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1. Introduction. Kolmogorov’s sustained interest in randomness and com-
plexity led to his early contributions to information theory through seminars and
papers in the 1950s, and culminated in the crucial idea of algorithmic (or
descriptional) complexity in the 1960s.

Briefly, information theory says a random object X ~ p(x) has complexity
(entropy) H = —X p(x)log p(x), with the attendant interpretation that H bits
are sufficient to describe X on the average. Algorithmic complexity says an
object x has a complexity K(x) equal to the length of the shortest (binary)
program that describes x. It is a beautiful fact that these ideas are much the
same. In fact, it is roughly true that EK(X) = H. Moreover, if we let Py (x) =
Pr{U prints x} be the probability that a given computer U prints x when given
a random program, it can be shown that log(1/P,(x)) = K(x) for all x, thus
establishing a vital link between the “universal” probability measure P}, and the
“universal” complexity K. More on this later.

The relationship of these ideas to probability theory was summed up in
Kolmogorov’s 1983 paper which was based on his 1970 talk in Nice. Perhaps only
the founder of modern probability theory would have the audacity to place it in
the following unusual perspective ((K462]%):

Information theory must precede probability theory, and not
be based on it. By the very essence of this discipline, the
foundations of information theory have a finite combinatorial
character.

The applications of probability theory can be put on a
uniform basis. It is always a matter of consequences of
hypotheses about the impossibility of reducing in one way or
another the complexity of the description of the objects in
question. Naturally, this approach to the matter does not
prevent the development of probability theory as a branch of
mathematics being a special case of general measure theory.

The concepts of information theory as applied to infinite
sequences give rise to very interesting investigations, which,
without being indispensable as a basis of probability theory,
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can acquire a certain value in the investigation of the
algorithmic side of mathematics as a whole.

We will discuss Kolmogorov’s contributions to Shannon information theory
followed by a development of his ideas in algorithmic complexity. It becomes
clear in hindsight that an interest in complexity was a dominant theme in
Kolmogorov’s thinking. In particular, he was interested in finding the determin-
ism in random events and in defining the structure of discrete objects, whether it
be the law of large numbers or a notion of intrinsic complexity. Even his work on
turbulence theory can be seen in this light as an attempt to find deterministic
order in chaotic processes.

We will provide the background theory and the consequences of his ideas to
information theory and algorithmic complexity so that the reader may draw
some conclusions about Kolmogorov’s above-stated point of view.

2. Kolmogorov’s contributions to probabilistic information theory.
The unusual flow of ideas from engineering system design to and from mathe-
matics is due in large part to Kolmogorov’s pivotal role as a teacher and
contributor. He has had a profound impact on the mathematical development of
Shannon’s information theory both directly through his own technical contribu-
tions and indirectly through his influence on a generation of information theo-
rists. His impact has been amplified by his applications of information theoretic
ideas to other fields, most notably ergodic theory, approximation theory and
complexity theory.

In this section we describe the principal contributions of Kolmogorov and his
school to Shannon theory and we briefly refer to some of his use of information
theoretic ideas and techniques in related fields.

- Kolmogorov first became interested in information theory in 1955 [5]. In June
of the following year, he presented a paper with I. M. Gel’fand and A. M.
Yaglom at the Third All-Union Mathematical Congress in Moscow [K276] which
laid the foundation for the development of mathematical information theory by
extending Shannon’s notions of communication systems, entropy and informa-
tion measures from discrete time processes with discrete or real alphabets to
general alphabets and both discrete and continuous time. This paper reported
and elaborated on results in several then recent papers of Kolmogorov and his
colleagues, most notably [K267], [15] and [K272]. Several of the engineering-
oriented results were published in English in [K264]. In addition to these papers,
Kolmogorov had a strong influence through his work and personal contact on
others who continued the early mathematical generalizations of Shannon’s ideas
and results. Notable among these are Dobrushin’s development of asymptotic
properties of general information measures and of conditional information mea-
sures and his formulation of source and channel coding theorems with multiple
fidelity criteria [11] and Pinsker’s development of the properties of information,
information rate and information stability of random variables and processes,
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especially Gaussian processes. (See Pinsker’s book [35] for a good survey of much
of the early work of Kolmogorov and his colleagues and students, together with
many references. It is notable that Pinsker thanks Kolmogorov in the Author’s
Preface for drawing his attention to the questions treated in the book.)

We attempt here to sketch some of the basic Shannon ideas and their
extension by Kolmogorov and his colleagues. Readers interested in more details
and the subsequent development of mathematical information theory are re-
ferred to the excellent 1966 survey by Kotz [19]. This book is perhaps the best
available English-language guide to the Eastern European information theory
literature for the period 1956-1966.

Shannon information theory. In order to describe Kolmogorov’s contribu-
tions, we begin with several ideas from Shannon’s original work on information
theory, the “mathematical theory of communication” [38]. Suppose that X is a
discrete random variable or random vector described by a probability mass
function (pmf) px(x) = Pr(X = x), where x takes values in an “alphabet” A .
Shannon defined the entropy of X by

(2.1) H(X)= - X px(x)npy(x).

x€Ay
Similarly, given two discrete random objects X and Y, one can define the various
entropies H(X,Y), H(X) and H(Y) as well as conditional entropies such as

(2.2) H(X|Y)=H(X,Y) - H(Y)
and the mutual information
I(X;Y)=H(X)+ H(Y) - H(X,Y)

: @3) = ZPXY(-’C ¥)ln Pyl 7)

ey px(x)py(y)”
Shannon also defined similar quantities for real random variables with probabil-
ity density functions (distributions absolutely continuous with respect to
Lebesgue measure). For example, if random variables X,Y are described by a
probability density function Fyy(x,'y), then the mutual information can be
defined by

fxy(x, ¥)
fx(x)fy(y)

The notion of entropy did not extend naturally to continuous outcomes, al-
though the similar notion of differential entropy A(X) = — [fx(x)In fx(x)dx is
useful in formulas, for example, I( X; Y) = M(X) + h(Y) — (X, Y) in analogy
with the discrete case. We shall see that Kolmogorov’s work led to generaliza-
tions,of these ideas from discrete dnd real random variables to general random
objects taking values in abstract spaces.

A great deal of literature has been devoted to interpreting such information
and entropy measures, finding relations among them and finding axioms that

(2.4) I(X:Y) = [fay(s, »)in dxdy.
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characterize them. For example, it is easy to show that I(X;Y) is symmetric, is
nonnegative with equality to 0 only if X and Y are independent and is reduced
by coding or mapping in the sense that

(2.5) I({(X);Y) < I(X;Y).

Shannon’s main focus, and the principal use of these quantities, however, has
been in the development of coding theorems quantifying the optimal achievable
performance in idealized communication systems. A simple discrete communica-
tions system model can be thought of as a sequence

U-X->Y->V
with the following components:

the source or input signal X is a random variable described by a pmf p,;

the deterministic mapping of U into X is called an encoder;

the stochastic mapping of X into Y is called a channel or noisy channel and
the occurrence of a channel output Y, given the channel input X, is described by
a conditional pmf py x(ylx) = Pr(Y = y|X = x);

the deterministic mapping of Y into the reproduction or output signal V is
called the decoder.

