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ISOPERIMETRY AND INTEGRABILITY OF THE SUM OF
INDEPENDENT BANACH-SPACE VALUED
RANDOM VARIABLES!

BY MICHEL TALAGRAND

University of Paris VI and The Ohio State University

We develop a new method to study the tails of a sum of independent
mean zero Banach-space valued random variables (X;); . . It relies on a new
isoperimetric inequality for subsets of a product of probability spaces. In
particular, we prove that for p > 1,
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where K is a universal constant. Other optimal inequalities for exponential
moments are obtained.
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1. Introduction. Consider a sequence (X)), of independent random vari-
ables (r.v.) valued in a Banach space B. Throughout the paper, we assume that
these variables are integrable, with EX; = 0. In the case where Sy = IV, X,
converges a.s. to a r.v. S, the integrability of S has been studied by a number of
authors. A landmark result in that direction is the following inequality, due to
Hoffmann-Jergensen [6]. For each p > 1, there is a constant C(p) such that
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The usual proof of this result yields a constant C(p) that has exponential
growth in p. One of the main results of this paper is that the actual order of

growth of C(p) is p/log p.
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THEOREM 1. For some universal constant K, and all p > 1, we have
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In the case of real-valued r.v. a result of a similar nature had been obtained by
Johnson, Schechtman and Zinn [8]. In that case, the order p/log p is already
optimal.

When sup;|| X;||,, < o, and when S, converges a.s. to some limit S, a conse-
quence of Theorem 1 is that E exp(a||S|[log*||S|) < oo for some a > 0. This was
previously known in cotype 2 spaces [2]. In general, it was only known that
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EexpA|S|| < oo for all A > 0. We can actually prove the following, in any
Banach space.

THEOREM 2. Assume that the sequence (X;) is symmetric, that
sup;|| X;ll, < C and supy E||Sy|| < co. Let W = supy||Syl|l. Then for each
a > 3, we have

E(exp C~'W(log* W — aloglog(e + W))) < oo

There is no reason to believe that the number 3 is sharp, or even the order of
the term loglog(e + W). Theorem 2 is based on an explicit (but complicated)
bound for the tails P(||Sy|| > ¢). An application of Theorem 2 is given to the
integrability of Poisson measures.

To state our next results we set, for a > 0,

X|* }

—l| <2).

c
For a 21, |- |lp, is a norm, and for a <1 it is equivalent to a norm. The
following results appear to be new even for real-valued r.v. The next theorem
improves on Theorem 3 of [6].

1X]lo, = inf{c > 0; Eexp

THEOREM 3. For 0 < a < 1, we have

ZXi ZXl
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where K(a) depends on o only.
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The next theorem improves on [3], Theorems 5.2 and 5.3.

THEOREM 4. Consider 1 < a < 2, and B such that1/a +1/8 = 1. Then
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where K(a) depends on a only. Moreover, K(a) is bounded in any interval
[1+ 2]

We recall that for a sequence (@;);., and p > 1 we set
(@)l poo = (sup{‘tcard{i; la;| > £7V/P}; t > O})l/p.

The following rather general exponential inequality was inspired by the
results of [4].
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THEOREM 5. Consider numbers a, r,s > 0, with 1/r + 1/s = 1.

() Setm = E|X;  nXill, M = || Xllo)l;, 0 Assume that a > s> 1, s < 2.
Then there exists K > 0, depending on a, r only such that for all t > Km, we
have

7

if M5t?~° < eKm? and

t s Mstz_s ¢ 1-s/a
P( Z Xl“ > t) sKexp - (W) log min(—Km—z,T(—”—l)

i<n
if Mt27% > eKm?2.
(b) If a > s > 2, there exists a constant K depending on a, s only such that
for all t > Km, we have

t s
P( >t)sKexp—(m).

Previous research on the topic is based on what one might call rather classical
probabilistic ideas, like martingale theory or converse Kolmogorov inequalities.
These ideas do not seem to work here, and our approach, that we outline now, is
of a rather different nature. A simple idea is to consider a Bernoulli sequence
(¢;);<n independent of X, and to study first the conditional expectation
E||Z; < ne: Xill of |IZ; < ve, X;|| given (X;); . y. The idea is that the integrability
properties of ||, _ v, X;|| are closely related to those of E,||Z; _ y&;X;|l. This is a
well-known fact. It will be convenient to use the following recent result (also of
an isoperimetric nature) established in [13].

t2
Km?

ZX,-“>t)sKexp—

i<N

L X

i<N

THEOREM 6. Consider a sequence (x;); . n in a Banach space B, and set
o2 = sup{ ¥ x*(x,)%: x* € B, ||x¥| s,l}.
i<N
Then, if M is a median of ||X,_ y&;x;|l, we have, for t > 0,

P( Y sixi‘ -M|> t) < 4exp — /802
isN
In particular,
P( Y e,-xi“ >2E| ). six,-“ + t) < 4exp — t?/8¢2.
i<N -Vi<N

%

The study of E,|X,_y¢X;| is made easier by the observation that
E|IZ;c1¢X|| is an increasing function of the subset I of {1,..., N}. Let m =
E|X; . n& Xl Consider the set A = (E,|[X,_ y&;X,|| < 2m}, so P(A) > %. For w
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in @, x,...,x%in A fixed and / < q, we consider
= {i <N; X(w) = Xi(xl)},

so we have

E, Z g X;(w)

iel;

<2m. -

=E, Y g X (xh)

ie];

Z eiXi(xl)

i<N

<E,

If weset I =U,_,[;,, we have

L)

E|X EiXi(“’)” < 2gqm,

iel

so we have the bound

(1.1) E,

T (o) < 2am + T1X (0

i<N gl

The natural idea is that, when g becomes large, for each w outside a small
exceptional set, one can find x,..., x? in A such that 2 = N — card I is small,
so that the estimate (1.1) is useful when one bounds ¥, .. ;|| X;(w)|| by the sum of
the & largest terms of the sequence (|| X;(w)|)); < - The key point of this method
is to obtain an estimate of the size of the exceptional set. Consider a probability
space (2, =, p), and N > 1. Denote by P the product measure u" on Q". (For
simplicity of notation, the Nth power of a measure p is denoted by u" instead of
p®N) To a subset A of @V, we associate

H(A,q,k) = {weQN;3x1,...,xq€A,card{i_<_N;w,~<£ {x},...,x{’}} sk}.
The main result of this work is as follows.

THEOREM 7. For some universal constant K, we have
1 1 k
(*) P*(H(A’ q, k)) 21-|K IOgP(A) .

