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NOTES ON THE WASSERSTEIN METRIC IN HILBERT
SPACES!
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Let (X,Y) be a pair of Hilbert-valued random variables for which the
Wasserstein distance between the marginal distributions is reached. We prove
that the mapping w — (X(w), ¥(w)) is increasing in a certain sense. More-
over, if Y satisfies a nondegeneration condition, we can take X = T(Y) with
T monotone in the sense of Zarantarello.

We apply these results to obtain a proof of the central limit theorem
(CLT) in Hilbert spaces which does not make use of the CLT for real-valued
random variables.

1. Introduction. Let M be a Polish space and B its Borel o-algebra. Let
0:M X M — R be a measurable map. If P and @ are probabilities defined on S,
the Wasserstein distance between P and @ with respect to ¢ is related, through
a suitable increasing function, to the minimum value

1) o(P,Q) = inf{fod)\, A eM(P,Q)},

where M(P, Q) is the set of all probabilities defined on 8 X 8 with marginal
probabilities P and @, respectively.

In spite of the fact that the priority in the definition of these metrics belongs
to Kantorovich (1942), we use the terminology “ Wasserstein metric” as do most
articles on this subject. The history of this question can be read in the survey by
. Rachev (1984).

The interest in the Wasserstein metrics relies on the fact that convergence
with respect to one of them is not exactly equivalent to the weak convergence of
probability measures but, rather roughly speaking, to the weak convergence and
the equiintegrability of ¢ [see Bickel and Freedman (1981) and Shorack and
Wellner (1986)].

In this article we are concerned with the study of a pair of M-valued random
variables (X, Y') defined on a probability space (2, a, p.), whose distributions are,
respectively, P and @), such that the minimum in (1) is given by [o(X,Y) dp.
Therefore, for simplicity, we use the expression in (1) as the definition of the
Wasserstein distance between P and Q.

For the case where M is a separable Banach space and o(x, y) = ||x — y||” a
proof of the existence of the pair where the minimum in (1) is reached appears in
Bickel and Freedman (1981).
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For the construction of this optimum pair in the real case it is known that if
o(x, y) =o(x — y), 0 a convex function, and F and G are the distribution
functions of P and @, respectively, then the optimum pair is X = F~XU) and
Y = G (U), where U is uniformly distributed on (0,1) [see Kantorovich and
Rubinstein (1958), Vallender (1973) and Major (1978)].

In the multidimensional case, to our best knowledge, the situation is quite
different. It appears that the only available result is that in Riischendorf (1985)
which only treats the case where o(x, y) = 7[h(x) — g(¥)], 7 is convex and f
and g are real-valued functions. This result does not cover, for example, the
important case o(x, y) = ||x — y||? for which some results are available if P and
@ are p-dimensional normal random variables (r.v.’s) [Dowson and Landau
(1982) and Olkin and Pukelsheim (1982)].

It is perhaps interesting to say that the article by Riischendorf provides a
construction for the optimum pair of a problem which is similar to but different
from (1).

Our article intends to study the construction of the optimum pair in the case
a(x, y) =|lx — y|I%

First, let us study the solution in the real case. The construction in Major
(1978) referred to above can be formulated in the following terms.

“Let Y be a r.v. such that its distribution function, G is continuous. If 7' is an
increasing function such that the distribution of 7(Y) is P, then the optimal
arrangement is obtained for

(2) X=1(Y)”

A particular possible choice (in fact the only right-continuous choice) for 7T is
F~1o @, where F is the distribution function of P.

Our first intention was to extend this idea to Hilbert spaces, but it is not too
difficult to see that, even in the p-dimensional case, the usual growth concept in
R? is not adequate for this problem. An alternative notion which turns out to be
suitable for our purposes is that monotone operator in the sense of Zarantarello
[see, e.g., Brezis (1973)]. Namely:

Given the Hilbert space (H,( -, - )), and a function T: H — H, we say that T
is increasing if (T(x) — T(y), x — y) > 0 for every x, y in H.

