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UNIFORM DIMENSION RESULTS FOR THE
BROWNIAN SHEET!

By T. S. MOUNTFORD

University of California, Los Angeles

We show that if 2N < d, then with probability 1 the Brownian sheet
W: RY — R satisfies V Borel set E, dim W(E) = 2dim E.

1. Uniform dimension results for the Brownian sheet. Let W: RY — R?
be a Brownian sheet. The Brownian sheet is a continuous process defined on RY,
where the finite-dimensional distributions are multivariate normal with means 0
and

N
E[W(t),W(s),] = S, ; z=l—l1 min(s;, ¢;)

with t(8) = (¢, ¢y, ..., tx)(Sy, Sz, - - -, Sy))- Orey and Pruitt (1973) proved:

1. Each fixed point in R is hit with probability 0 or 1, depending on whether
2N < d or 2N > d. This left open the question of whether every point of R?
was hit a.s. when 2N > d. Rosen (1981) proved:

2. If 2N > d, then as. Vx € R?,

dim{t: W(t) = x} = N — d/2.

In this paper, I wish to show that when 2N < d, another kind of dimensional
regularity holds.

THEOREM 1. Let W: R® > R? be a Brownian sheet, with 2N < d. With
probability 1 for each Borel set E ¢ R®, dim(W(E)) = 2dim(E).

CoMMENT. The Fourier analysis methods of Kahane (1968) show that for
any time set E, a.s. dim(W(E)) = 2dim(E).

Uniform dimension results were first obtained in Kaufman (1969) [see also
Hawkes and Pruitt (1974)].

We state without proof analogous results for the Ornstein—Uhlenbeck process
- on Wiener space and as an application we sketch a proof of the following
proposition.
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PROPOSITION 0. Let {O(:):s >0} be the Ornstein-Uhlenbeck process
on d-dimensional Wiener space. Let B be a set in R® of dimension B for
Beld—-4,d—2]. Then 4—d+ B is the supremum over a such that
P[dim{x € B:3(s, t) s.t. O(¢) = x} > a] > 0.

If d = 4, then P[dim{x € B: o0 (s, ¢) s.t. O(t) = x} = a] = 1.

The following result is contained in Theorem 2.2 of Orey and Pruitt (1973):
On every compact time set, W is a-Holder continuous V a < 3. Given this result,
it follows easily that

V Borel set E ¢ RY, dim(W(E)) < 2dim(E).

This gives us one side of the equality of our theorem; to complete the proof of
the theorem, we have to show the converse inequality.
We now give a sketch of the proof.

Heuristie. Kaufman (1969) proved his uniform dimension result for planar
Brownian motion by showing that a.s. on the time interval [0, 1], the time spent
by Brownian motion inside each square of R2% [i/2"/2 (i + 1)/2"/?) X
[j/2"%,(j + 1)/2"/?) is contained in the union of n* dyadic time intervals
[k/2" (k + 1)/2"). This is the tactic we follow. This method shows that a.s.
every set E in R satisfies

dim{W~Y(E)} < ! dim{E}.

By the regularity properties of the Brownian sheet to prove Theorem 1 it will be
sufficient to show the following theorem.

THEOREM 2. Let W be a Brownian sheet from RY to R®. With probability 1,
every Borel set E in [0,1]? satisfies

dim{ WY E) n [1,2]"} < +dim{E}.

Throughout this paper it will be a guiding principle that powers (rather than
exponents) of n are irrelevant and that we may scatter them about quite
liberally.

TerMINOLOGY. We will refer to squares or cubes of the form [i/2",
(i + 1)/2"] X [i/2", (i + 1)/2"] as dyadic squares of order n or dyadic cubes of
order n. '

As in Kaufman (1969), Theorem 2 will follow if we can show that when rn is
sufficiently large, every dyadic cube of order n/2, I, (W~%I)} N [1,2]" can be
covered by n” dyadic cubes of order n. Often we will treat large numbers as if
they are integers (e.g., V6n2"). It will hopefully be clear that this is merely a
device to simplify notation.
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2. Plan of the paper. First, I prove the result for the case N = 2, d = 5,
then I make the suitable modifications to deal with the case N =2, d = 4;
finally, I illustrate how the proof in this case can be made to deal with the
general case. The Brownian sheet in question is really the product of d indepen-
dent coordinate processes. Accordingly, it is only necessary to deal with the case
2N = d. In particular, each of the first two cases is rendered obsolete by the
succeeding case. Nonetheless, I hope that this plan will make the ideas involved
more plain.