The use of inner probability is needed since H(A, g, k) need not be measur-
able. We should note that the value of N is irrelevant in (*), so one can deduce
from the theorem a similar statement for infinite products. Our proof of this
theorem relies on rearrangements. We reduce step by step the problem to a
simpler one; after six such reductions, we arrive at a situation that is explicit
enough to permit computation. There is a most interesting comparison in [11] of
rearrangement methods versus martingale difference sequence (m.d.s.) methods.
It seems that overall arrangement methods, while more delicate, are also more
powerful, and our present results seems to be an occurrence of this phenomenon.
Indeed, we do not see how Theorem 7 (or even Theorem 1) could be proved using
m.d.s. Theorem 7 will typically be used for P(A) > 3, k > q, in which case it
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becomes

(1.2)  P.(H(A,q,k)) <1- (K,/q)* =1~ exp(—klog(q/K,)).

Throughout the paper K, will keep the meaning of the constant of (1.2).

The presence of the factor log ¢ is a crucial fact. The estimate of Theorem 7 is
all that is needed for the application to Theorems 1 to 5. It might, however, be of
interest to know that exact solution of the associated isoperimetric problem, i.e.,
for a > 0, to compute inf{P,(H(A, q, k)); P(A) = a}. Our method does not
seem to allow this. As explained after the proof of Theorem 7, it, however, allows
one to get an estimate of the best possible order.

At the time of this writing, it seems that Theorem 7, when used as described,
captures the exact size of the tails of |, _ 5 X;|| in all the situations. We refer the
reader to [10] for its application to strong laws.

We will prove Theorems 1 to 5 in Section 2; and the more delicate Theorem 7
in Section 3.

2. Tails of ||X;_nX;|. Throughout the paper, K will denote a universal
constant, that may vary from line to line.

We now describe a convenient (and usual) setting. Consider two rich enough
probability spaces (2, Z, p) and (Q', ', P’) (say copies of [0,1] with Lebesgue
measure). Set P = pN. Our basic probability space is (2N x @', =N ® 3’,Pr)
where Pr = P ® P'. The variables X, are defined on 2", in such a way that for
w = (w;); < n» X;(w) depends only on w;. We consider the sequence ¢; defined on
. So, the sum X, _pe;X; has value ¥;_ ye,(w)X;(w) at the point (w, w’) €
QN x @', Conditional expectation with respect to «’ is denoted by E.. The usual
symmetrization argument shows that to prove Theorems 1 to 5 one can assume
that the X, are symmetric, i.e., that X; has the same distribution as — X;. So it
is enough to prove these theorems when X; is replaced by ¢, X;.

We start by describing the basic estimate, that was outlined in the Introduc-
tion. Throughout this section, we denote by Y’ the rth largest term of the
sequence (]| X;||); . v (ties being broken by the index). We set m = E|X; _ y&; X,
and we consider the set

A= {w 2% B ¥ eX(0)| < 2m},

i<N

so that P(A) > 1.
For x* € B*, |lx*| < 1, w € A, we have E X, _ y&g;x*(X;(w))| < 2m, so that
by Khintchine’s inequality we have

(2.1) Y (X)) = E,

i<N )y 8»”C"‘(Xi(w))r < 8m?2.

i<N

.(The use of the best constant in Khintchine’s inequality is essentially irrelevant.)
Consider now g, k > 0 and w € H(A, q, k). By definition of H(A, g, k), there
exists x',..., x? € A such that card{i < N; w; & {x},...,x7}} < k. So, one can
find disjoint sets I,C {i < N; w,=x!} and oJ, with card J < &, such that
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{1,...,N} =1UdJ, where I =U,__I,. We have

E|Y eX(0)|=E, ¥ eX(x")| < 2m,
el i€l
so that
(2.2) 1A DY eiXi("")H <YE|X EiXi(w)“ <2mq.
iel l<q el

From (2.1), we have, for all x* € B*, x* <1,
(2.3) Y 2 (X(0))" = T x*(X(x")" < 8m?,
el i€l
so that
Y x*(X,(w))? < 8gm?>.
el
By Theorem 6, and (2.2) for u > 0, we have
2

u
(2.4) Pe( iglsiXi(w)“ >4gm + u| < 4dexp — Ty
We have
Z EiXi("")N < Z eiXi("")N + Z ||Xi(°°)||
i<N iel ied
< EeiXi(w)II + Y YO(w).
iel r<k

u2

64gm?’

It follows from (2.3) that
R_,( Y siXi(w)" >4gm+ Y, YO(w) + u) < 4dexp —
i<N r<k
This is true whenever w € H(A, q, k). From (1.2), we deduce by Fubini’s
theorem the following.

THE BASIC ESTIMATE. For k > q, we have

d

u2

Y eiX,-(w)” >4gm+u+u
i<N

< 4exp —

64qm?

(2.5) +(%)k.+ P( Y Yo > u').

r<k

REMARK. The inequality (2.3) is rather brutal. When we have information
about sup .« <X < vEx*(X;)?, a better method is available. While this more
clever device is essential in the proof of strong laws, as in [10], it is of little
relevance here.
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We now collect two simple facts.

LEmMA 8. If P(max; _y||X)|| = ¢) < 1, then

ENP(uXM <t) < 2P(max||X|| > t).

PROOF. We note that for 0 < x < 1, we have exp — 2x <1 — x < exp — x,
so that

exp — 2P(1i11a131(||X,-|| <t)<1- P(ririaglillXiH > t)
= T1 (- P(IXj = 1))
i<N

<exp-— Y P(|X)|| = t). O
i<N

LEMMA 9. P(Y?) > ¢t) < (T, _NPUIX,| = t)) /7.