This alternative definition of increasing function leads to the desired results.
However, arrangements are not well defined in this case as in the real case,
because the mappings verifying (2) in Hilbert spaces, or even in R?, are not as
easily obtained as in the real case. Moreover, even if we place additional
continuity conditions, there is no unique map verifying (2) for two given
distributions. Theorems 2.3 and 2.8 show that, under appropriate hypotheses,
any representation of the optimum pair verifies (2) for an increasing 7.

The usefulness of our results is shown by a proof of the central limit theorem
(CLT) in Hilbert spaces which does not resort to the CLT for the real-valued
casg or to any result related to the Fourier transformation. On the other hand,
we think that Theorem 2.3 can be useful in building an algorithm to find the
optimal arrangement.

Propositions 2.9 and 2.10 exhibit some “interesting” distributions verifying
the hypotheses which appear in Theorem 2.8.
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Our results were inspired by those obtained by Tanaka (1973) and our proof
goes along the same lines as that of this author. However, the proofs of the key
steps are quite different to those employed in the real case. For instance the
proof of step 1 in Tanaka would be valid in a Hilbert space if there existed only
one (or perhaps a finite number) hyperplane through the origin, which is not
clearly the case and we therefore need to find another technique for the proof of
this step. This proof is carried out in Propositions 2.1 (which solves the problem
for a special kind of simple r.v.) and 2.2 (which allows one to extend Proposition
2.1 to a general r.v. in Theorem 2.3).

Once more the proof in Tanaka for step 2 relies on the fact that R is
unidimensional. In Propositions 2.5 and 2.6 we get around this difficulty.

The difference between the situation studied in the article of Tanaka and that
in Hilbert spaces is also made apparent by the fact that the inverse of Theorem
2.8 is true in Tanaka’s case but not in our framework, as it is shown in comment
1 following Theorem 2.8.

Our proof of the central limit theorem is similar to that of Tanaka for the real
case but here we do not know whether T' is continuous (or right-continuous), so
that the condition T(x + y) = T(x) + T(y) is not enough to guarantee that T is
linear. Proposition 3.3 is included in this connection.

2. Representation theorem. From now on we denote by H a separable
Hilbert space and by ( -, -) and ||-|| its inner product and norm, respectively.
X,Y,... (with sub/super-index or not) represent H-valued random variables
(r.v.’s) defined on the same probability space (£, a, p), and Py, Py,... denote
their probability distributions.

The usual product probability spaces are called (2 X Q,a ® a, p ® p). Note
that, with an abuse of notation, we can also consider the r.v.’s defined on
(2 X Q0 ® a,p® p).

Given P, @, two probability measures defined on %, the Borel ¢-algebra in H,
we define the Wasserstein distance, W( P, @)'/?, between them by

W(P,Q) = inf{an —Y||?du, Py = Pand Py = Q}.
We have noted in the Introduction that for every pair of probabilities in 8,

there exist X, Y r.v.’s such that [see, e.g., Bickel and Freedman (1981)]:

(a) Py=Pand Py= Q.
(b) W(P,Q) = [ |X - Y||* dp.

This section is devoted to obtaining some properties of this optimum pair.

ProPoOSITION 2.1. Let X, Y be a pair of simple random variables such that:

3) * If (a, b),(a’, b') belong to (X, YXQ), then
p{(X,Y) = (a, b)} = p{(X,Y) = (a’, b)}.

(Note that this condition does not entail that X and Y are uniformly distributed.)
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There exist y, 8 > 0 such that
(4) p o p{(w, o) /(X(«) - X(«),¥(0) - V(o)) < —v} 2 8.
Then there exist X*, Y* r.v.’s such that:

(a) PX=waandPY=Pyn.
M) [I1X = Y|2dp= [|X*— Y*2dp+v-9.