In practical communication systems one does not communicate a single
random variable or a single sample of a random process, one communicates a
sample function of a random process. All of the above definitions can easily be
extended to vectors of N coordinates, for example, we can consider an n-dimen-
sional system

Un - Xn - Yﬂ - Vn,
where X" = X, X,,..., X,,. Infinite sequences or processes require limiting
- operations.

Shannon showed that the optimal achievable performance when communicat-
ing a memoryless discrete source (py-» =1I1;py,) with entropy H(U) over a
discrete memoryless noisy channel (py~x» =1I1;py,x,) is completely described
by the quantity

C=sup I(X;Y),
DPx
called the capacity of the channel, in a sense made precise by the following
theorem.

THEOREM 2.1. If H(U) < C, then there exists a sequence of deterministic
mappings f,: Ay, »> A% (encoder) and g,: Ay — AY, (decoder) such that

lim Pr(g,(Y") # U") = 0.
No uch sequence exists if HU) > C.

The theorem states that under the given conditions the source can be
communicated over the channel arbitrarily reliably by using sufficiently long
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“block codes” if the entropy is strictly less than the channel capacity. The
theorem further states that such communication is not possible if the inequality
is reversed (the case of equality has no general solution).

In the special case where the channel has equal input and output alphabets
and is noiseless in the sense that py x(y|x) = 1if x = y and 0 otherwise, then
C = log||A x|l, the logarithm of the cardinality of the alphabet. In this case the
theorem is called a noiseless coding theorem or, more correctly, an almost
noiseless source coding theorem since it states that a source with one discrete
alphabet can be coded into another alphabet in an almost invertible way
provided the entropy of the source is smaller than the cardinality of the second
alphabet.

An immediate question is whether similar results exist for more general
sources and channels for suitable definitions of entropy and capacity. The
general notions of entropy and information developed by Kolmogorov and his
colleagues combined with the extensions of sources to general random processes
with abstract alphabets and channels to regular conditional probabilities on
sequence spaces provided the tools to formulate such general results and for
subsequent solutions to many special cases. Before describing these ideas, how-
ever, we first consider another form of Shannon coding theorem.

An immediate (and practically important) issue not treated in Theorem 2.1 is
how much performance need be lost if H(U) > C; that is, it is not enough to
know that near zero probability of error is impossible, it is important to know
how small the probability of error can be made under the given conditions. Here
Shannon first developed [38] and then elaborated [39] the idea of source coding
with a fidelity criterion. He introduced the idea of a distortion measure d(u, v)
measuring the distortion or cost of reproducing a source symbol u as a reproduc-
tion symbol v and defined the performance or fidelity of a communication
system to be the expected distortion E(d(U, V)). Common examples of distor-
tion measures are the Hamming distance d(u,v) =0if u=v and 1 if u# v
(which yields the probability of error when the expectation is taken) and the
squared error d(u, v) = (u — v)% Shannon emphasized distortion measures that
were additive when looking at sequences, that is,

N
dN(uN»UN) = Z d(uk’vk)'
k=1

Shannon conjectured in [38] and proved in [39] that the optimal performance
in the sense of minimizing the average distortion when communicating a memo-
ryless source over a memoryless channel with capacity C was determined by the
rate-distortion function of the source and distortion measure defined by
(2.6) R(D) = min I(U;V),

PyvEW
where #~ is the set of all joint pmf’s p,;;, which are consistent with the input
distribution, i.e.,

Zpuv(u, v) = py(u)
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and for which the following constraint is met:
Y. d(u,v)pyy(u,v) <D,

u,v
i.e., the average distortion is less than some given quantity. Shannon called such
a constraint a fidelity criterion. Specifically, Shannon proved the following
theorem.

THEOREM 2.2. If R(D) < C, then there exists a sequence of codes f,:
A}, - A% (encoder) and g,: A} — A}, (decoder) such that

lim (1/n)E(d,(U", £,(Y"))) = D.

If R(D) > C, then any sequence of codes will yield asymptotic average distortion
strictly greater than D.

Observe that R(D) plays a role similar to that of H(U), a fact which led
Kolmogorov to consider R(D) explicitly as a useful generalization of entropy
which he called epsilon entropy.

These remarkable results showed that in the simple cases considered, two
information theoretic quantities depending separately on the source and channel
categorize the potential performance. Finding the D for which R(D) = C gives
an unbeatable lower bound to the average distortion which can be approximately
achieved by deterministic block codes if long enough codes are used.

When Kolmogorov became interested in Shannon’s results in 1955, the notions
of entropy and information and the coding theorems for discrete memoryless
sources and channels had been established in Shannon’s original paper, but the
ideas of rate-distortion theory had only been sketched and Shannon’s 1959
source coding paper had not appeared. Kolmogorov proceeded both to popularize
Shannon’s ideas among Soviet mathematicians and to extend the basic tools and
results to more general systems. Dobrushin [12] points out that it was a difficult
task for Kolmogorov to overcome the suspicions of many mathematicians of the
time that information theory, although fashionable, was mathematically super-
ficial. Kolmogorov understood the real values underlying Shannon’s work and
correctly saw its eventual importance to both mathematics and engineering.
Kolmogorov sought, by his rigorous development of Shannon’s ideas, to make
the theory applicable in the most general possible setting and to develop
information measures for abstract spaces. Such generalizations are important not
only for mathematical reasons; Kolmogorov realized that generality and rigor
would also prove important for eventual applications. Discrete memoryless
sources and channels are not always adequate models for real-world signal
sources and communication and storage media. Metric spaces of functions,
vectors and sequences as well as random fields naturally arise as models of source
and channel outcomes; real sources and channels usually possess memory. Other
advantages of general and rigorous definitions are the potential for proving
useful new properties, for gaining insight into their behavior and for finding
formulas for computing such measures for specific processes.
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Information and entropy. The first and most fundamental contribution of
Kolmogorov and his colleagues to information theory was a new and general
definition of average mutual information, together with a formula for its compu-
tation. The definition can be developed in a variety of ways, but it is most
natural here to consider the definition for a pair of random variables X,Y
described by a probability distribution Py, on a measurable space (Ay X
Ay, Bx X By), where Ay and Ay are abstract spaces with o-fields #y and %y,
respectively, and where (%5 X %y) is the product o-field. The mutual informa-
tion between X and Y is then defined as

Pyy(F, X G))

(2.7) I(X;Y) = sup EIPXy(Fk X Gz)lnm,

where the supremum is over all finite measurable partitions {F},} and {G,} of Ay
and Ay, respectively. Dobrushin later proved that the supremum could be
restricted to partitions measurable with respect to a generating field [11]. This
definition works for arbitrary random objects, including infinite sequences and
sample waveforms. It has the intuitive interpretation that the mutual informa-
tion between two continuous random objects is the largest mutual information
that can be obtained by quantizing the continuous objects into a finite number
of levels. Given this definition, the entropy of a general random variable is
defined by

H(X) = I(X; X).

These general definitions easily reduce to the Shannon definitions for the case of
discrete random variables. They permit easy generalization of several of the
basic properties of mutual information (including those previously mentioned)
by taking limits of the corresponding discrete results. The mutual information
. between two random processes or the mutual information rate was defined by

I(X;Y) = A}im 1/N)I(XN; YN)
when the limit exists. The entropy rate was defined by H(X) = I( X; X).