Proor. P(Y") > t) < ¥T1 j<rP(IX; |l > ¢), where the summation is over all
choices of indexes 1 < i, <i, < -+ <i,< N. Now

le_lslP(llXijll>t) —1; Y TIP(1x)i=¢)

T distinet Byeeny dp JST

= Y TIP(1x,) = ¢)

It

< r!
alliy,...,i, J<r
1 r
- Sz Paxa=0). 0
*VisN

PROOF OF THEOREM 1. By homogeneity we can assume m < 1, |[Y?), < 1,
where Y® = max;_ || X;|l. In particular, P(Y® > ¢) < t7P, so from Lemmas 8
and 9 we have P(Y") > ¢) < 27t P for t> 2. Let us ﬁx t > 4. We have
P(Y® > t2/3) < 4¢7*P/3, Let s be the smallest integer such that 27° < t~2. We
have

P(Y®) > 4) < (2-47P)° < 27P8 < 472 < t49/3,
Hence if we consider the event
D={YV<t; YO <23 Y® < 4},

we have P(D¢) < P(Y® > t) + 5¢~%P/3, Let k be the smallest integer > £ On
D, we have

Y YO <t+ s>+ 4(k—-1) < Ct

r<k

for some constant C, since 27°*' > ¢72, and hence s < 1 + K log t. Denoting by



SUMS OF BANACH-SPACE VALUED RV’S 1553

[x] the integer part of x, we use (2.5) with u' = Ct, u = ¢, q = [Vt] to get

d

Then Theorem 1 follows by a standard computation from the identity

Y s,.X,.ll > (C + 2)t) < dexp — tY2/K + ¢~ t180i/K)
i<N

+ P(max| X, > t) + Kt~4/%.
isN '

o0
1212 = [ ptr='P(1Z| > ¢) dt
0
for any r.v. Z. O

We now turn to the proof of Theorem 2. It is an obvious consequence of
Lévy’s inequality

P(max
k<N

Y X,." > t) < 2P(

i<k

£l

i<N

and of the bound given in the next theorem.

THEOREM 10. There exists a universal constant L with the following prop-
erty. For each sequence (X;); . n of symmetric bounded r.v. valued in a Banach
space B, let us set m = E|L; . yX;|, M = max,; _y||X|||... Then whenever t is
large enough that

m? t\?
(2.6) t>Lm, t>LM, tzL—-ﬁ(log ) ,

m
we have
d

Y X[ >¢ £ (10g = 210glog-
=t < - — — - —
P “_ < exp M(ogm oglog—
(2.7) s
2M1 t L1 .m
- : og;— — log M)

ProOF. The proof will rely on (2.5), and a careful choice of the parameters
involved. The point of Theorem 10 is actually to exemplify how accurate (2.5)
can be. The precise possible behavior of log P(||L; . yX;|| = t) is not known.

Casel. m < M. We set

t)"? m\2( t\7!
t, = t(log;) , t; = t(ﬁ) (log;) , t,=t—1,— ;.

We set k = [t,/M], q = [t,/64m]. We have g < k and t, > 128m provided
t > Lm and L is large enough. We use (2.5) with v’ = ¢, u = t;, observing that
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PE,_ .Y > t)) = 0since kM < ¢, by definition of k. We get

t ot K,\*
p ZeiXillzt s4exp(—ﬁlog;)+ 7 .

i<N
Since ¢,/64m > 2, we have q > t,/128m and hence
K, * q 1 2
riis exp — klog?0 < exp — M(t_ ty—t; — M)log(4Km),

from which (2.7) follows by computation.

CASE 2. m > M. We set

M t\ 7?2 t\!
t, = ;t(log;) , t; = (log;) s t=t—1t,—t3
and define k = [t,/M], q = [t,/2m]. If t > 4(m?/M)(log(t/m))3, then
t,/2m > 2 and we proceed as above. O

Using Theorem 2, the proof of the next corollary is identical to that of
Corollary 3.3 of [2].

COROLLARY 11. Let i be a Lévy measure on a Banach space. Assume that p.
is supported by the ball of center 0 and radius r. Then, for each a > 3 and each
T> 0,

Jexp(r~xll(10g “l1xll - «loglog(e + |1x1))) d(c, Pois :)(x) < o.

We now turn to the proof of Theorems 3 and 4. The proof will rely on the
following specialization of (2.5): Fixing ¢ > eK, for any & > ¢, t > 2gm, a > 0,
we have
£2

Y eiXill >3+ a)t) < 4exp —

i<N qu2

d
(2.8)
+exp—k+ P( Y Y™ > at).
r<k
The difficulty in these proofs will be the control of the last term. In these
proofs, we will denote by K(a) a constant depending on a only, that may vary
from line to line. .

Proor oF THEOREM 3. We can assume |, . y Xj|l; < 1, [[max; _ y|| X;|||lo, <
1. Hence P(max;_y||X;||>t) <2exp — t* so that, by Lemma 8, we have
Y ~PUIX;)| = t) <4exp — t* for t > 2/% To explain the difficulty, we first
complete the much easier case a < 1. In that case, Lemma 9 shows that
P(Y™ > t) < (4exp — t*)". For t > K(a), we have 4exp — ¢t* < exp — (¢/2)* so
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that P(Y("? > t) < exp — (r*/*t/2)%, and hence P(Y("” > tr~V/*) < exp — (£/2)°,
provided ¢ > r*/*K(a). For a < 1 (but not for a = 1) the sequence X, . ,r~ /% is
summable. Let S, be its sum. We thus have

p( Y YO as) < K(a)t exp — (£/2)".
r<K(a)t*

If we use (2.8) with a = S,, % of order K(a)t* we obtain
Al
and hence ||Z; _ yX;llg, < K(a) by standard computations. When a = 1 we will
also deduce the result in the same manner from (2.8). For this, it is enough to

prove that if ¥, _yP(||X;|| = t) < 4exp — ¢ for ¢ > 2, then, for some universal
constant ¢, we have

ll > K(a)t) < K(a)exp — t*/K(a)

i<N

t2c=>P(ZY(’)222t)Sexp—t.

r<t

We denote by n the largest integer such that 2" < ¢.

Suppose that ¥, _,Y™ > 22¢. Let p be the largest integer < n such that
Y@ > 2. Then I, _ppniY? > 20 Also I, oY < Ty, . ,2'Y®). Hence we
find for 0 < I < p numbers 1 < n(l) < n + 4 such that if we set a,=2"D, we
have a; < Y® and that T, _, _ ,2%a, > 10¢. Since Y® > a,, we can ﬁnd disjoint
subsets (I))g.;<p, of {1,..., N}, such that card I, = 1, card I, > 2!~ ! for I > 1
and || X,|| = a, if e I. It follows that, if p and (a,),_1 are fixed

P(vi<p,Y®2a)< LI TTPUIXI 2 @),

<plEl

where the summation is taken over all choices I, ..., I, of subsets of {1,..., N}
such that card I, = max(1,2'"!). Hence we have

l—l
P(visp, Y2 a)s [1| T POXI = a)/2" 1']

I<spli<N
(2.9) <4 exp( Y oi-1g )
v I<p
< 4% exp — 5t.