Proor. Let X’ and Y’ be independent copies of X and Y, respectively. We
can choose X, X’, Y and Y’ defined on (2 X €,a ® a, p ® p) in the standard
way.

Let usdenote: D = {(X — X', Y — Y’) < —v}. Our r.v.’s being simple, we can
obtain a finite set &= {(a,, b;, ¢;, d;), i = 1,..., k} (contained in H*), such that
if we denote

Ai = {X = al} N {X/ = bl} N {Y= Ci} N {YI = di}’ i = 1,..., k,

then {A;, i =1,..., R} is a partition of D.
From (3) and (4) it is easy to derive the following properties of these sets,
stated here for further reference:

(1) There exists p in (0,1) such that u(A;) = p, for every i. From this it is
obvious that p ® u(D)=p - k > 6.
(ii) X, X', Y,Y are constant on each A,.
(iii) If a belongs to X(R) and there exist b, ¢ and d in H such that
(a, b, ¢, d) belongs to «, then (b, a, d, c) also belongs to «.

From (iii) we conclude that for each i € {1,..., k}, there exists i* in {1,..., k},
such that a; = b;., b, = a;s, ¢; = d;» and d; = c;, and (by definition of D) a; # b,
and c¢; # d;. Hence we can assure that i # i* and that & is an even number.

Now we are in position to define

(X(o),Y(w)) if(w,e) eUA4,,
(X(w), Y(w)) if (0,¢) € [UA]"
From (iii) and this construction it is easy to verify that:

(iv) Let @ in X(Q) and i in {1,..., k} be. Then A, is contained in X~ *(a) if
and only if A,. is contained in [ X*] !(a).

It is obvious that Y and Y* are identically distributed. We show next that X
and X* are also identically distributed. ‘
For a in X(R) we can write

w(X =a} =p[{X=a}) n UA)] + Zu[{X =a} n4]
=p[{X=a} n(UA)] +p-#{i/Ain (X =0a} # )
= u[{(X* =a} N (UA)] +p #{i*/A0 N {(X* = a) + 2)
= p{X* = a}.
To finish the proof, we need to show that (X*, Y*) verifies (b).

(X*, V") (w, @)
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Since & is an even number we have (possibly after reordering)

L IX-YIPdp= ¥ [] IX = Yi2du+ [ 11X - Yll2tdu]
A, A A

J<k/2

Y [lla; =l +116,— di?] - p

J<k/2
=p- X [IB—cil®+lla,—djI> - 2+ (a;— b, c; - d})]
J<k/2

>p-h-v+ T [f X7 = R [ e du]
J<k/2

=8-v+ X [IX* - Y| dp.
4;
And finally

fux - v)?dy = f X - Y||2du+2/|X Y|1? dp

2 [ X = YPdp+ L[ X - Y| Pdp+ 6y
(UA,')C i A,'

=f||X*—Y*||2dp+8-y. O

The following proposition is useful in extending to a general r.v. the previous
one. Note that it is valid in every Hilbert space, in particular in H X H.

PROPOSITION 2.2. Let X be a r.v. with values in a Hilbert space such that
11X ||2dp < . Then there exists a sequence {X,}, of simple r.v.’s [ possibly
defined on a different probability space (', &', u')] such that:

(a) X, is uniformly distributed on a finite set M,, C H.
(b) {X,,} converges in distribution to X.
© [IX,I”dw = [1IX|* dp as n — oo.

PROOF (Sketched). Other alternative proofs can be given, but it suffices to
consider a “good” sequence of empirical distributions (from the Glivenko—Cantelli
theorem in Banach spaces and the strong law of large numbers, almost every
sequence of empirical distributions is “good”) and one obtains the result by
making slight changes to avoid repetitions. O

Now, as indicated in the Introduction, we apply the precedmg propositions to
prove that if (X,Y) is the optimal pair, then this pair can be seen as an
increasing map.
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THEOREM 2.3. Let X,Y be two r.v.’s such that
JIX = Y1 du = W(Py, Py).

