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CODING A STATIONARY PROCESS TO ONE WITH
PRESCRIBED MARGINALS!

By S. ALPERN AND V. S. PRASAD
London School of Economics and University of Lowell

In this paper we consider the problem of coding a given stationary
stochastic process to another with a prescribed marginal distribution. This
problem after reformulation is solved by proving the following theorem. Let
(M, o, n) be a Lebesgue probability space and let ¢ be an antiperiodic
bimeasurable p-preserving automorphism of M. Let N be the set of nonnega-
tive integers. Suppose that (p; ;: i, j € N) are the transition probabilities of
a positive recurrent, aperiodic, irreducible Markov chain with state space N
and that 7 = (m), i €N, is the unique positive invariant distribution z; =
L;en7;D;, j- Then there is a partition P = {P};cn of M such that for all
i, €N, W(P,No 'B) =wP)p;;=np;

1. Introduction. This paper is about the problem of coding a given station-
ary stochastic process to another with a prescribed marginal distribution. We
reformulate the problem as one for an abstract dynamical system and give a
simple solution by using a result from ergodic theory stating that an antiperiodic
dynamical system has a set with a given distribution of return times.

Suppose that the given stationary stochastic process {X,}%__ . takes values
in a measure space (S, ¥). Consider the associated dynamical system
(M, o, pn, ), where M = S* the doubly infinite sequence space, o= .¥%, the
product o-field, and p is the joint distribution of {X,,}. Since {X,,} is stationary,
p is preserved by the left shift transformation o defined on S* by (0(s)),, = S, 1-
We wish to code the process {X,} onto a stationary process {Y,} which takes
values on a denumerable set that we take to be the nonnegative integers N, so
that for a given positive integer m, the joint distribution of (Y, ¥;,...,Y,,_;)isa
previously specified marginal distribution on N™. Without loss of generality we
may take m = 2 and consider given transition probabilities p; ; = Prob(Y,,, =
JIY,, = i), with invariant distribution #; = Prob(Y, = ¢). By a coding function we
mean a measurable function f: S° — N so that Y; = f(o((X;: —o0 <i< o0))
for each j. Each coding function f corresponds to a measurable partition
P = {P},cn of M =8S® with P,=f"Yi} and conversely. Hence if the process
{X,} is aperiodic and the given distribution on {Y,} is “mixing,” then the
possibility of coding is guaranteed by the following theorem.

THEOREM 1. Let (M, &, u) be a Lebesgue probability space and let o be an
antiperiodic bimeasurable p-preserving automorphism of M. Let N be the set of
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nonnegative integers. Suppose that (p; ;: i, j € N) are the transition probabili-
ties of a positive recurrent, aperiodic, irreducible Markov chain with state space
N and that = = (m), i € N, is the unique positive invariant distribution m; =
X, enmp; ;- Then there is a partition P = {P},.y of M such that for all
i, ] €N,

(*) M(Pi N o_le) = #(Pi)Pi,j = ™D,

If we consider finite state spaces, rather than denumerable ones, then the
following is known. Theorem 1 was obtained independently by Alpern (1979) and
Kieffer (1980). The connection with coding, as described above, was established
by Kieffer (1980) and the interested reader is referred there for further details.
As observed by Kieffer for finite state spaces and ergodic ¢, Theorem 1 is a
consequence of a deep result of Grillenberger and Krengel (1976). Kieffer also
proved a “universal” version of Theorem 1 in which there is one partition P
which satisfies (*) for all antiperiodic o¢-invariant measures p. Cohen (1981)
considered the following variation of Theorem 1. The (p; ; 1 <, j < n) are
given and it is required to find a circle rotation o and a circle partition P
consisting of intervals satisfying (*) [see also Alpern (1983) and Haigh (1985)].

In addition to covering the denumerable case, our proof of Theorem 1 also
simplifies the finite case. Our method of coding is based on return times to some
fixed state.

2. Proof of Theorem 1. Theorem 1 will be an easy consequence of the
following result in ergodic theory due to Alpern (1981). The ideas used in the
proof of Theorem 1 are illustrated by an example in Section 3 which the reader
may wish to consult.

APPROXIMATE CONJUGACY THEOREM [Theorem 4 of Alpern (1981)]. Let 7
and o be bimeasurable measure preserving automorphisms of the Lebesgue
probability spaces (M,, o,, p,) and (M,, %y, n,), respectively. Assume 7 is
weakly mixing and o is antiperiodic. Let F € o/, with p,(F) < 1 be given. Then
there is a bimeasurable bijection

y: (My, sy, 1) = (My, Ay, py)
with pyy = p, and such that 6(x) = ¢y 'o(x) = 7(x) for p, a.e. x € F.
Proor oF THEOREM 1. The Markov chain p; ; may be represented in the
usual way as a dynamical system (N®, &, v, 7). Here N® is the set of bilateral
sequences w = (w,),cz With w, € N, Z is the product o-field generated by the

subsets of N and 7 is the left shift given by " = 7w where w, = w, ., for all n.
Let Q = {Q;}; «n be the time 0 partition of N® given by

Q; = {w: wy = i}.
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The measure » is defined on cylinder sets by
n
(Q,N77Q, N - N1, ) = ”%,elillpi”-"i"’