There are at most (n + 5)**D possible choices for the sequence (@;), ., ,, S0
that for ¢ large enough

P( Y Y®™> at) < (n+5)""P4%exp — 5¢

r<t
< e*exp — 5t < exp — ¢,

since for ¢ large enough (n + 5)"*D < 4%, and 42" < <e*. O

n+2
e2
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We now investigate by what kind of Orlicz function  one can replace ®, in
Theorem 3, and more specifically, we investigate how fast these functions can
grow. Interestingly enough, it turns out that these functions can grow faster
than exponentially, although in a rather slow way.

PrOPOSITION 12. Consider an Orlicz function { such that for x large enough
¥(x) = exp(x&(x)), where ¢ is nondecreasing.

(a) If for some K and for all i.i.d. sequences (X,);.n of symmetric real-
valued r.v. we have

(2:10) x] < k(| £ x| +mxan, .
zsN isN My i=N

then for u large enough we have

(2.11) é(e") < L§(u)

for some constant L.
(b) Conversely, if (2.11) holds for all u large enough, then for each sequence.
(X,); < n Of independent r.v. valued in a Banach space, we have

> X L X

i<N i<N

< K( |+ g, |
1 i<N

ProoF. (a) Let u, N >0, such that Ny(u) > 1, and consider a rv. X
such that P(X = tu) = CNY(u))™!, P(X=0)=1— (Ny(u))~'. Con-
sider an ii.d. sequence (X; ),< n distributed like X. Then max;_y|X;| < u,
P(max; _ 5| X;| # 0) < ¢(u)"}, so that |]max,sN|X|]|\,, < 1. Also |X;.yXill; <

u/y(u), and we take u large enough that this is less than or equal to 1. Hence,
by (2.10), we have ||Z, . yX,||, < 2K. We observe that

P T %= Nu) = 2No(w) ™",

i<N

e £ e M S P

Thus we have ¢(Nu/2K) < (2Ny(u))"N. We remember that y(u) = exp(ué(u)),
so that, taking logarithms,

so that

N (V) N log2N + Nut(x)
2K§(2K)S og + ugt.t.

Consider now u > 8K. We can take N such that 2Ke“u™! < e*/4 < N < e“/2,
so that 2N < e” and e” < Nu/2K. It follows that

I;; £(e*) < e*u + ue"t(u).

This implies (2.11).
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(b) The proof follows the proof of Theorem 3 in the case a = 1; and we keep
the same notation. We denote universal con-stants by C,, C,, ... . It is enough to
prove that for ¢ > ¢, if L, _ yP(|| X;|| = t) < 2exp — t£(t), then we have

t>C = P( Y YO Czt) < exp — t£(t).
r<té(t)
We proceed as in the proof of Theorem 3, denoting now by n the largest
integer for which 2" < t£(¢). We observe that (2! 1)! > e '(‘162=Co)" g0 that, by
Lemma 9,

P(V I<p, YO >aq)<4” exp(— Y (2 %a8(a,) + 28 Y(Llog2 — Cy)” ))

l<p
We now show the following, where L is the constant of (2.11). If ¢ (hence n) is
large enough
(212) Y 2%, > 10L% = ¥ (27 'a,¢(a,) + 2 Y(Llog2 — Cy) ") = 5té(2).
l<p l<p

We can and do assume L > 100.

CASE 1. 5L2""P > n. Then we have Y2~ 'a, < 5Lt, where the summation is
over those I < p for which a; < 5L¢277. Thus X2 !a; > 5L%, where the summa-
tion is over those ! < p for which a, > 5Lt277. Now

5Lt27P > tn2™" > n/£(¢).

Since (2.12) implies that £(¢) grows very slowly, and in particular that
&(t) < logt for t large enough, for ¢ large enough, we have n/¢(t) > log(log t).
Thus £(5Lt277) > L™%(t), and (2.12) follows.

CASE 2. 5L2"? < n. Then we have p > n/2 for n large enough; so, for 7
large enough, we have

5L log2

2P Y plog2 — C;) > 2P 3nlog2 > 2"”( ) > 5t£(t)

and this proves (2.12).
The conclusion then follows as in thé case of Theorem 3.0

PRrROOF OF THEOREM 4. We set d; = || X}||, so that
P(I X}l = t) < 2exp — (t/d,)".

We can assume ||T; _ y X, < 1, X,  yd® < 1. There is no loss of generality to
assume the sequence (d;); . y nonincreasing. Hence X, _ y2'd5 < 2. We can find
a sequence y; > 2'd5 such that v, > v;,,/ V2 > v,/2 for i > 1 and Ly, < 20 (e.g.,
¥ =X,;.,8,27V"% where §;=2/d5;). Let ¢;= (@2 ',)"%, so that cf, <
cf27/?, ¢ < cf,,2%/?F, Then ¥£2%¢f < 20 and d; < ¢; for j > 2°. We observe
that ¥, ,4c¢,(4log4'+1)/* < C(a) < oo.
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As in the proof of Theorem 3, using (2.5) it is enough to show that for some
constants a, ¢, depending on a only, we have

t20='>P( y Y(’)zat) < exp — t%
r<t®
Since P(Y® > ¢t) < 2exp — ¢° it is actually enough to find s, a, ¢ such that
t20=>P( Yy Y(')Zat) < exp — t*
2°<r<t*

Fix t, and denote by n the larg%t integer such that 2" < ¢* Suppose that
Y, .Y > at so that £, _,_,2'Y® > at.
Let

L={s<l<n;Y® > 2c(4logs")"}.

Then T, . 2'Y®) > at — C(a) > at/2 for ¢ large enough. For I € L, we can
find a number a, of the form 2™ (m € Z) such that Y®) > @, and a,>
c,(4log4* 1)/« and ¥, ;2%,> at/4. We can find disjoint subsets (<});c
of {1,..., N} such that card J;>2""! and ||X;||>a, for i€ J, Set I, =
S\ {L,...,2%). We have

P(VieL,Y®>q)< Y ]'I HP(||X||> a,),

Lie] f]
where the summation is taken over all possible choices of (I;), ;. Hence
2l-2
P(VieL,Y®>q) <[] ( Y POIX4> az)) '
leL 9i-2 <i<N

We have P(| X,|| = a;) < 2exp — (a,/d;)* so
Y PUXliza)s ¥ 2/exp-(a/e)"

2"2<i<N Jj=1-2
Since [ € L, we have
(ay/e)® = (ay/c;)’/2 + log4/*2
and since c?,, < c%27%/%, ¢¥ < ¢?,,2°/*# we clearly have
(a/c;)" = (a/e;)"/4 + logd/*?
for j > I — 2, provided s has been taken large enough. It follows that

, a\* , 1({a;\"
Y 2’+1exp—(c—l) < X 2"‘1exp—z(—l)

" j=l-2 j j=l-2 )

1({a;\"
Sexp—z -‘;— .
1
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Hence we have
1 a\*
( vi<n, Y(2)>a,)<exp— — 22’(—1) .