Then
b @ u{(0,)/(X(6) - X(o), ¥(0) - Y(w)) <0} = 0.

Proor. Let {X,,Y,} be a sequence of simple r.v.’s obtained by applying the
preceding proposition to the r.v. (X,Y) in the Hilbert space H X H and let
X', Y and X/, Y, be independent copies of the corresponding r.v.’s in H.

Without loss of generality, in the sequel, we can assume that all the r.v.’s are
defined on the same probability space.

We denote G = (X - X', Y- Y)and G, = (X, - X, Y, - Y/).

If the theorem is not true, then there exist § in R* and —v in the con-
tinuity set of the distribution function of the (real-valued) r.v. G such that
po®p{G< -y} >4

Note that the sequence {G,} converges in distribution to G. Therefore there
exists a natural number, N, such that if n > N,, then p ® u{G, < —y} > 8. So
we are in a situation to apply Proposition 2.1 for each n. Let {X,*, Y,*} be the
sequence obtained. .

As the r.v. X* (resp. Y,*) and X,, (resp. Y,), are identically distributed, then

(5) X*—>X and Y* - Y indistribution.

Hence the sequence of distributions of the r.v.’s {(X,*, ¥,*)} is tight. Therefore
there exists a subsequence, which we still denote with the same notation, which
converges in distribution to some r.v. (X*, Y*).

The continuous mapping theorem implies that the sequence {||X* — Y.*||}
converges in distribution to the r.v. || X* — Y*||. From this and a well-known
property of weak convergence [see, for example, Billingsley (1968), page 32], we
have

fllx* —Y¥2dp < nminfan,,* = Y XI?dp

< liminf [|| X, - Y| dp—y- 8 = f1X - Yi2du—v-8.

But (5) and, once more, the continuous mapping theorem, imply that the r.v.’s
X* and X (resp. Y* and Y) are identically distributed, which contradicts that

The previous theorem suggests that we are on the right path to prove that if
> the pair (X, Y) is the optimal one, then it is possible to write each r.v. as an
increasing function of the other one. But the following example shows that this is
not possible in general even in the R? case.



1270 J. A. CUESTA AND C. MATRAN

EXAMPLE 2.4. Let P and @ be the uniform distributions in [0,1] X [0,1] and
in {0} X [0, 1], respectively.

If the distribution of (X, X,) [resp. (Y}, Y,)] is P (resp. @), then their
components are independent. So the distance between them is minimum if and
only if the same thing happens between their components. But this is attained
if we choose (X, X,,Y,, Y;) in such a way that Y, is the constant zero, ¥, has
a uniform distribution and the conditional distribution of (X;, X,) given
(Y}, Y;) = (0, y) is the uniform distribution in [0,1] X {y}.

Evidently it is impossible to write (X,, X,) as a function of (Y}, Y;).

Therefore we have a simple example in which it is not possible to write each
r.v. as a function of the other. However, this pair exhibits a kind of degeneration.
If we exclude these degenerate cases, we obtain the existence of the desired
functions.

PROPOSITION 2.5. Let P be a probability measure on B such that there exists
a complete orthonormal system, {V,}, such that for each n and almost every-
where w in {(V,)* (the orthogonal subspace to V,) the regular conditional
probability on (V,) (the subspace generated by V,) given w is atomless.

Now let A in B such that u(A) > 0.

Then for every n, there exists y, in A such that the set {r € R/y, +r-V, € A}
is nondenumerable infinite.

PrROOF. Let n be a natural number. Since H = (V,,) ® (V,)* we have
n(A) = f( oy PLA/@Tm(do),

where A is the section of A on w, P[-/w] is the regular conditional probability
" on (V,) given w and p,, is the marginal probability on (V,)™.

But the atomless character of P[- /w] and p(A) > 0 imply that there exists w
such that A is an infinite, nondenumerable set. Or, in other words,

#lr/v+r-V,eA} 2 x

and now the result is immediate. O

Our representation theorem is a simple consequence of the following proposi-
tion. We first give some additional notation.