Entropy and ergodic theory. There is an obvious similarity between the
definitions of mutual information and mutual information rate on the one hand
and Kolmogorov and Sinai’s extension of Shannon’s entropy to dynamical
systems, the so-called Kolmogorov—Sinai invariant or metric entropy of a
dynamical system [K280, K284, 41], on the other. This similarity merits elabora-
tion and can be used to provide an information theoretic interpretation of the
Kolmogorov—Ornstein isomorphism theorem of ergodic theory [K280, K284, 31].
__Suppose that {U,} is a discrete alphabet stationary source with entropy rate
H(U). Consider the corresponding abstract dynamical system consisting of the
probability space of sequences dravwn from this process and the shift transforma-
tion T defined by Tu = (..., uy, uy, Uy,...) if u=(...,u_y, 4y, 4y,...). Then
the Kolmogorov-Sinai invariant of the dynamical system is the same as the
entropy rate of the corresponding random process. A generalization of Shannon’s
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almost noiseless coding theorem (based on the Shannon-McMillan-Breiman
theorem) states that a stationary and ergodic discrete alphabet source can be
coded using block codes in an almost invertible manner into an arbitrary discrete
alphabet provided that the cardinality of the alphabet is strictly greater than
the entropy rate of the source. Here “almost invertible” means that the source
can be recovered with probability arbitrarily close to 1. The Kolmogorov—Sinai
theorem can be viewed as a limiting perfectly invertible version of the almost
noiseless coding theorem with an extra property, as shall be seen next. To
describe the theorem, we first need an alternative notion of coding which was not
present in Shannon’s works but was developed in ergodic theory: A stationary
code is a measurable mapping f: A® — B® of one infinite sequence space onto
another with the property that if T, and T are the shift operators on these
spaces, then f(T,x) = Tgf(x); that is, shifting the input sequence yields the
corresponding shifted output sequences. The corresponding mapping f: A — B
of sequences into a single symbol defined by f(u) = (f(u)),, the time zero
coordinate of the output sequence, is called a sliding block code, in contrast to a
Shannon block code, since it produces an output sequence by “sliding” or
shifting the input sequence; that is, f(u) = {f(T"u); n= ...,—-1,0,1,...}.
Two discrete alphabet random processes {U,} and {X,} are isomorphic if one
can be coded into the other using an invertible stationary code, that is, there are
stationary codes f: A% — A% and §: A% — Ay such that the process {((T5U)}
has the same distribution as {X,}, where U = (..., U_,,U,, U,, ...), and

Pr(U, # g(f(T))) = 0.

THEOREM 2.3 (Kolmogorov and Ornstein). A necessary condition for two
processes to be isomorphic is that they have the same entropy rate. If both
processes are B-processes (i.e., are stationary codings of memoryless processes),
then this condition is also sufficient.

The Kolmogorov—Ornstein theorem can thus be interpreted as a limiting
version of the almost noiseless coding theorem where the coding is perfectly
invertible and where the encoded process has exactly some prespecified distribu-
tion, the distribution of the second given process. As block codes do not really
make sense in the limit of infinite length, the stationary code structure is
required to get the limit code. The “negative” portion of the coding theorem was
due to Kolmogorov and introduced Shannon entropy into ergodic theory. The
“positive” coding theorem was proved by Ornstein by embedding block codes
into stationary codes (using the Rohlin—Kakutani theorem) and constructing
suitable limits. The stationary codes of ergodic theory were subsequently intro-
duced to information theory and used to obtain Shannon-style coding theorems
for nonblock codes (see, e.g., [16] and [17]).

» The general definitions of average mutual information between random vari-
ables and processes and of metric entropy for dynamical systems were developed
at approximately the same time and formed a powerful bridge between informa-
tion theory and ergodic theory that has proved fruitful to both fields.
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Evaluation of information. Another major contribution was the derivation
of a formula for computing the mutual information, which reduced to the known
result for real-valued random variables with distributions absolutely continuous
with respect to Lebesgue measure. Gel’fand, Kolmogorov and Yaglom [K267]
showed that (1) if the distribution Py is not absolutely continuous with respect
to the product distribution Py X Py of its marginal distributions, then the
mutual information I(X;Y) is infinite, and (2) if the absolute continuity holds,
then the Radon-Nikodym derivative

dPyy

is well defined and

I(X;Y) = /A _, Joga(x, y) dPyy(x, )
X Y

(2.8)
= '/:4 . a(x, y)loga(x, y) d(Px X Py)(x, y).

The quantity log a(x, y) is called the information density and is the focus of the
general Shannon-McMillan-Breiman theorems (information stability theorems).
Generalizations and elaborations of this result were developed by Gel’fand and
Yaglom [15] and independently by Perez [34]. Complete treatments of the
results may be found in Dobrushin [11] and Pinsker [35]. It is interesting to note
that both Pinsker and Kolmogorov [K264] attribute the basic result to Gel’fand
and Yaglom, although the result first appears in the report to the Third
All-Union Math Conference [K276].

Communication systems. The Shannon communication model was general-
ized to the case of abstract alphabets by requiring that U - X —» Y and
X - Y - V be Markov chains and requiring that the channel be described by a
regular conditional probability measure Py y(F|X =x). [U->X—>Y is a
Markov chain if Pr(Y € F|X,U) = Pr(Y € F|X) with probability 1.] Combined
with the general notions of average mutual information, the appropriate channel
capacity and rate-distortion functions could then be defined in a natural way for
general random vectors and processes.

Epsilon entropy. As previously mentioned, Kolmogorov also realized that
the ideas sketched by Shannon regarding source coding with a fidelity criterion
provide an appropriate generalization for the entropy concept to continuous
random variables. Although the general notion of mutual information provides a
definition for entropy, in general the entropy of a continuous variable is infinite
and this sheds no light on information content or coding. Kolmogorov extended
Shannon’s general notion of a rate-distortion function to abstract probability
spaces: Given a source distribution P, let #° denote the family of all joint
distributions Py, having P, as a marginal distribution [P, (U € F) = Py(F)]
and having some additional constraints. This includes Shannon’s principal
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example of E(d(U,V)) < D, but it can also incorporate multiple average distor-
tion constraints or maximum distortion constraints. Define the quantity

where the general notion of average mutual information is used. If the simple
average distortion constraint is used, then this is exactly Shannon’s rate-distor-
tion function. Kolmogorov focused on two examples: (1) the Shannon example
with a squared-error distortion measure d(u, v) = (u — v)?, and (2) a distortion
measure d(u, v) = 0 or co accordingly as |u — v| < & or not. The second example
effectively replaces Shannon’s average distortion constraint by a maximum
distortion constraint. Kolmogorov renamed these examples e-entropy because
they form a natural extension of entropy: They should give the actual entropy of
an approximation to the original random variable that is within a specified
average or maximum distortion. For example, if one required a maximum error of
0, then the e-entropy reduces to the ordinary entropy. A general converse coding
theorem follows easily from the construction: If one wishes to communicate the
given source over the given channel subject to the given fidelity criterion, then
necessarily

(2.10) . H,(U)<C.

Thus Kolmogorov and his colleagues both generalized the formulation of entropy
and the rate-distortion function and obtained a new general converse coding
theorem in the process.