By Holder’s inequality, we have

0\ 1/8
" < Y 2, < Ez(d) (Ezlcf) ,
leL leL ! leL

so that ¥, . ; 2/(a,/d))* > t%a*/80, and, if we take a = 1280, we have

P(V I<n, Y®> a,) < exp — 2t°.

The number of possible choices for the sequence (@,),., is < exp ¢* for c large
enough, and this concludes the proof. O

PrOOF OF THEOREM 5. During this proof, K will denote a constant depend-

ing only on « and r, that may vary in each occurrence.

(a) There is no loss of generality to assume that the sequence | X;llo, de-

creases, so that || X/l < Mi~'/". If Y® >¢, then at least i — [i/2] of the
numbers || X ||, j > i/2, are > ¢. By Lemma 9, we have

] i—[i/2]
PYO>t)s( T PUXI>0) G- L2

Jj>i/2

tjl/r a\ i—[i/2]

s( Y 2exp—( i ) ) (i - [i2])!.
J>i/2
For ¢t > KMi~ /" we see easily that
” til/r+l/a @
P(Y®W >t) < -\
( ) < exp ( i )

. t\*
P(y(t) > ti—l/r—l/a) < exp — (m_) ,

provided ¢ > Ki'/°M. We observe that T, _,i~Y/"~¥/* < Kk'/*~'/ Thus

o

t
P Y“')ztk‘/s‘l/")sk - =1,
1z =~ | )

provided ¢ > Kk'/*M, and

. t “
P( Z Y® > t) > kexp — (—_——) "
i<k

KMkl /s—1/a
provided ¢ > Kk'/*M. Then Theorem 5 follows from (2.5), by choosing u = u’ = ¢,
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k ~ (t/M)*(log ¢)~*/* and
¢t 2sMe go-2pgs\ e £2-sp2
q=min[m, " (g o ) ] if 5
= eK otherwise.
(b) Taking & of order (¢/M)?, one first shows as above that

t 8
P Y<i>_) Kexp— |—| ,
(Zyo=t) s xem— 5]

> eK

I

m

t E
P Yo > Ktzk"l) < Kexp — (———) .
(igk P KM

Denote by o the set of indexes for which || X;|| is one of Y®, i < k. We observe
that

)» GiXi(‘*’)“°

ieNJ

T eXi(0)| s T ¥O) +

iel i<k

We now use the notation of (2.4), and let w € A. When T, YO <,
.o 1YY < Kt?k ™!, we have, by Theorem 6,

t2
Pe( ElsiXi(w)" > 4gm + 2t) < 4exp — W
4 £\
< 4exp )

Thus, arguing as in the proof of (2.5), we get
K

P( Y siXi(w)" > 4gm + 3t) < (—0-
isN q

from which the result follows by fixing ¢ > 2K . O

k ¢ s
+ Kexp — (——-) ,

3. Proof of Theorem 7.

STEP 1. We reduce the proof to the case where Q = [0,1], p is Lebesgue’s
measure A and A is compact. The argument is a routine technicality. This step
is needed only to be able to state Theorem 4 for general measure spaces, while
the case © =[0,1], p =\ is sufficient for applications. The reader who is
satisfied with that special case should hence go directly to Step 2. We can
assume that =, is the completion of a countably generated o-algebra =. There
exists a measurable map ¢ from © to [0,1], such that £, = {¢~'(B); B Borel}.
Denote by 4 the product map from @V to [0,1]" and set » = ¢(p), @ = »", so
Q = ¥(P). We note that »*(¢(2)) = 1. It is enough to prove (*) when A € .
Then we have A = ¢~ (B) for some Borel set B of [0,1]", and P(A) = Q(B).
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Our first task is to construct a Borel subset B’ C B, such that @(B’) = Q(B),
with the following property: Whenever x € B’ and I = {i < N; x; € ¢(2)},
there exists y € B, with y, = x; whenever i belongs to I, and y, € ¢() for
i < N. For each partition {1,..., N} =TUJ, we can view ([0,1]V,Q) as a
product [(0,1] X [0,1]Y, »* ® »¥). Denote by C; , the set D X [0,1]”, where

D= {u e [0,1]% u"({o e [0,1]7; (u,v) € B}) = O}.

By Fubini’s theorem, we have Q(C; ;) =0. Let B’ = B\ UC; ;, where the
union is taken over all possible partitions of {1,..., N}. For x in B’, let I =
{i: x; € $(Q)}, u = (x;); ;- By definition of B’, we have

vJ({v € [0,1]7; (u,v) € B}) > 0.

Also, we have (»Y)*(¢(2)7) = 1. So, there is v in ¢$(2)7 such that y = (u, v)
belongs to B. This is what we wanted to achieve. It is now routine to check that

Yy~ '(H(B',q,k)) c H(A,q, k),

and hence P(H(A, q, k)) > Q(H(B', q, k)). So, to prove inequality (*) for A, it
is enough to prove it for B’. Hence we have reduced the problem to the case
where @ = [0,1].

To reduce to the case where A is compact, one notices that H(A, g, k) is an
increasing function of A, and that P(A) = sup{P(K); K c A, K compact}. To
reduce to the case where p = A, we consider a measurable map ¢: [0,1] — [0,1]
such that » = ¢(A). If Y denotes the product map, it is easy to see that for each
subset A of [0,1]", we have

V(H(y Y (A),q,k)) c H(A, g, k).

This shows that it is enough to prove (*) for ¥ ~(A) instead of A, and A instead
of ».

STEP 2. We reduce to the case where @ =[0,1], p = A, A is compact and
moreover satisfies the condition
(H) vieAVye[0,1]V,Vi<N, y,>x,=>y€cA.
The proof relies on a simple rearrangement. Let A be any compact subset of
[0,1]M. Fix 1 <j < N; to simplify the notation, we assume j = N. For z €
[0,1]¥ -1, we define #(2) € [0,1] by the relation

A([¢(2),1]) = A({u € [0,1]; (2, u) € A)),
and we define
T(A)= U {2} x[t(2),1].
ze[0,1]V !

