RY be such that

(4.16) o (a) = i 1/a® < oo.

i=1
Letp>1, X=aoX,Y=aoYand
Ap =M, (X,¥) = max(py®* (X, ¥), 0,(X,¥), T}), -
where
= o{[BIXIE] + [BITYE] 47

and B, 0 are given by (A.2). Then there exist absolute constants A and B such
that

(4.17) A, <A=p(X,,Y) < B\,a,n).

REMARK 4.3. As appropriate pairs (A, B) satisfying (4.17) one can take any
A and B such that

é =< Qs(p, a), E 2 Qg(l’a a)’

where the constants Cg and C, are defined in the following way. Denote
(4.18) Cy(a)=(1+ (2/e)")(a)/K,,  Cya) = ¢(a)(l +K,),
(4.19) Ci(a) = (2/e)’(a), Cp,a)=(p/e)’B(a)™”
[where #(a) = min, ,,a® > 0 by (4.16)],

(4'20) Q5(p’ a) = 4Q4(p’ a)Kl_p’ CG(p’ a) = A(p)

[where A(p) is given by (2.38)],

1
_3(a) )P/( +p)

1

Q7(P, a) = A(P)Qa(a)p/(l+p)’

(4.21) 1
QS(p, a) = (2Q6(pa a)Q2(a))_ -
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and

g9(p: a) = max{l’ Q5(p: a’): Q7(p’ a)(l \% C!p(Z)) —p/(l+p)}.

The proof of Theorem 4.2 is essentially based on the next lemma. [In the sequel
X' v X" X,X"eZR?), always means a random sequence with d.f.
Fy(x)Fy.(x), x € R%, as well as X means a o X where a € R% satisfies (4.16).]

LEMMA 4.2. (a) Forany X', X", Z € Z(R%) and c > 0,
pp(cX’, cX") = cPp, (X', X"), p>0,
p,(X'VZ X"V Z)<p,(X, X").

(b) If Y is a simple max-stable sequence, then for any X', X" € Z(R?%) and
& >0,

(4.22) p(X' v 8Y, X" v 8Y) < Cy(p, a)d P, (X', X"),
(4.23) p(X',Y) < Ci(p, a)ey**P(X",Y),

where C,, C, are given by (4.19) and (4.21), respectively.
(c) For any X', X", U,V € Z(R%),

(424) p(X' VU, X"V U) <p(X', X")p(U,V) +p(X'VV, X"V V).

PROOF. (a) and (c) are obvious.

(b) Let
(4.25) C(p) = (p/e)’ = supxPG(x).
x>0
Then

Fi(x/s) < mi{lﬁ:l(i)y(i)(x(i)/s)
= mifllG(x(i)/a(i)8) < g(p)S‘P min (x(i)/a(i))P
123 is1

< C(p)%(a) "M(x)"87".
Hence, by (4.19) and (4.25),
p(X' v oY, X" Vv o8Y) = sup Fy(x/8)|Fx(x) — Fy.(x)|

xER%
=< Q4(p! 0)8—ppp( X,’ X”)’
which proves (4.22).
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Further, by Lemma 2.6 [see (2.37)], we have

p/(+p) L/+p)
TR v P
) pp(X',Y)

o(X,¥) < A(p)( 5 suppyoyolx)

i=1x>0

p/(1+p) L/d+p)
' v p
) pp(X',Y)

< A(p)(g(z) 5 1/a®

i=1

, o\1/1+p)
=—7(pa a)pp(X’Y) p' a
PROOF OF THEOREM 4.2. If n = 1,2, then by (4.23) and Lemma 4.1 we have

(%, %) =o| V om) 2,7

<¢(p, a)p;,/<1+m( V a(n)%, Y)
i=1

< Q7(p, a)ap(n)l/(l+p)p},/(l+p)(X, Y')

Since A, > p/**PY(X,Y) and C,(p, a)a,(n)/4*P) < Ba (n) for n = 1,2, we
have proved (4.17) for any A and n = 1,2.

We now proceed by induction.

Suppose that

oo

(4.26) p( V cj(l)X'j,Y) < BN, (l) foralll=1,...,n—1.

Jj=1
Let m = m(n), n > 3, be given by (A.1). Then using the triangle inequality we
obtain

(4.27) p( Vei(n)X,, Y) <dJy + dy,
j=1

where
m - o0 ~ m o o0 o
dJ, = p( Ve(n)X;v Vo ¢i(n)X, Ve (n)Y,v V cj(n)Xj)
Jj=1 j=m+1 Jj=1 j=m+1
and
m - o0 o -
Jy = p( Ve(n)Yv cj(n)Xj,Y).
Jj=1 J=m+1

Now we will use the inequality (4.24) in order to estimate oJ;:
(4.28) Jy<J! + I,
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where
m . m o 00 - o0 -
Jy = P( V cj(n)Xj’ V cj(n)Yj)p( V cj(n)Xj’ V c](n)Yj)
Jj=1 Jj=1 Jj=m+1 J=m+1
and

JyY = p( \”} ci(n)X; v V c,(n)Y,, chj(n) \ {7 cj(n)Y,)

Jj=1 Jj=m+1 Jj=m+1

Let us estimate oJ;'. Since Y is a simple max-stable sequence

(4.29) V cj(n)Yj=da°( ¥ cj(n))Y

Jj=m+1 Jj=m+1

[see (1.3) and (1.4)]. Hence, by (4.29), (2.35), (A.1) and (A.2), we have

P( V cj(n)Xj’ V CJ(n)Y;)

J=m+1 Jj=m+1

5o 5 0]
XL( {7 Cj+m(n)Xj, {7 cj+m(n)l7j)