Kolmogorov’s work initiated the development of approximate expressions for
e-entropy in the limit of small ¢ as well as exact evaluations for the finite-dimen-
sional Gaussian case. The average distortion constraint results were subsequently
extended to nonsquared error distortion measures by Linkov [27], and the
maximum error form of e-entropy was developed and applied to the theory of
approximations of functions by Kolmogorov and Tihomirov [K285] and
Vitushkin [45].

General coding theorem formulation. The open problem (which led to many
years of work by many researchers) was (and is) to find general conditions on
sources, codes and channels under which the inequality of (2.10) is also sufficient
for the existence of codes meeting the given constraint. Alternatively, how can
one define H,(U) and C for general sources and channels so that the appropri-
ate extensions of Theorems 2.1 and 2.2 hold.

It should be noted that Kolmogorov and his colleagues also pointed out that,
as in Shannon’s original paper, additional constraints could be added to the
channel capacity definition, for example, one might wish to constrain the average
power of channel signals.

sIn the general case of sources and channels with memory, one must first
evaluate the mutual information, capacity and rate-distortion function for vec-
tors of n samples [e.g., I(X™ Y"), the corresponding capacity C”, and the
rate-distortion function HJ(U)] and then consider the limiting behavior as
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n — oo. One obtains necessary conditions for all n and hence also in the limit,
but now the problem is to find conditions under which

n

. liminf ————
(2.11) im in () >1

is sufficient for the existence of good codes.

Key to such proofs are ergodic theorems for information densities, results
called information stability theorems in the Soviet literature. These results have
their origins in Shannon’s theorem on the entropy of ergodic processes and are
often called Shannon-McMillan-Breiman theorems or asymptotic equipartition
theorems. It is interesting to note that this remains an active area of research
and that the most general known results are both recent and strongly dependent
on the general formulation of Kolmogorov [1, 30].

Continuous time. The general formulation was extended to continuous time
processes by using sampling arguments to form discrete time processes and
taking suprema over all possible choices of sampling. Again this permitted the
general information measures to inherit many of its properties from the simple
discrete case.

Many of these ideas were elaborated on by Dobrushin [11], who explicitly
considered multiple distortion measures, and the information theory literature is
replete with proofs for many examples of sources, channels and code structures.

Information rates of Gaussian processes. Kolmogorov’s work led to the
study of the behavior of asymptotic information rates lim,,_, ,, n"'I(X"; Y") and
e-entropies lim,, , , n~'H} for continuous and discrete time Gaussian processes.
Many alternative definitions of information rate were proposed and conditions
under which they are equivalent were developed. This line of research was
developed in detail in the book by Pinsker [35] and the references cited therein.

Kolmogorov’s contribution to Shannon or probabilistic information theory far
exceeds that suggested by a count of his publications in the area. His technical
contributions and his expansion of the audience for the techniques and ideas of
information theory has been of enormous benefit to the field. In addition, as we
shall next argue, his work in probabilistic information theory left him in position
to develop the key idea of algorithmic information theory.

3. Algorithmic information theory.

3.1. Kolmogorov’s early work on complexity. In his 1965 article in Problems
of Information Transmission [K320], Kolmogorov presented a fundamental
notion of intrinsic complexity. (Further work was presented in 1969. Related
nations were introduced independently by Solomonoff in 1964 and Chaitin in
1966-1969.) In this work he defined the notion of the complexity of a finite
object x with respect to a certain fixed universal computer. This complexity is
the length of the shortest binary program that causes the computer to print x.
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He argued that this definition does not depend too much on the choice of the
computer. This follows from the fact that if there is a rival computer to be used
one can always mimic its operation on the fixed universal computer by a short
pre-program which specifies the transition table of the rival computer. Thus any
short description for the rival computer becomes a short description for the fixed
computer. The penalty in description length is an additive constant necessary to
describe the workings of the first computer. This leads to a natural notion of
algorithmic information theory, provides a notion of program complexity to go
with existing ideas in computational complexity and points toward the notion of
universal probability measures. Before going into these ramifications we would
like to discuss how it is that Kolmogorov might have been led to his notion of
algorithmic complexity.

As a young mathematician, Kolmogorov attended Stepanov’s seminar on
trigonometric series, and wrote his first paper [K2] at age 19 on the order of
magnitude of Fourier coefficients. He found an example of a very complex
Fourier series which diverged almost everywhere. This was likely the beginning
of his thinking about the complexity of functions. In 1955 and 1956, Kolmogorov
introduced the concept of the e-entropy of a set of functions in a metric space.
Here he asked how the number of functions in an e-net or in an e-covering must
grow with e, thus characterizing the size or complexity of the set. In particular
he was able to prove Vitushkin’s results on the impossibility of representing an r
times differentiable function of n variables by composition of [ times differen-
tiable functions of m variables. By a neat counting argument it was possible to
show that such a composition is possible if n/r > m/l. The amount of informa-
tion necessary to describe the constituent functions well enough to characterize
the desired function requires these conditions.

This then led Kolmogorov to Hilbert’s thirteenth problem where he was able
. to prove that every continuous function of any number of variables can be
represented as a composition of continuous functions of three variables. He later
improved this result with Arnold by showing that a continuous function of any
number of variables can be represented as a composition of continuous functions
of a single variable with the addition operation as the only function of several
variables.

Kolmogorov also found, through his work on rate-distortion theory, that
27R(®) gequences e-cover a collection of random sequences with high probability,
where R(¢) is defined in (2.6). The emphasis here is on the high probability. One
can ignore the “atypical” sequences.

During this period in the 1950s, Kolmogorov also considered a recursive
function theoretic approach to complexity. He had a seminar in the 1950s on the
subject and published a paper with Uspenskii proposing a machine model (now
named after them) general enough to convince him of the validity of Church’s
thesis. The storage structure of this machine is a graph built from pointers which
the, finite state control can change locally at each step. This model, along with a
variant of it (called the storage modification machine), developed independently
by Schoenhage, is widely used in computational complexity theory. Kolmogorov’s
seminar also investigated Shannon’s estimates for the complexity of Boolean
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functions. Kolmogorov’s question on the computational complexity of multiplica-
tion resulted in Karatsuba’s fast multiplication algorithm.

Clearly, Kolmogorov had a life-long interest in complexity. Hilbert’s problem
and e-entropy had to do with the complexity of functions, while the rate-distor-
tion work dealt with the complexity of random sequences. In both cases a
descriptive complexity point of view led to counting arguments characterizing
the solution. It is no surprise then, given Kolmogorov’s interest in recursive
function theory, that he was led to the universal notion of the intrinsic complex-
ity of sequences.

We now describe that work.