CAsE 1. N=2, d=5. Using the results of Orey and Pruitt (1973) or
Fukishima (1984), we can and will assume that for all (s, £) € [1,2]% and A small
enough,

(%) |W(s,t) — W(s,t+ h)| <6hlogl/h.

We now consider a five-dimensional Brownian motion {B(f):¢> 0} and

define the random variable

A= [! a

(max{|B(2)], nP2—n/2})5—2 .

NoTE. A depends tacitly on the as yet unspecified parameter p.
LEMMA 1. There exists a positive constant C such that E[eCAr" /2] < 2.

ProoF. The expectation of A is less than

C’ 1 7 n 1 C’
[ g — L S -
0 t (n”2_"/2) 0 (np2—n/2) cn2p/ont

< K2"?pP,
for some C’, ¢/, K.
It is easy to see that for s < ¢,

1 93n/2 C 93n/2
E mln{l—B(—t)l—g,F} B(u)OSu_Ss snnn{lt_s|3/2, 3P }
and so
1 c 1
n 1 R
E[A"] < n.fomm{ e (nP2""/2)3} dt,
. c 1
X min , dt, ---
. ‘[tl {ltz - 4> (n"2""/2)3} 2
1 . C 1
X min , at,
'£n—1 { Itn - tn—ll'g/2 (n"2‘"/2)3}

< Cn!(E[A])".
By using the expansion for the exponential function, we obtain the result. O



THE BROWNIAN SHEET 1457

COROLLARY 1. Define the random variable

2 dt
Ae) = [ —.
1 (max{|W(1, t) — W(1,1)|, n?2""/%})
This variable satisfies

E[eCan /7] < 9.
ProoF. The process {W(1 + ¢,1) — W(1,1): ¢t > 0} is a Brownian motion. O

COROLLARY 2. Define the variable A, , to be
s ;
1 (max{|W(s, t) — W(s,1)], n"2'”/2})3

Then P[sup, ,, A, , > 2"/?n97P] < e~ ",

ProoF. By Fubini’s theorem, the process {A, ,: s > 1} is a positive super-
martingale; the result follows. O

Let us extend the definition of A by defining

A (o) /2 dt
r,s 1 (max{lW(S, t) _ W(s, r)l’ npz—n/z})a .

The following corollary is immediate.

COROLLARY 3. For fixed rin [1,2],

P[supA,,s >2.2"2p97P| < 2e7C,
s>1

By our assumption (*), |r — v| < 27" implies |W(s, v) — W(s, r)| <2~ "*/6n .
If p is greater than }, then for large n

max{|W(s, t) — W(s, r)|, n?27"/2}
> max{|W(s, t) — W(s,v)| — 27"/%/6n, nP27"/2}
> 1 max{|W(s, t) — W(s, v)|, nP2""/%}
and so if p is greater than } and for eachv =1+i/2", A, , < 2"/2n97P, then
A < 2"2n97P(2)3

From this we deduce the following proposition.

ProPOSITION 1. Forp > 3,

P| sup A, >2-2%2"2p97P| <2.2m%" 0
s>1,refl,2]

This probability will be very small if q is greater than 1.
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Fix a dyadic cube of order n in [0,1]%, I, centered at x. Consider the process
g _ f2 dr
Y (max{|W(s, r) — x|, np2‘”})3 '

The integral of a bounded supermartingale is also a supermartingale and so
{&x, s: s = 1} is a supermartingale.

Suppose that for some (s, t), W(s, t) € 1. Recall (*); this assumption ensures
that for A sufficiently small

|W(s,t+ h) — x| < 6hlog(l/h) +5-27"

and consequently g, , > n~3/22"/% if n is sufficiently large. We now choose our
values of p (to fully define A, ;) and g to be 2.5 + ¢ and 1 + ¢/2, respectively.
We know that for n large enough A, ,2"/2n~©@/2+</2 We shall in the following
assume that this is so. If W(s, ¢) € I, then’

Elg. v nrdF,] < 24,, < 2 27 n-0/2%/),
where F, is the o-field generated by {W(r,t): r < s}. If we define successive
stopping times
T, = inf{s > 1: W(s, t) € I for some t € [1,2]},
T,,, = inf{s > T, + n®*227": W(s, t) € I for some ¢ € [1,2]},
then Vi by the supermartingale property of g, ,
n‘3/22"/“’P[Ti+1 < 2|FT‘,] <2-27%p~G/2%9

or

P[T;,, <2|Fp| < Kn™*/.
This easily yields

P[T,,, < 2] < Kn™/3.