Since #(2) is an u.s.c. function of z, T(A) is compact. The essential step of the
proof will be to show that

3.1) P(H(T(A),q,k)) < P(H(A, g, k),
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where P =AM, Once this is done, we notice that if for some subset  of
{1,..., N}, A has the property

(H(J)):VzeAvye[o,1]V,Vied, y=x,Vied, y,2x;,>ycA,
then T(A) has H(J U {N}). So, if we successively apply the transformation T
to each coordinate, we transform A into a compact subset of [0, 1] that satisfies

(H) and has the same measure; and (3.1) shows that we have not increased
P(H(A, q, k)). To prove (3.1), we fix z in [0,1]V~L. We set

U= {ue[0,1]; (z,u) € H(A,q,k)},
V={ue[0,1]; (2,u) € H(T(A),q,k)}.

It is enough to prove that A(V) < A(U). We use the notation (z, u)y = u,
(2,u); ==z, for i < N.

CaskE 1. 'The following holds:
(8.2) 34%...,x9€ A, card{is N-1;z¢ {x}-,...,x?} <k- 1}.
In that case we have U = V = [0, 1].

CASE 2. (3.2) fails. Let v = inf V. We have A(V) < 1 — v, so it is enough to
show that A(U) > 1 — v. Since H(T(A), q, k) is compact, v € V, so there exist
x,...,x7 in T(A) such that

card{i < N; (2,v); & {x},...,x8}} <k

By definition of T(A), there exist ..., y? in A with y/=x! for I < g,
i < N — 1. Since (3.2) fails,

card{isN—l;zie {x},...,x?}} =ca1'd{isN—1;z,~$ {y},...,yﬂ}} > k.

So we have v € {x},...,x%}, say v =x}. Let y = ( x}));.n_1. I (3,8) €A,
then

card{i < N;(z,t); ¢ {(y, t)i, xiz:-n:x?}}
=ca1'd{isN— 1; 2, & {x},...,xf}} <k,

so we have (z, t) € (A, g, k). Since (y, v) = x' € T(A), the definition of T(A)
shows that A({#; (y,¢) €A > 1 — v}),s0 A(U) = 1 — v. The step is complete.

STEP 3. We show that it is enough to consider the case where © = [0,1],
p=A, A is compact, satisfies (H) and is measurable for the algebra ®,_,%,,
where %, is the =-algebra generated by [0, ;[,[a;, 1] for some «; in [0,1]. The
reduction is done “one component at a time.” If A satisfies (H), is compact and is
measurable for ®;_,%,, where %, consists of all the Borel sets, we find a
compact subset B of [0,1]V ‘that satisfies (H), such that P(B) = P(A),
P(H(B, q, k)) < P(H(A, q, k)) and that B is measurable for ®;_,%/, where
B! = B, for i < N, while & is generated by [0, o[,[«,1] for some « in [0,1].
The proof will use the following elementary lemma.
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LEMMA 13. Let f, g be two measurable functions from [0,1] to [0,1]. Let
a = [fd\, b= [gd\. Then we find s, t, a in [0,1] such that f(s) < a < f(¢) and

a=af(s)+ 1 -a)f(t), ag(s) + (1 — a)g(t) < b.

Proor. Set
U= {se[0,1]; f(s) <a}, V={te[0,1]; f(¢) > a}.
Suppose that the conclusion fails. For s in U, ¢ in V, we have

8 =b b=
f(t)—a  a-f(s)’

so for some number ¢ we have

gt)-b_  b-as)
f(t) —a a—f(s)’

whenever s€ U, t€V, ie, g(x) — b=>c(f(x)— a) whenever x e UU V.
Also we must have g(x) > b whenever f(x)=a, so actually g(x)— b —
c(f(x) —a) 20 for all x. Since the integral of this function is 0, we have
8(x) — b=c(f(x) — a) ae. Since either AN(U) >0, M(V)>0 or AU) =0,
A(V) =0, this contradicts either (3.3) or the fact that g(x) > b when
f(x) = a. The proof is complete. O

(3.3)

For ¢ in [0, 1], we set
A, = {x e [0,1]1V7}; (x,¢) GA}.
Since A satisfies (H), so does A,. Also A, C A, for ¢ < u. We set
H(A,q,k),= {y€[0,11"7%; (5, t) € H(A,q, k)}.
For subsets D,, D, of [0,1]1V 1, we set
G(D,, D,,q,k) = {y e[0,1]" ' 34%,...,29 e D,,3x%€ D,,
card{i <N-1; 5 ¢ {x},...,x?}} < k}.
LEMMA 14. We have
H(A,q,k),=H(A,,q,k—1)UG(A, A, q,k).

In particular, H(A, q, k), depends only on A, and A,.

PROOF. Let (y, t) € H(A, q, k), By definition, there is x',..., x7 € A such
that

card{i <N;(y,t); & {x},...,x?}} <k.
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CasEl. t ¢ {xy,...,x%}. Then
card{i <SN-1; 5, ¢ {x,@,...,x?}} <k-1.
Since for I < g we have (x); . y_, € A,y C A}, we have y € H(A,,q, k — 1).

CASE 2. te€ {x},...,x%}, say t = x§. Then
y€E {y e[0,1]" %34, 2%€ A, x§=t,
card{i <N -1; v, & {x},..., 20} } <k} c G(A,, A, q, k).
We have shown that
H(A,q,k),c H(A,,q,k— 1) UG(A,, A,, q, k).
The reverse inclusion is obvious, and the lemma is proved. O

We set f(t) = AV"Y(A,), so a = [fd\ = P(A). We set
g(t) = AN_I(G(Al’ A, q, k) \H(Al, q, k- 1))’
so, if b = [gdA, we have by Lemma 14:

P(H(A,q,k)) = ['N*Y(H(A,q, k),) dt

=N"YH(A,q,k—1)) +b.

According to Lemma 13 there exist s, ¢, a in [0,1], s < ¢, such that a f(s) +
(1 - a)f(¢) = aand ag(s) + (1 — a)g(t) < b. Weset B = [0, a[ XA, U[a,1]1 X A,,
sowe have B, = A, for0 <u < aand B, = A, for « < u < 1. Since A, CcCA,B
is compact; since A, C A, and both A,, A, satisfy (H), so does B. Also

P(B) =aN""Y(A,) + (1 —a)AV"Y(A,) = af(s) + (1 — a)f(t) = a = P(A).
For 0 < u < a, we have, by Lemma 14,
H(B,q,k),=H(By,q,k—-1) U G(B,, B,,q, k)
CH(A,q,k—-1)UG(A,A,,q,k),

(3.4)

» AN"YH(B,q,k),) <A"YH(A,q, k—1)) ¥ g(s).