3.2. Algorithmic complexity. The definition of the algorithmic complexity
K(x) = min I(p)
U(p)=x

of a string x as the length of the shortest program for a universal computer U to
output x had immediate impact. Various versions of this notion were discovered
independently at approximately the same time. However, the clarity, brevity
and accuracy of Kolmogorov’s formulation and his view of its role in information
theory and probability theory allowed advanced work to follow immediately
from his contribution. The other discoverers were Solomonoff and, to some
extent, Chaitin. Solomonoff [42] formalized the notion of Occam’s razor for
inductive inference. He attributed to every object x an intrinsic probability that
is essentially

Z 2-Up),

p: U(p)=x

where the latter can be interpreted as the probability that a computer U will
print x when fed a random program p. In the attempted proof of the machine
invariance of this notion he defined the length of shortest description as well.
(Solomonoff’s paper is loaded with intuitively interesting and significant ideas.
But its use of mathematics is not rigorous. Several of the statements are unclear,
and the right concepts are hidden among less useful alternatives.) In 1966,
Chaitin, then an undergraduate at City College of New York, published a paper
which proposed the smallest number of states of a Turing machine outputting
the string x as the measure of the complexity of x.

3.3. Kolmogorov’s introduction of complexity. In [K320], Kolmogorov moti-
vates the definition of algorithmic complexity by reviewing two earlier ideas: (1)
that log| M| is the number of bits needed to describe the elements of a set M, and
(2) that H(X) is the number of bits needed to describe a random variable X.

,In the new approach, to capture the amount of information required to
specify an object x, Kolmogorov used the notion of the theory of algorithms.
This theory gives a precise mathematical definition of the notion of a com-
putable function. For this purpose, a simple symbolic computing device, the
Turing machine is introduced.
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Turing machines. A Turing machine is a device which has a so-called control
unit with a finite number of possible states, and a potentially infinite memory
arranged in the form of a tape. The tape is divided into squares. The machine
has a finite tape alphabet, and each tape square contains one symbol of this
alphabet written into it. The machine works in discrete time. At each time step,
the control unit is in one of the possible states and is scanning one of the tape
squares. In one computation step, a certain elementary action is performed.
Elementary actions are the change of the control state, the move of the scanner
left or right and the change of the symbol written in the tape square currently
scanned. The step to be performed depends on the current control state and the
current scanned symbol. This transition function can be written in a finite table
which can be considered to be the description of the “hardware” of the machine.

Let us confine ourselves to Turing machines whose tape alphabet includes
(among others) the symbols 0, 1 and “blanks.” To a machine M, we can define a
partial function M(s) that assigns finite binary strings to finite binary strings
wherever defined, as follows. We write the string s on an otherwise blank tape
and place the scanner on the first symbol of s. We run the machine M until it
comes to a state called the “halting state.” If at this time, the tape contains a
binary string surrounded by blanks, then this is M(s); otherwise M(s) is
undefined. A function f(s) is called computable if there is a Turing machine M
such that f(s) = M(s). Work in the decades following Turing’s definitions
confirmed that the work of all imaginable computers can be simulated by
appropriate Turing machines. In particular, all possible binary functions f(s)
computable in any intuitive sense are computable in the above formal sense.
(This statement is known as the Church-Turing thesis.)

Turing has shown that it is enough to use a single Turing machine for the
definition of computable functions since there are Turing machines that are
universal: They can simulate any other Turing machine. More specifically, he
showed the existence of a Turing machine U such that for every other Turing
machine M there is a binary string p,, such that for all binary strings s we have
M(s) = U(pys). Here, pys is the concatenation of the string p,, and the string
s. The string p,, can be considered to be the description of the machine M for
the universal machine U, or the “program” of the function M(s) on the
universal machine U.

The invariance theorem. Kolmogorov considered an arbitrary computable
partial function ¢ and defined K #(*) as the minimum program length I( p) over
all binary programs p such that (p( p) = x. The function ¢ acts as the decoder,
or interpreter, of the description p. The complexity of x is the length of the
. shortest description, with respect to the interpreter ¢. |

The main theorem of Kolmogorov’s paper [K320], which we will call the
invariance theorem, says that this notion of complexity can be made fairly
independent of the choice of the interpreter, that is, there are “asymptotically
optimal” interpreters U(p) with the property that for any other computable
partial function ¢( p) we have the inequality

(38.1) Ky(x) < K (x) + c,,



864 T. M. COVER, P. GACS AND R. M. GRAY

where the constant c, does not depend on x. This theorem is proved by simply
choosing U as a Turing machine universal in the sense defined above. Indeed, the
universality of U implies that there is a binary string ¢, with the property that
for all p we have ¢(p) = U(q,p)-

It follows that Martians, humans and computers will all approximately agree
on the intrinsic complexity of n bits of War and Peace, the Mona Lisa and a
Bernoulli sequence with parameter p. (Experimental evidence on language com-
pression and image compression leads one to believe that these quantities are
approximately given by n/3, n/10 and n(—plog p — (1 — p)log(l — p)), respec-
tively. Shiryaev’s paper in the present issue refers to the research initiated by
Kolmogorov on the estimation of complexity in works of art. Another approach
to these problems is suggested in [3].) Solomonoff’s independent proof of the
invariance theorem appeared in 1964.

The work [K320] concludes with a statement concerning the algorithmic
notion of randomness:

If a finite set M containing a very large number N of
members admits determination by means of a program of
length negligibly small in comparison with log, N then almost
all members of M have complexity K(x) close to log, N. The
elements x € M of this complexity are also considered as
“random” elements of the set M.

For the case when M is the set of all binary strings of length n it is easy to
see that the relation K(x) < n + O(1) holds for all x. On the other hand, the
number of strings x with complexity less than n — % is at most 2”~*. Indeed,
there are at most 2" * descriptions of length less than n — k.

- Algorithmic properties of complexity. The complexity function K(x) is not
computable. Indeed, if K(x) were computable, then we could define a string of
high complexity with a short program. [The program would make use of the
algorithm to compute K(x).] The uncomputability theorem in the form stated
by Kolmogorov is cited in [48]. (This property is intimately connected to the
so-called Berry—Richardson paradox, asking for the smallest number undefinable
in 100 words.) Such ideas also appear in Chaitin’s 1966 paper [6]. The uncom-
putability of K(x) confines its role somewhat to that of a theoretical clarifying
tool. In particular, the definition of random strings of length n as those with
complexity close to n is not operational.

In some sense, K(x) possesses one-half of the property of computability. Only
nonrandomness can ever be established. Let us make this more exact using a

_ notion introduced in [48]. A real function f(x) is called enumerable (or semicom-

putable) if one can recursively enumerate the set of pairs (x, r) such that r is a

rational number and f(x) > r. In other words, one can compute arbitrarily close

lower,bounds to f(x). A real function f is computable if both f and —f are
enumerable, that is, if one can compute arbitrarily close lower and upper bounds
to f. The complexity function K(x) is not computable but has the property that

— K is enumerable.
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The theorems of Kolmogorov and Barzdin’ in [48] show that there are no
nontrivial enumerable lower bounds to K(x). The proof of this result also shows
that if the axioms of a formal theory have complexity %, then the theory can
have only a small number of theorems of the form “K(x) > m” for various
strings x and numbers m. Indeed, all such m are bounded by m < k& + O(1). In
this way, an abundant source of undecidable mathematical statements was
opened. See also Chaitin’s development of these ideas in [8, 9]. :

The above considerations also raised interest in explicitly defined infinite
sequences whose initial segments are complex. Of course, such sequences cannot
be computable. The best known noncomputable sequence is the following. Let T
be a universal computer with integer inputs. Let x, = 1 if T halts with input n,
and 0 otherwise. The sequence x is not computable, but not random either.
Barzdin’ showed in 1968 [2] that the complexity K(x™|n) of an initial segment of
x is bounded above by log n + O(1) and that the upper bound is achieved. This
complexity must be near n for random sequences.