Jj=1 Jj=1

< Ql(a)L( Yl(em(n)cj(n - m) + 8jm(n))Xj,

V (en(n)e(n - m) + s,.m<n>>v,)

(4.30) < Ql(a)[L(Jz(em(n)cj(n - m) + 8,,(n))X;, Jzem(”)cj(n - m)Xj)
+L {_} en(n)e;(n — m)Xj, §1£M(n)cj(n - m)f/,)
+L {? eq(n)ci(n — m)YJ, ?1 (em(n) ci(n—m) + 8jm(n))l7})

= Ca)(L + I, + L),

where C(a) is given by (4.18). Let us estimate I; by using (A.2) and the
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inequality (2.32):

Yl(sm(n)cj(n -m)+ Sjm(n))X'J

8 }1/(1+B)

- Zem(n)c,.(n ~m)X,

=]

< {E {7 ”(sm(n)cj(n - m) +8,,(n))X,

Jj=1
8 1/1+8)
(4.31) —en(n)c;(n - m)Xj"w}
. 1/1+8)
- (& ¥ sz
i
1/1+8)
< {EEl |ﬁ||X,~||£;}
Jj=1
had vas /+B)
~ 1 +
s{ El,mlﬁ} {E1X)2)
J=1
1/1 ﬂ)
< ba,(n){E|X)18) "
Analogously,
5 1/1+B)
(4.32) I, < 8a,(n) {E|T7)8) TP

In order to estimate I, we use the inductive assumption (4.26), condition (A.3)
and (2.33):

o0

I, < p( V en(n)e;(n - m)X,, i7 em(n)c;(n — m)Y,)

j=1 j=1
(4.33) o s 2 -
< .@7\ o (n -m) < Kzée?)\ L(n).
Hence, by (4.30)—(4.33) and (4.18), we have

o V ems Vo)

(4 34) Jj=m+1 =m+1
' < C(a)[T, + Kzzx,,]a,,(n)

< C(a)(1 + K, @A a,(n) < ()@ ja,(n).
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Next, let us estimate p(V ;Y;lcj(n))f'j,vgf;lcj(n)f'j) in Jy. Since Y is a simple
max-stable sequence [see (1.3) and (1.4)] we have

(4.35) Vei(n)Y, =, ¥ c,(n)Y.
j=1 j=1
Thus, by (2.37), (4.20) and (A.1),

P( \7 cj(n)Xj’ \ch(n)f;)

Jj=1

= p( chj(n)fj, g‘,lcj(n)f')
(4.36)

_17p/04p)
< A(p)[(2/e)2; (a‘i) ; C‘j(n)) } (X, Y) /4P

< Co(p, a)p (X, ¥)V 4P

< Co(p, @)NJ4*P) < Cy(p, @) AVC+P),
Using the estimates in (4.34) and (4.36), we obtain the following bound for J:
(4'37) Jl, =< QG(p» a)él/(l+p)g2(a)‘gxpap(n) = %prap(ny
Now, let us estimate o/;”. By (4.22), (4.29), (A.1) and (4.4), we have

m . m 5 © K
Jy < Q4(p, a)Pp( V cj(n)Xj» V Cj(n)y;)( Z cj(n))
j=1 j=1 Jj=m+1
4.38) om oo
( < Cp )K;? 3 cP(n)py( £, 7)
j=1
< C(p, a)KiP\a,(n).
Analogously, we estimate o/, [see (4.27)]:
0 © m P
Jy < Cy( p, a)Pp( Vv cj(n)Xj: \Y cl(n)Y;)( > cj(n))
J=m+1 J=m+1 Jj=1

(4.39) - Yo
<C(p,a)K;? Y cP(n)p(X,Y)
J=m+1
< Q4(p’ a)Kl_pApap(n)‘
Since 2C( p, a)K? < %#/2 (see Remark 4.3),
(4.40) Iy + dy < 39N (n)
by (4.38) and (4.39). Finally, using (4.27), (4.28), (4.37) and (4.40), we obtain (4.26)
for/=n.0
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In the case of the Cesaro sum [see (3.9)] one can refine Theorem 4.2 following
the proof of the theorem and using some simplifications (see Example 4.1).
Namely, the following assertion holds.

CorOLLARY 4.1. Let X, X, X,,... be a sequence of i.i.d. r.v.’s taking
values in R%. Let Y = (YD, Y®,...) be a max-stable sequence [see de Haan
(1984)] wzth Fyo(x)=e V% x> 0 Let a € R™ satisfy (4.16). Denote X,

A (X Y) = max{p(X Y), pp(X Y)}, =aoX, Y:=aocY. Then there exzst
constants C and D such that

n
(4.41) A,<C= p((l/n) \Y Xk,Y) < DA, n'">
k=1

REMARK 4.4. As an example of a pair (C, D) that fulfills (4.41) one can
choose any (C, D) satisfying the inequalities

CD(3)" " <4, D >max(27,4C(p, a)(27"! + 67)),
where Cy( p, a) is defined by (4.19).

REMARK 4.5. Smith (1982), Cohen (1982), Resnick (1987) and Balkema and
de Haan (1988) consider the univariate case (X, X, X,,... € Z(R)) of general
normalized maxima

n
p(anVXi_ bn’Y) SC(XI’Y)¢X1(n)’ n=12,....
i=1

In order to extend these type results to the multivariate case (X, X,, X,,... €
Z(B)) using the method developed here in this article, one needs to generalize
(1.6) by determining metrics p, and i, in Z(B) such that for any X, X,,Y €
ZB) and ¢ > 0,

Bo(e(X; VYY), e(X, VY)) < d(0)By(Xy, X,),

where ¢: [0, 00) — [0, ) is suitably chosen strictly increasing continuous func-
tion, ¢(0) =
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