For « < u < 1, in a similar way we have
MW= (H(B, q,k),) < \N"Y(H(A;, g,k — 1)) + g(2).
It follows that
P(H(B,g, %)) = ['\Y"(H(B,q, k).) du

<NVYH(A;, g,k — 1)) + ag(s) + (1 — a)g(2)
<A-Y(H(A,q,k—1))+b
= P(H(A,q,k)).

This concludes this step.
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STEP 4. We reduce now the problem to the case where @ = {0,1}",

= ady, + (1 — @)d,, where a > 0 is small enough to satisfy ag <1 and 1 —
(1 — a)? > aq/2, and where A satisfies (H) (where the condition y € [0,1] is
replaced by y € {0,1}).

Consider a sequence («;);. n, 0 < @; < 1, and the measure @ = ®, N Oon
{0,1}", where 7, = a,8, + (1 — a,)8,. The result of Step 3 can be interpreted as
follows

To prove (*), it is enough to prove that

(8.5) Q(H(A,q,k)) 21~ (K((1/k)log(1/Q(4)) + 1/q))%,

whenever A C {0,1}" satisfies (H), and for any choice of the a,. The quantities
Q(A) and Q(H(A, g, k)) are continuous functions of the numbers a;; so it is
enough to prove (3.5) in the case where 1 — a; = (1 — a)™, for some n; € N, and
a > 0, a being small enough that ag < 1,1 — (1 — a)? > ag/2. Consider disjoint
sets (J)); . n» With card J; = n;, and let J =U,; . nJ;. We consider the map ¢
from {0,1} to {0,1}" given, for x in {0,1}Y, by ¢(x) = (inf;c 5 x,); . 5. If

= ad, + (1 — a)8, and P = p’, the condition 1 — a; = (1 — a)™ implies that
¢(P) = Q. Let B=¢"'(A), so P(B) = Q(A). Since ¢ is increasing when both
{0,1}? and {0,1}" are provided with the product order, we see that B satisfies
(H) since A does. To conclude, it is enough to show that ¢(H(B, g, k)) C
H(A, q, k) [so that Q(H(A, q, k)) > P(H(B, q, k))]. We first show that we have

H(A,q,k) = {ye {0,1}V;34,...,29€ A,
(3.6)
card{i < N; 3 < inf x) < k}.
l<gq
Indeed, the inclusion C is clear. For the other inclusion, take y € {0,1}" and
x,...,x7€ A with card{i < N; {y,< 1nf,<q x!} < k). Define 2! by z!=
max(x,, y,) for i< N, 1 < q, so that 2/ € A from (H), and card{i < N; y, &

’

{zt, .,2{}} < k so that y € H(A, q, k). Now let y in H(B, q, k); there exist
xh, xquand I c J, with card I < &, such that y, € {x},...,x7} fori ¢ L
LetL={isN; J NI+ @}, socardL<k.Fixi<Nwithi& L,soJ,NI=
2. Let j€dJ; with y; =inf,_;y, We have j & I, so ¥; = xP for some p < q.
So we have

o(¥)i=y =272 ¢(xP); 2 lilslfl‘ﬁ(xl)i'
This shows that
card{i < N; ¢(y); < lirs1£¢(x’)i} <card L <k.
Since ¢(x’) € A, (3.6) shows that ¢(y) € H(A, q, k). This concludes this step.

STEP 5. In this step, we are going to replace the problem by a simpler one;
while this is adequate to prove (*), there is no way by this method to solve
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exactly the underlying isoperimetric problem, i.e., to compute inf{ P(H(A, gq, k));
P(A) = a}.
Let @ = {0,1}, 0 < @ < 1, such that ag <1, ,B—l—(l—a)anq/z. Let
p=ad+ 1 - a), V—Bb‘ +@1-B), P=u", @ =»". For a set BC
{0, l}N, let

H(B,k) = H(B,1,k) = {0 € {0,1}";3x € B, card{i < N; w; < x,} < k}.

We show that to prove (*), it is enough to show that for any subset B of {0,1}",
we have

(% %) P(H(B, k)) =1 - ((K/q)((1/k)log(1/Q(B)) + 1))*.

Consider a set A C {0,1}" that satisfies (H). Let B = {(inf,_, x}); «,...,
x? € A}. Since A satisfies (H), (3.6) shows that H(B, k) = H(A, q, k). Also, if
we denote by ¢ the map from ({0,1}V)? to {0,1}" given by ¢(x',...,x9) =
(inf, _ qxf)i < n» We have B = ¢(A9). The relation between 8 and « shows that
(P9 = @, so Q(B) = (P(A))% Step 4 then shows that (*) follows from (* *).
It should be noted that it would be enough to prove (* *) when B moreover
satisfies (H); but condition (H) will not be useful in the rest of our proof.

STEP 6. Each element in {0,1}" is a sequence of 0’s and 1’s. We say that a
set B C {0,1}" is right-hereditary whenever it has the following property. If
x € B is a sequence where x,,.. X, p< N, are the coordinates equal to 0
(3, < -+ <i,)and when y € {0, l}N is a sequence where the coordinates equal
to O are y,,..., Yy J1 < *++ <Jy and when j; > iy,..., J, 2 i,,then y € B. In
this step, we reduce the proof of (* *) to the case where B is right-hereditary.

Let us fix 1 <s<¢<N. For x in {0,1}", we denote by X the element
obtained from x by exchanging the coordinates of rank s and ¢ For x in B, we
define T(x) =T, (x) as follows. We have T(x) = x, unless x, =0, x,=1,
X & B, in which case T(x) = x. We set T(B) = {T(x); x € B}. It is clear that T
is one to one; since T(x) has the same number of coordinates equal to 0 as x, we
have Q(T(B)) = Q(B). The essential point to prove is that

(3.7) P(H(T(B), k)) < P(H(B, k)).