It is well known that if the Markov chain (p; ,: i, j € N) is positive recurrent,
irreducible and aperiodic, then (N®, %, », 7) is mixing. Hence we may apply the
approximate conjugacy theorem to the measure preserving system (N°, &, v, 7)
and F =~ 1771Q, = {w: w, # 0}, where 0 is some index in N. By the approxi-
mate conjugacy theorem there is an isomorphism,

y: (N>, 8,v) > (M, &, )

with puy = », and such that Y 'o¢y =7 on F. We claim that the partition
P — (P),e defined by

P, =vQ;

satisfies the requirements of Theorem 1. Now fix any i, j € N with j # 0. We
will show that condition (*) of Theorem 1 holds for such pairs. It will then
follow trivially that (*) also holds when j = 0. Since j # 0, 77'Q, C F, so

Y loy(w) = 7(w) forall w € 77'Q;,
Y oY (0) =17Yw) forall w € Q,
o {¢) =yr Yy E) forall{ €yQ, =P,

Therefore, 6 ~'P; = 7~ % ~'P,. Thus
p(Pno™R) =u(Pnyr Yy 'P)
= w(¥vQinyr7'Q;)
= wp(Qn171Q;)
(N 77'Q))

= mDi, j-

Actually the process (M, <, p, P) [this is the process which lists for each time n,
and each w € M the subscript of the element of P to which ¢"(w) belongs]
assigns the correct Markov measure to all words without a 0 in the interior. Thus
we have that the distribution of P V ¢~ 'P is what the Markov chain prescribes.
This completes the proof of Theorem 1. O

3. Example. We include for the reader unfamiliar with ergodic theory the
following example which illustrates the technique used in the proof. Consider
the following simple Markov chain on three states {0,1,2} and transition
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<°R,
ZR, TR, TR,
R, Ry R,

Fic. 1. Names. The transformation acts by mapping each point to the point directly above it;
otherwise it is mapped to some point on the bottom level.

probabilities given by the matrix

0 1 2
0fo 3 3
14 0 ¢
2{1 0 O

The stationary invariant measure is given by =, = 6/13, m = 2/13, =, = 5/13.
Suppose we start from the state 0 and consider all possible future paths (and
their lengths) from 0 until the first return back to the state 0. Since the Markov
chain is aperiodic, the lengths of these paths form a relatively prime set of
integers. In this case there are exactly three allowable paths (words) between
successive 0’s, given by two paths of length 2, a = 020, b = 010, and one of
length 3, given by ¢ = 0120. The set @, = {w € N*: w, = 0} is partitioned into
three sets,

Ra={weN°°:w0=0,w1=2,w2=0}:
Rb={QENw:w0=0,w1=1’w2=0}’
R.={0eN*:w=0,0=1,0, =2, 0;=0}.

The set F given in the previous proof consists of the sets R, U R, U R U TR
Consider the three diagrams (Figures 1-3), all of the same tower picture for 7,
which each illustrate different information about the return times to the set @,.
The set @, is the union of all sets with the label 1. In this case it consists of
the two sets 7R, TR . The set @, = TR, U 72R_, i.e., all sets labelled 2 belong to

0 0 0

Fi1c. 2. Labels. Each level of this tower consists of points with the same 0th coordinate. The label is
that common value.
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1/13

4/13 1/13 113

4/13 1/13 113

Fic. 3. Measures. The measures of the various levels of the tower.

Q,. Note that r satisfies (*) with the partition Q = {Q,, @, &,}. For example,
p{: ©,4q = 2|0, = 1) = »(1R,)/((7R,) + »(7R,)) = 1.

Any transformation agreeing with 7 on F will also satisfy (*) with the same
partition. Actually all we need to know is that the transformation o has the
same distribution of return times to some set B (called the base of the tower) as
7 does to the set @, (which is the base of the tower for the shift 7). Once we have
such a tower for o, we can subdivide the column of height 2 for the ¢ tower into
two columns, in the same way as for the 7 tower. Then the various levels of the ¢
tower are assigned labels in the same way as the labels occur in the 7 tower.

The measure of the two subcolumns of height 2 for the ¢ tower is determined _ .

by looking at the corresponding columns in the tower for 7.

This will yield a partition for ¢ satisfying (*). In this example we had only a
finite number of return times to the set §,. Even when there may be an infinite
number of different return times, the following theorem (which implies the
approximate conjugacy theorem) guarantees that we can find a set having those
return times with a prescribed distribution.

MULTIPLE TOWER THEOREM [Theorem 1 of Alpern (1981)]. Let ¢ be an

antiperiodic bimeasurable p-preserving automorphism of (M, &/, p) and let

= (¢p), k=1,2,...,00, be aprobabzlzty vector such that the k’s with ¢, > 0

are relatwely pnme Then there is a partition {P, ;}, k=1,2,...,00, i=
k. of M satisfying (i) P ;= 0""X(Py,) and (i) p(UL1P, ) = 4

Note that we would apply this theorem to the numbers
¢, = Prob(the Markov chain returns to 0 in exactly & stepsithe chain starts at 0).

The set B = Uf_, P, ; is the base of the tower for o and the distribution of
return times to B is the same as the distribution of return times of the Markov
chain to the state 0.

Note added in proof. We have recently shown [Alpern and Prasad (1989)]
that if instead of assuming that ¢ preserves p in Theorem 1, one assumes only
that o preserves p null sets, then for any ¢ > 0 the weaker conclusion that
(PN o'p)

<1l+e
w(P)p; ;

1—¢<

holds for all i, j.
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