Given y in H and the r.v. (on H?) (X,Y), we denote by S(X) (or S, if no
confusion is possible) the support of the regular conditional probability of X
given Y = y.

If x,v are in H, v # 0, let II (x) = (x, v)/||v|| the coordinate of the projec-
tion of x on (v). Finally, I (y) denotes the smallest interval (of real numbers, of
course) containing the numbers II,(x) for x in S,.

PROPOSITION 2.6. Let (X,Y) be a r.v. (on H?) such that [ || X — Y|*dp =
W( Py, Py) and let us suppose that Py verifies the hypothesis in Proposition 2.5.
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Then there exists A in B8 such that Py(A) = 1 and for every y in A, v in H,

(x —x',0) =0 foreveryx,x’ €8,.

Proor. Let {V,} be the complete orthonormal system in Proposition 2.5 and
let n be a natural number. We set

A, = {y: there exists x, " € S, (x—x',V,)+0}.

As a first stage, we prove that Py(A,) = 0.

From Theorem 2.4 and a well-known property of regular conditional probabil-
ities [see, e.g., Parthasarathy (1967), Theorem 8.1], we can suppose that (possibly
after redefining these probabilities on a set of Py-probability zero)

(6) For every y, y'in H: S, X S, C {(x,x")/{x —x', y—¥') 2 0}.

Now let y bein A,. Wecall D,={y'€A,/y'=y+r-V,reR}.

By the preceding proposition there exists y* such that D,. is a nondenumer-
able infinite set.

But, by definition, if y € A,, then there exist x, x" in S, such that IT,(x) #
ITy,(x"). Therefore there exist y, y’ in D,., y # y’ such that the interior of
I(y) N I(y")is not empty. Or, in other words, there exist x,, x, in S, and x’ in
S, (or vice versa) such that

Oy, (x,) < y,(x7) < Iy,(x,).

Moreover, y and y’ are in D . so that there exists § # 0 such that y — y’ =
8 - V, whence

(xy =2,y = ¥y = [My,(x,) — My()] - 8,
<x2 -x',y- y,> = [HVn(xz) - HVn(x,)] -8

and one of these quantities is strictly negative which is not possible by (6).
Therefore Py(Ay,) = 0.
Finally, if A =N, A,, it is trivial that A verifies the proposition. O

From the preceding proposition one immediately obtains the following corol-
lary.

COROLLARY 2.7. Let (X,Y) ber.v.’s such that [ | X — Y||?> dp = W(Py, Py)
and suppose that Py verifies the hypothesis in Proposition 2.5. Then
Py{y/4S, =1} =1.

From this corollary it is clear that we can define the sought mapping. More
precisely, from this corollary and Theorem 2.3 we conclude:

" THEOREM 2.8 (Representation). Let P,Q be two probabilities defined on B
and suppose that Q verifies the conditions in Proposition 2.5. Let Y be a r.v.
such that Py = Q.
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Then there exists a mapping T: H — H such that:

(a) Foreveryy, y' in H:{T(y) — T(y'), y — y') = 0.
(b) Pry, = P.
(© [IT(Y) - Y||>dp = W(P, Q).

Before we close this section, we would like to make two remarks.

1. In the real case (H = R) every application verifying (a) and (b) in the last
theorem verifies also (c) but this is not so in the general situation.

Take Y to be a r.v. with normal distribution (in R?) with covariance matrix
identity. Then if T is a rotation of less than 90° it is clear that T verifies (a) and
(b) but it is not necessarily true that [ ||T(Y) — Y||> dp = 0.

2. An important question is that of the existence of some ‘“‘interesting”
distributions verifying the condition in Proposition 2.5. Now we prove that this
is the case with every distribution in R"™ which is absolutely continuous with
respect to the Lebesgue measure and with every Gaussian distribution on a
Hilbert space.