Once (3.7) is proved, we conclude as follows. For a subset B of {0,1}", define
Z(B) = ¥, N, xe pix;- Clearly, Z(T(B)) < Z(B), and Z(T(B)) = Z(B) if and
only if B = T(B). We then apply transformations T, , to the original set B until
we obtain a set C for which Z(C) is as small as poss1ble We have Q(C) = Q(B),
P(H(C, k)) < P(H(B, k)) from (3.7), and we have T, (C) = C whenever 1 <
s < t < N. It is then very simple to see that C is rightxhereditary. For example,
one can show by induction over 2 that if x € C is a sequence such that
%;,...,%; arethe coordinates equalto 0 (i, < :-- <i,), and if y€ {0, 1YVisa
sequence ‘such that yj, ., y;, are the coordinates equal to0(j;< -+ < ]p),
and if j, > i,,..., J, 2 i, Z,Spjl i, < k, then y € C. We should also mention
that it does not seem to be true in general that P(H(T(B),q,k)) <
P(H(B, q, k)); this was the reason for transforming the problem in Step 5.
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To prove (3.7), we note that the transformation w — @ preserves P, and we
show that it maps H(T(B), k) \ H(B, k) into H(B, k) \ H(T(B), k). Let w €
H(T(B), k)\ H(B, k), so we have

(3.8) 3xe€ T(B), card{i<N;w;<zx;} <k,
(3.9) VyeB, card{i<N; w;<y}>k.

Since x € T(B), we have x = T(z) for some z in B. From (3.9) we have
x & B, so x = z. The definition of T shows that x, = 1, x, = 0. From (3.8) and
the fact that card{i < N; w; < z;} > &, we see by looking at all cases that we
must have w, = 1, w, = 0. We have

card{i < N; w; < x;} = card{i < N; w; < z;}.

This implies that @ € H(B, k). Suppose, if possible, that @ € H(T(B), k). Then
for some v € T(B), we have card{i < N; ®; <v;} <k. We have v € B, for
otherwise v = w for some w in B, and this would imply « € H(B, k). From
(3.9), we have card{i < N; w; < v;} > k. Since w, = 1, w, = 0, the only possible
case is v, = 0, v, = 1. Since v € T(B), we have v = T(w) for some w in B; the
only possibility is v = w, so T(v) = v; but this implies © € B, so card{i < N,
w; < 0;} < k, which contradicts w & H(B, k). The proof is complete.

STEP 7. We will prove (* *) when B is right-hereditar‘y by a direct computa-
tion. We set 6 = 24 + (4/k)log[1/Q(B)].

LEMMA 15. Forl > 1, let a, = 0kl/aq. Then there is x in B such that
(3.10) card{i < a;; x; = 0} > kl
whenever a; < N + 1.

Proor. We denote by [, the largest integer such that a, <N + 1 (if
a, > N + 1, there is nothmg to prove). Denote by B(M, 7) the number of

successes in a run of M Bernoulli trials with probability of success 7. It is enough
to show that

(3.11) 2 P(B([a,],B) < kl) < Q(B),

lSo

where [¢] is the integer part of £. We will use the following inequality, due to
Chernoff (see [10], pages 15-16). For 0 < £ < 1,

(3.12) P(B(M, ) < tM) < (( ) (1::) t)

We note that
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P(B(M, ) < tM) < exp(—tM(-} —1- log-;—)).

For x > 6, we have x — 1 — log x > x/2, so for 7/t > 6, we have
P(B(M, ) < tM) < exp(—TM/2).

We use this inequality with M = [a,], ¢ = kI/M, 7 = aq/2. Since aq < 1, we
have a; > 2, so [a,] = a,/2, so

T agM aqa, 6

- = > > —.
t 2kl 4kl 4
Since 0 > 24, we have 7/t > 6, so since ™M > aqa,/2, we have

P(B([a,],B) < k) < P(B([a,], aq/2) < k) < exp(—aqa,/4)
= exp(—kl6/4) < exp(—1(log(1/Q(B)) + 6k)),

which implies (3.11), and proves the lemma. O

The basic remark is now as follows. If w & H(B, k), then for some p < N we
have

(3.13) card{i < p; w; =0} > k + card{i < p, x; = 0}.
Indeed, suppose that « is such that (3.13) fails for all p < N. Denote by i, (resp.

Jp) the pth index for which x; = 0 (resp. w; = 0). Then, for each p such that i, is
defined, we have

cafd{isip;wi=0}<k+card{isip;xi=0}=k+p,

* which shows that j, ., > i,. Since B is right-hereditary, and x € B, we can find
y in B with y, = 0 whenever /> k. We can have w; <y, only when w; =0,
y;=1, so i has to be one of the indexes j, for I/ < k, and so card{i < N;
w; <y} <k, so w€ H(B, k). From (3.10) and (3.13) it follows that if w &
H(B, k), we have

Indeed, if p is as in (3.13), let m be the largest integer with a,, < p, and let
l=m+1(f m=1[,, weset a,= N; if a, > p, we set [ = 1). We have

card{i < a;; w; = 0} > card{i < p; w; = 0}
> k + card{i < p; x; = 0}
>k + card{i < am£ x;=0}
> k(m + 1) = kl.
This shows that
P(H(B,k)) =1~ Y P(B([a,],1 - a) <[a,] - kl).

I>1
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We again use (3.12); but now we note that

(%)t= (1 + T%t)ts exp(r — t) < exp(l — t),

(1 _ ’T) MQ1-t¢)
1-t¢ ) )
Using this with M =[a,], t =1 — kl/M, 7 = 1 — a, we have

P(B(M,7) <tM) < (e

eMa\ 9\ M
P(B([a,],1 - a) < [a,] - k1) < (-—f‘f) < (e—) .
kl q
Since for 0 < u <1, we have u/(1 — u) < 2u, this gives P(H(B,k))>1 —
2(ef/q)* =1 — (2e0/q)* and completes the proof. O

REMARK. At the expense of some complications, it is possible to improve the
computations of the last step [the idea now being to define a, = 6kl/(aq log q)
for a suitable 6]. In particular, in the case P(A) > }, the bound of Theorem 7
can be replaced by

(3.14) P,(H(A,q,k)) =1 - (K(% + ql;gq)) .

The gain of the factor log ¢ is irrelevant for the applications presented here or in
[10]. It should be noted that (3.14) is sharp, at least for 2 > ¢ log g (we have not
checked this for smaller %; note however that the values of 2 > g log g are those
used for our applications). Indeed, consider the case where £ = {0,1}, and
p({0}) =1 — r/N, p({1}) = r/N. Consider r > 1, and let

A= {x = (%)i<ns L % < r}.
i<N
Clearly,
H(A,q,k) = {x =(x)icns L X <TQH+ k}.
i<N
Now by elementary computations, for % of order rq log g, and N large enough

r N-rqg—k-1; p \rq+k+1 N

1 k
>l .
( Kqlog q )
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