Conditional complexity and conditional entropy. Some properties of statisti-
cal entropy have meaningful nontrivial analogs in algorithmic information the-
ory. Let K(x|y) be the length of the shortest program computing x on a given
universal computer when y is given, and let K(x, y) be the complexity of the
pair x, y. Kolmogorov stated in 1968 the relation

K(x,y) = K(x) + K(ylx) + O(log K(x))

proved by him and Levin and remarked that the logarithmic correction term is
necessary. This relation is much less obvious than the analogous information
theoretic identity H(X,Y) = H(X) + H(Y|X). Using a slightly modified version
K P)(x) of complexity (where no program can be the prefix of another), one can
arrive at a form of this relation that is exact to within an additive constant:

(3.2) K®(x, y) = K®(x) + K®(ylx, KP(x)) + O(1).

This relation, proved independently by Levin in [13] and Chaitin in [10], cannot
be improved by omitting K (P)(x) from the condition. Chaitin noted that the
quantity

H(yjx) = K®(ylx, KP(x))

obeys identities completely analogous to those of conditional entropy.
In [22] and [23], Levin extended the information notion

I(a; B) = KP(a) + KP(B) — KPX(a, B)

to infinite sequences a, 8 and proved an inequality analogous to the data
processing inequality for random variables. Let the random variable Y be
obtained from B by a probabilistic algorithm (an algorithm permitted to use the
independent tosses of an unbiased coin). Then

(3.3) E2iaY) < ol B
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where E denotes the expectation. This theorem implies a remarkable strengthen-
ing of Goédel’s incompleteness theorem. Let u be a sequence describing in some
standardized way all our current knowledge that can have a bearing on the
infinite sequence x (defined above) describing the halting problem. Assume that
the information I(x; u) in u about x is some finite number c¢. Let U be an
infinite random sequence obtained by the application of some probabilistic
algorithm to u. The above inequality and the Markov inequality imply that the
probability that I(x; U) becomes greater than c + % is less than 27%. In other
words, no algorithm, even one using “creative” randomization, will ever increase
our information about the halting problem (or, for that matter, about the
solvability of Diophantine equations) by more than a few bits, even over infinite
time.

The problem of randomness. In his 1987 paper [K475] written with
Uspenskii, Kolmogorov gives what can now be considered the standard introduc-
tion to the paradox of randomness. Suppose that persons A and B give us a
sequence of 20 digits each, saying that they were obtained from independent coin
flips. If A gives the string 10101110011010001111 and B gives a string of twenty
0’s, then we would believe A and would not believe B despite the fact that both
strings have the same probability of occurrence in a series of coin flips. The
string given by A seems random and the string given by B does not. This
problem is at the root of mathematical statistics, that is, the study of testing
probability models against experimental results. Laplace was aware of this [20]:

In the game of heads and tails, if head comes up a hundred
times in a row then this appears to us extraordinary, because
after dividing the nearly infinite number of combinations that
can arise in a hundred throws into regular sequences, or those
in which we observe a rule that is easy to grasp, and into
irregular sequences, the latter are incomparably more numer-
ous.

The quote shows that Laplace’s idea of a solution for the paradox above seems
somewhat similar to Kolmogorov’s: The nonrandom strings are the ones with
some regularity in them, and since the number of all those strings is small, the
occurrence of such a string is extraordinary. But a convincingly general formal
notion of irregularity, for which it could be proven that the number of regular
strings is small, was not found until 1965. von Mises attempted, beginning with
his work in 1919 (see, e.g., the edition [46]), to define the notion of a random
infinite sequence. von Mises’s Kollektiv is a sequence in which the relative
frequencies converge for all subsequences selected by certain selection rules.
von Mises’s ideas were elaborated upon by a number of others, especially Ville
and Church. Kolmogorov’s criticism (see the 1956 work [K268]) pointed out that
the infinite sequences used by von Mises just shifted the problem of untestability
from one area to another one.

In his 1963 paper on tables of random numbers, Kolmogorov came to the view
that meaningful finite versions of von Mises’s definition are possible, and
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explicitly revoked his earlier criticism. Despite the interesting open technical
problems still left by that paper, its randomness definition seems less appropri-
ate today than the one based on description complexity.

Martin-Lof ’s tests. In 1966 in [29] the young Swedish mathematician
Martin-Lo6f,who worked briefly with Kolmogorov, gave a formal theory of finite
and infinite random sequences that has great convincing power of its own and is
in harmony with Kolmogorov’s suggestions based on complexity. Just as later
work on algorithmic complexity can be considered “second-order” corrections to
Kolmogorov’s original concept, all later work on the theory of randomness can be
considered as extensions and second-order corrections to Martin-L6f’s random-
ness tests. We now discuss these tests for coin-tossing sequences of length n,
using the more concise development given by Zvonkin and Levin in 1970. A test
is an enumerable (lower semicomputable) function F(x) of finite binary strings x
with the property that for all %, n, the number of binary strings of length n with
F(x) > k is at most 2" % In computing lower bounds to F(x) we find out
gradually the degree to which x violates our ideas of randomness. But the total
probability of those x rejected at level % is not allowed to be more than 2%, We
can call F(x) the randomness defect of x, and it can be interpreted as the
logarithm of the significance level at which, after the testing, we reject the
hypothesis that x is a sample from a Bernoulli process with parameter 4 = 1/2.

Here is an example of a test. For a binary string x of length n let f(x) be the
number of 1’s in x. Chebyshev’s inequality says that for all positive A, the
probability of 2n~Y2|f(x) — n/2| > A is at most 1/A. Therefore the function

F(x) = log(2n'2|f(x) — n/2|)

is a test.

In analogy with the invariance theorem above, Martin-L6f proved the exis-
tence of a universal test d(x) that dominates all other statistical tests, that is, a
test with the property that for each other test F(x) there is a constant ¢ such
that for all x we have F(x) < d(x) + cp. The computation of d(x) is equivalent
to testing that the string satisfies all laws of probability theory whether these
laws are explicitly known or not. [Unfortunately, d(x) is not computable.]
Strings x for which the value d(x) is small can therefore be considered random.

The correspondence between the complexity definition of randomness and its
definition via tests is shown by the following surprisingly exact theorem of
Martin-Lof:

(3.4) d(x) =1l(x) — K(x|l(x)) + O(1).

This equation characterizes randomness in terms of complexity. It says that the
“log significance level” d(x) and the algorithmic complexity K(x|/(x)) sum to a
constant.

Randomness with respect to a set: An algorithmic “sufficient statistic.”
Unlike most other developers of algorithmic information theory, Kolmogorov
wanted to use the theory to eliminate the need for a direct interpretation of
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probabilities. Therefore instead of randomness with respect to a probability
distribution (the choice of Martin-L6f and others), he preferred the notion of
randomness of an element x with respect to a set S containing it. To approxi-
mate the notion of a random sequence of n tosses of a biased coin, in this
approach one chooses the set S as the set of all n-strings with a certain given
frequency of 1’s. Note that sets of this form provide a sufficient partition with
respect to the Bernoulli process with unknown parameter #, and that x is
uniformly distributed over the set S. By analogy to the relation (3.4),
Kolmogorov introduced (see [K462]) the quantity

d(x|S) = log|S| — K(x|S)

as the defect of randomness of a string x with respect to the set S. There are
ways to move from each of the two approaches (randomness with respect to a set
and randomness with respect to a probability distribution) to the other, as
pointed out, for example, in [47].