More precisely, we prove that every distribution in R™ which is absolutely
continuous with respect to the Lebesgue measure verifies the conclusions in
Proposition 2.5, and then, trivially, for such distributions there would hold a
proof similar to that given above for Theorem 2.8.

ProPoOSITION 2.9. Let us suppose that H = R? and that A is in B with
N, (A) > 0. Let Vin R? — {0}. Then there exists y in A such that {r € R/y +
r -V € A} is a nondenumerable infinite set.

Proor. Let V in R? — {0}; we can suppose w.l.o.g. that ||V| = 1. Let us
suppose that the proposition is not true.

Let zin RP, weset L,={re R/z+r-VeA}.

By Fubini’s theorem we have

7) N(A) = [ ML) dx

(where \, is the Lebesgue measure in R).

But if L, # @, then there exists y; in A such that to each A in R we can
associate a number A* in R such that x + A - V =y, + A* - V and this map is
injective.

But, by assumption, since y is in A, L, is a denumerable set. Therefore also
L, is a denumerable set for every x in (V, ), hence \,(L,) = 0 for every x in
RAY

From the last fact and (7) we, finally, obtain the contradiction N (A) = 0. O

PROPOSITION 2.10. Let P a Gaussian distribution nondegenerated in a point.
Then there exist a subspace, F, such that P(F) = 1 and a complete orthonormal
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system in F, {V,}, such that for each n and for every w in (V,)* the conditional
probability on (V,) given w is atomless.

ProoF. Let S be the covariance operator of P and {e,}, a complete or-
thonormal system formed with eigenvectors of S, {A,} being the sequence of
their associated eigenvalues [see, for example, Vakhania (1981)].

Note that if A, = 0, then P[{e,)*] = 1.

Therefore, if F =N, ,, _e,)" itis P(F) = 1.

By construction F is the closed subspace generated by the eigenvectors
associated with nonzero eigenvalues of S and we can take a complete orthonor-
mal system for F, {V,}, formed by the vectors in {e,} associated to these
eigenvalues.

The coordinates, {x,}, in F are independent normal variables with variance
A2, A, # 0. Then, for almost everywhere « in (V,)* the conditional distribution
of x, given w is the same as of x, which is nondegenerated normal and,
therefore, atomless. O

Moreover, from the preceding proof one obtains a result which will be of
interest in Section 3.

PROPOSITION 2.11. Let P be a probability distribution with covariance oper-
ator S and let @ be a Gaussian distribution with the same covariance operator.

Then there exists a subspace, F, which only depends on S such that P(F) =
Q(F) = 1 and @Q verifies the conditions of Proposition 2.5 in F.

3. Application: The central limit theorem. As we indicated in the Intro-
duction, our proof of the CLT follows essentially that developed in Tanaka
(1973) for the real case. Therefore we only describe the necessary adjustments of
Tanaka’s proof.

The general idea is to use Theorem 2.8 to prove that the Wasserstein distance
between the sequence of partial sums and a Gaussian distribution converges to 0.

If P (resp. Y) is a distribution (resp. r.v.) such that [ |x||2dP is finite, we
denote by e(P) [resp. e(Y)] the Wasserstein distance between P (resp. Py ) and
the Gaussian distribution with the same vector of means and covariance operator
as P.

Moreover, by Proposition 2.11, we can suppose that P (or Y) is defined on a
Hilbert space where it is possible to use the representation obtained in Theorem
2.8 for P (or Y) in terms of a Gaussian distribution.

Note that if { X} is a sequence of independent identically r.v.’s (i.i.d.r.v.’s) the
same space that for X, is valid for the whole sequence {(X, + - -+ +X,)/n'/?}.

Hence from now on we can suppose that P (or Y) is defined on this space and
we will make reference to the representation of P (or Y) in terms of this
Gaussian distribution, simply, as the representation of P (or, of Y).