At a Tallin conference in 1973, Kolmogorov proposed a variant of the function

8.(k) = msin {d(x|S): K(S) <k,x €8S},

considering it an interesting characteristic of the object x. If x is some sequence
of experimental results, then the set S can be considered to be the extraction of
those features in x that point to nonrandom regularities. At the point &*(x)
where the decreasing function §,(%) becomes 0 (or less than some constant agreed
on in advance), we can say that it is useless to explain x in greater detail than by
giving the set S* such that d(x|S*) = §,(k*). Indeed, the added explanation
would be as large as the number of extra bits it accounts for. The set S*
expresses all the relevant structure in the sequence x, the remaining details of x
being conditionally maximally random. For example, S* would describe the
Mona Lisa up to brush strokes, and k*, the length of description of S*, is the
“structural complexity of x.”

The set S* plays the role of a universal minimal sufficient statistic for x. In
mathematical statistics, a function T: £ — 7 is said to be a sufficient statistic
relative to the family of densities { fy(x)} if & —» T(X) — X forms a Markov
chain, that is, if fy(x, T(x)) = g4(T(x))h(x|T(x)), for some choice of densities
85(+), and A(-| - ). The statistic T' is minimal sufficient if ¢ - T - T" - X for
every other sufficient statistic 7". It is in this sense that X is “as random as it
can be” given T(X). Now, the set S* defined above by Kolmogorov is such that
x is conditionally maximally random given S*, that is, K(x|S*) = log|S*|. Note
that the definition of S* stands on its own as an algorithmic definition of
structure, without any probabilistic interpretation.

For k < k*(x), the function 8 (k) represents the trade-off between the size of
the explanation and its value. If the object x is random with respect to a
probability distribution which can be defined by a short program then 2*(x) is
small. Kolmogorov asked whether for any decreasing function f(k) there are
objects x for which §,(k) is close to f(k), especially, whether there are “ab-
solutely nonrandom” strings x, for which k*(x) is close to K(x). Positive
answers to these questions were given in [40] and [47].



INFORMATION THEORY AND ALGORITHMIC COMPLEXITY 859

Kolmogorov and Uspenskii write in 1987: “The question, of course, remains
whether such (absolutely non-random) strings exist in the real world.” The
quantity £*(x) provides a lower bound on the information I(x, x) of x on the
infinite sequence x describing the halting problem. Levin’s previously mentioned
algorithmic data processing inequality implies that the strings x having informa-
tion about the halting problem are very exotic and unlikely to occur in nature.
Therefore, strings x with a 2*(x) of any significant size are unlikely to occur in
nature.

3.4. Further development of algorithmic information theory. We now high-
light the ideas resulting from algorithmic information theory. The consequences
of the theory demonstrate its naturalness as well as its relationship to probabil-
ity theory.

Semimeasures. Let N = {0,1,2,...}. The nonnegative real function »(x) is
called a discrete semimeasure over N if ¥ »(x) < 1. It will be called a probabil-
ity measure in case of equality.

Let B be a (finite or infinite) alphabet, and B* the set of finite strings over B.
A nonnegative function p on B* is called a semimeasure if u(A) <1 for the
empty string A and

(3.5) L n(xb) < p(x)

beB

holds for all x, where xb denotes the concatenation of the string x and the
symbol b. It is a probability measure if equality holds in both of the above
relations. In terms of classical measure theory, u(x) is really the measure of the
set of all infinite sequences beginning with x, that is, the probability that x is a
. prefix of the sample sequence.

Monotonic and prefix complexity. For aesthetically appealing results, it is
useful to modify Kolmogorov’s original definition slightly. We define two such
variants, introduced by Levin in [21] and [22] (see also [13]). Similar or related
notions were defined in [37] and [10]. The difference between the newer quanti-
ties and K(x) can be bounded by O(log I(x) + log K(x)).

The so-called prefix complexity K (P)(x) is the one to be used for the discrete
space N. For strings x, y let x C y denote that x is a prefix of y. Let us consider
computing machines T using binary strings as inputs, and outputting an element
of N. Such a machine is self-delimiting if p C p’ implies T(p) = T( p’) whenever
T(p) is defined. Let us denote K (P)(x) = K (x) with a self-delimiting machine
U optimal in the sense of the relation (3.1).

The so-called monotonic complexity K(™)(x) is the one preferred in
Kolmogorov’s last article [K475], and the one more suitable for the “continuous”
space B*. The interpreter for this notion is a relation E rather than a function.
It is recursively enumerable, that is, there is a computable function f such that
E consists of the values f(1), f(2),... . We say that the binary string p is a
description of string x if (p, x) € E. We require that E preserves comparability,
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in the sense that if (p,, x,),(ps, X3) € E and p, is a prefix of p,, then x, is a
prefix of x, or x, is a prefix of x,. We define K {™(x) = min{l(p): (p, x) € E}.
We denote K (™(x) = K{™(x) with an interpreter U optimal in the sense of
3.1).

A priori probability. Solomonoff’s article in 1964 defines a notion of “a priori
probability,” to be used for inductive inference in a very general situation. This
notion was closely related to the probability M(x) that the optimal monotonic
machine U produces an extension of x when presented with an infinite coin-toss-
ing random binary string as input. The function M(x) is a semimeasure. It is not
necessarily a measure since the machine U may never terminate computation on
some inputs. Zvonkin and Levin showed in 1970, that M is maximal, to within a
multiplicative constant, among the enumerable semimeasures. Thus, for all
enumerable semimeasures p there is a positive constant ¢, with

(3.6) M(x) > c,p(x)

for all x. The measure M(x) is also called the universal semimeasure. It
“contains” all other enumerable semimeasures. (Solomonoff conjectured a certain
property of “optimality” for his notions of a priori probability, but this conjec-
ture was mathematically vague in the sense that he didn’t define the class of
measures with respect to which the a priori measure should be optimal.

The papers [48] and [21] also show that the quantity H(x) = —log M(x) is
close to the complexity K ™)(x). In particular, the difference can be bounded by
O(log H(x)). (A lower bound on the difference is given in [14].)

Over a discrete space N, the relation between semimeasures and complexity is
much simpler. Let m(x) denote the probability that x is produced on the fixed
optimal prefix machine with coin-tossing binary input. Just as in the continuous
case, this enumerable semimeasure is maximal to within a multiplicative con-
" stant, and is called the a priori probability. Obviously, —logm(x) < K (P)(x)
since the optimal program is one of the possible binary programs giving x. Levin
showed (see [22] and [13])

(8.7) K®P(x) = —logm(x) + O(1).

This nontrivial result was also obtained independently by Chaitin in [10]. It is
fitting to call it the coding theorem. The code that assigns small descriptions to
objects of high a priori probability is related to the variable-length codes of
Shannon [38]. The technical difficulty is the noncomputability of the function
m(x).