The theorem we want to prove is the following.
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THEOREM 3.1. Let {X,} be a sequence of i.i.d.r.v.’s such that they are
centered and E||X,||* < . Let S be their covariance operator and let @ be a
centered Gaussian distribution with S as covariance operator. Then the se-
quence {(X; + -+ +X,)/(n'/?)} converges in distribution to Q.

To outline the proof of this theorem (in the real case), let us denote by 7, the
rv. (X, + -+ +X,)/(n'/?).

The cond1t10n E||X,||* < oo is used to prove the equuntegrablhty of the
function ||x||?> with respect to the sequence {Py,} and, therefore can be weak-
ened, but we retain it to follow the line in Tanaka.

This equiintegrability guarantees the existence of some subsequence of {T}
which converges in distribution to some r.v. Y which, in turn, verifies that if Z is
a independent copy of Y, then

(8) e[(Y +2)/2%] = e(Y).

Now it is proved that every distribution verifying (8) is normal.

Once more the equiintegrability of ||x||> implies that Y is centered with
covariance operator S.

Finally, it is not too difficult to prove that the preceding can be extended to
the whole sequence.

This proof can be developed in the Hilbert case with some minor technical
complications excepting the following.

In the outlined proof the next result (which is proved for Hilbert spaces in a
similar way to that for the real case) has an important role.

PROPOSITION 3.2. Let X,Y be i.i.d.r.v.’s such that E||X||? is finite and
e[(X +Y)/22] = e(X).

Then the representation of X (in terms of the corresponding Gaussian) can
be chosen such that

T(x +y)=T(x) + T(y) foreveryx, yinH.

Note that this equality, by itself, does not guarantee the linearity of T except
if the coefficients are rationals.

In the real case every increasing function satisfying (b) in Theorem 2.8 can be
taken as a representation for X. Then we can choose the right-continuous one
and then the linearity of T is an easy consequence of Proposition 3.2.

But for Hilbert spaces this cannot be carried out because we do not know
whether we can choose T' with some continuity property. Then it is necessary to
prove the following proposition in which we obtain the linearity of T from
Proposition 3.2 and its growth.

“PROPOSITION 3.3. Let T-H > H be a map such that {T(x)— T(y),
x—y)20and T(X + y) = T(x) + T(y); foreveryx, yin H. Then T is linear.
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ProoF. We must only prove that T(8x) = 6T(x) for every 8 in R, x in H.

Let us suppose that there exist x in H and 8 in R such that T(8x) # 6T(x).

By standard techniques it is possible to prove that x is not necessarily zero
and 8 is an irrational number.

Let us denote V to be the vector T(8x) — 8T(x) and we prove, at a first stage,
that (V,x) = 0.

If (V,x) # 0, we develop the proof in the case (V, x) > 0, the other case
being analogous.

Let {8,} be a sequence of rational numbers such that §, | . Now

lim(T(8x) — T(8,x),8x — §,x) = lim (& — 8,)(T(8x) — 8,T(x), x).

Since 8 — 8, <0, and lim ,[T(éx) — §,T(X)] = V, it is evident that from
some index forward these scalar products are negative which is not possible from
the hypotheses.

Thus (V,x) = 0.

Now let {4,} and {v,} be two sequences of rational numbers such that both
(8, — 8) and v, are of the same order than 1/n and, for every n, §, is a positive
number.

We denote x,, to be the vector §, - x + v,V.

Recall that T is additive and that T(ax) = aT(x) for a rational.

(T(x,) — T(8x), x, — 8x) = (T(x,) — 8T(x) + 8T(x) — T(8x), x,, — 8x)
= <(8n - 8)T(x) + YnT(V) -V, (8n - 8)x + ynV>
= O(l/n) -0- Yn(V’ V>7

which is negative (if V is not zero) for large n. But this is not possible by
assumption. Therefore we have V = 0. O

So we have proved that in the conditions of the preceding proposition the
representation of Py in terms of a Gaussian distribution is linear and, therefore,
Py is also Gaussian.

From this point the proof parallels that of the real case.
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