Characterizing randomness by complexity. Let p be a computable probabil-
ity distribution over B*. The following theorems by Levin from 1973 are
analogous to the upper bound theorem and lower bound theorem of K(x). First:
There is a constant &, such that we have for all x,

—logM(x) = H(x) < K™(x) < —logpu(x) + k,.

Thus, for a computable measure, each sample has a minimal description bounded
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by the logarithm of its probability plus a constant. Second: Let V,, be the set of
those w for which there is an n with k2 < —log u(w”) — K™(x). Then p(V},) <
27*, In other words, the above estimate is close for most samples. These results
suggest that the quantities

d(x,p) = —logp(x) — H(x),

(3.8) d(w, p) = sup d(w", p)
n

can measure the defect of randomness in the finite string x and the infinite
string w, respectively. Here, w” is the prefix of length n of w. Levin showed that
indeed, it is asymptotically equal to the universal randomness defect introduced
by Martin-Lof (see the discussion of Martin-Lof’s tests). This results in the
following beautiful characterizations of random sequences: The sequence  is
random iff for all n, the logarithm H(w") of a priori probability is within an
additive constant d(w, p) of its upper bound —log p(w"). [Also, iff the same is
true of the complexity K (™(w") in place of H(w").]

For a discrete computable probability distribution » there is no sharp distinc-
tion between random and nonrandom. The corresponding quantity measuring
the defect of randomness of an outcome x is —log »(x) — K ‘P)(x).

Another interpretation of the defect of randomness

M(x)
p(x)
is that it is the likelihood ratio of the hypothesis u and the fixed alternative

hypothesis M(x). The string x is random with respect to p if and only if its a
priori probability is close to its u-probability.

(3.9) —logu(x) — H(x) = log

Testing for randomness by betting. Suppose that a casino claims that the
distribution of the outcomes w is the computable measure p. Then, given any
function f(w) with [f(w)dp < 1, the casino should accept 1 unit for an obliga-
tion to pay f(w) on outcome w. A sequential payoff function leading to such a
global payoff function is a function #(x) on the space B* of finite strings with
t(A) <1 and
(3.10) Y, t(xb)p(xb) < t(x)u(x).

beB
This inequality says that the function #(w") is a submartingale.

We could call the outcome w nonrandom if it allows us to win against the
casino by choosing an appropriate payoff function. Thus w is nonrandom if there
is a computable (or at least enumerable) submartingale ¢(x) such that # ")
grows unboundedly. It turns out that this characterization of random infinite
strings is equivalent to the one using the quantity d(w, p) in (3.8) above. Indeed,
comparison with the inequality (3.5) shows that #(x) is a submartingale iff
t(x)u(x) is a semimeasure. It follows immediately that M(x)/u(x) is maximal,
within a multiplicative constant, among all enumerable submartingales. It can be
called a universal payoff function. Now, the logarithm of this martingale is just
the randomness defect d(x, p) found in (3.8).
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The characterization of randomness by martingales was the earliest attempt
to go beyond the limited tests provided by von Mises’s selection schemes, and
was proposed by Ville in [44]. It was shown in Schnorr’s 1971 book [36] that
gambling tests based on enumerable martingales are equivalent to Martin-Léf’s
universal tests.

Information. Description complexity was recommended by Kolmogorov as
the right definition of individual information. It is therefore interesting to clarify
its relation to the entropy of a probability distribution, its statistical analog. For
a discrete random variable X with a computable mass function f(x), let H(X)
denote its entropy —X, f(x)log f(x). It follows from the coding theorem (3.7),
the “Kraft inequality” ¥£,2 X”® <1 and Shannon’s theorems in [38] for
variable-length codes that

H(X) = Y f(x)KP(x) + ¢,

where the constant ¢, depends on the length of program needed to define the
distribution f(x). In other words, statistical entropy is equal, within an additive
constant, to the expected value of the complexity, or individual entropy. This
theorem becomes interesting, for example, in the case when f is the distribution
of a string of n independent, identically distributed random variables. In this
case, the entropy is proportional to n, but ¢, is O(log n).

Inductive inference. Kolmogorov’s introduction of complexity was motivated
by information theory and the problem of randomness. Solomonoff introduced
algorithmic complexity independently of Kolmogorov, but for a different reason:
inductive inference.

Solomonoff defined a notion close to our a priori probability M(x) of a finite
sequence defined above in order to use it for inductive inference. Given the initial
~ segment x, he suggests estimating the conditional probability that the next
segment will be y by the expression
M(xy)

M(x) °

This formula can be considered a technical formalization of Occam’s razor:
“Entities should not be multiplied beyond necessity.” This principle is generally
interpreted as the prescription: “Find the simplest theory accounting for x and
then infer y according to it.” We encounter difficulties in formalizing this
principle for probabilistic theories p since a trade-off occurs between the com-
plexity of u and the defect of randomness in x with respect to p.

Formula (3.11) solves the trade-off in the case of large x and simple u. Let p
be an arbitrary computable measure. This case includes all computable sequences
as well as many Bernoulli sequences. If the length of y is fixed and the length of
x grows to infinity, then we have -

M(xy)/M(x)
n(xy)/m(x)

(3.11)
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with p-probability 1, that is, the conditional a priori probability is almost always
asymptotically equal to the conditional probability. A similar statement is
proved in [43].

The quantity in (3.11) is uncomputable and thus impractical. Still, it is very
helpful in discussions of the theoretical possibilities of inductive inference.

Lower bounds on computational complexity. Random finite strings are not
compressible by any simple algorithm. This idea is the basis of an important
class of mathematical results making use of description complexity. The results
themselves concern the (time, memory, etc.) complexity of computations, and
description complexity enters the proofs only where the technical advantage of
its use is overwhelming. For the desired computation, an incompressible input is
chosen. The proof shows that if the computation uses too little time or memory,
there is a way to compress the input, contrary to the assumption. Typical
examples can be found in [32, 33, 28, 24]. The survey [25] and the book [26]
provide an overview of the subject.

The philosophers’ stone. It follows from the result of Barzdin’ discussed
above that an explicit definition of a random string uses at least two quantifiers.
Such a definition was given in [48], but the simplest is given by Chaitin in [10].
Let U be an optimal prefix computer. Chaitin defines @ to be the probability
that U halts on a random (fair coin tossing) input string. Chaitin proved that
the complexity K (P)(Q") of the initial segments of @ grows like n + O(1), and
Schnorr proved that such a complexity growth is equivalent to randomness.
Levin’s algorithmic data processing inequality (3.3) suggests that we will never
know more than a handful of bits of Q. An oracle answering questions on the
halting problem x would be of invaluable help in answering any kind of
~ mathematical question. The metaphysical fascination of € comes from the fact
" that Q is computationally equivalent to x, but contains the same information in
maximally compressed form.

Let us summarize. First, we will never learn more than a handful of those
tantalizingly information-packed bits of Q. Second, even if we had an oracle
supplying all bits of 2, we would not make any practical use of them, since the
time to decompress @ to x grows nonrecursively. On the other hand, with
enough patience, from the first n bits of @ we can recover the proofs (or
refutations) of all provable (or refutable) n-bit assertions. These issues are
explored in [4] and in several articles by Chaitin and ‘account for much of the
popular interest in Kolmogorov’s complexity.
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