So outside of a set of probability 2"?n~"¢/3, ¥ n/2 order dyadic cube in [0, 1]%I,
the set {s: W(s, t) € I for some ¢ € [1,2]} is contained in a set of 2n5*2¢ dyadic
intervals of order n. By symmetry the same is true of the set {¢: W(s, t) € I for
some s € [1,2]}. Therefore taking the most liberal of estimates we conclude by
the Borel-Cantelli lemma that eventually every n/2 order dyadic cube in
[0,1]¢1, the set {(s,t): W(s, t) € I} is contained in a set of 4n!?**¢ dyadic
squares of order n. This completes the proof of Theorem 2 in the case N = 2,
d=>5.

CasE 2. N=2, d=4. We now treat the case d = 4. First consider the
random variable

A=fl - ! 5 dt.
o (max{2"n?, |B(t)?})
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Some messy but elementary calculations show that
. 1, (C 2 cnes2n 27 1 C
E[ A] is of the order j(;‘mm{7,;l—;}dt= fo -;;dt+ /;:np/zn_dt
= C(log, 2)n + O(log(n)). -

So E[ A] s of order n. Otherwise the arguments of Section 1 can be used to show
the following proposition.

PROPOSITION 2. Define the random variable

aior= [ dt
r.e 1 (max{|W(s, ) - W(s, r),27"/2})"

Then for arbitrary fixed e > 0, outside a set with probability majorized by
Kn4re """,

sup A, ,<n?*
(r,9)€1,2P?
Therefore by the first Borel-Cantelli lemma we can deduce that for all n large
enough

2+
sup A, ,<n""c
(r,9)e1,2P

The major problem in extending Theorem 2 to N = 2, d = 4, is that for a
. fixed dyadic cube I of center x, the event W(s, t) € I cannot guarantee that

) - fz dr
8x,s 1 (max{|x — W(s, r)|,2—n/2})2

is of greater order than n. Indeed it does not (easily) imply that g, , is of order
n. In the succeeding paragraphs assumption (*) will be in force.

LEMMA 2. Fix dyadic cube I of order n/2, with center x. Assume 3t € [1,2]
with W(s, t) € I and that

sup A, , <n®*e

refl,2]
Define the random variable
N, = #{dyadic intervals D, of order nin [s,2] s.t. W(s’,t) € I
for some (s’,t) € D x [1,2]}.

There exists a constant C such that E[ N,|F,] < Cn*5™=,
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REcALL. F, denotes the o-field generated by {W(u, v): u < s}.

In particular if ¢ is sufficiently small
P[N, > n®] < ¢/n'?,

for some c.

Proor or LEMMA 2. Divide up the time interval [1, 2] of coordinate ¢ into
v6n 2" intervals of equal length, J), o;,..., J Jonone By assumption for each J,
we may choose an element ¢t; (€ J;) such that

> e
i=1 (max{|x — W(s, t,)|,27"/%})
Define the random variable
N, , = #{dyadic intervals D, of order n in [s,2] s.t. W(s',¢) € I
for some (s’,¢t) € D X J;}.

< 2-2%6nn%te.

Let us now expand I about x by a factor of 2 to obtain a new cube I’. If for some
tedJ, W(r,t) € I, then by assumption (*) we must have W(r,t,) € I'. It
follows that N, is < the number the dyadic intervals containing s’ such that
W(s’, t;) € I'. But this has expected value < C min(1,27"/|W(s, ¢;) — x|?) for
some constant C. We deduce that

E[N,] < Ymin{C27"/|W(s, t;) — x|%,1} < CYénn®*=. O

We define the variable
N, , = t{dyadic intervals D, of order n in [s, r] s.t. W(s’,t) € I
for some (s’,t) € D x [1,2]}.
Define successively the stopping times
T, =inf{1+i/2">1: W(s,t) €l
for some (s, t) € [1 + (i — 1)/2",1 + i/2"] x [1,2]}
and for i greater than 1, :
T. = inf{s >T,_;:Np_ > n3}.
We know that for n sufficiently large,

2+¢
sup A, <n""e
(s, r)€[1,2]?

So throughout the following we shall assume that this is the case and so if ¢ is
sufficiently small,

Vi, P[T;<2|Fp_]|<en 2

Therefore if we define N, to be the number of dyadic intervals D of order n in
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[1,2] such that W(s, ¢t) € I for some (s, t) € D X [1,2], then
P[N,> n*] < P[T, < 2] < (en™'/3)""".

This implies (as in Section 1) that outside a set of probability 2(cn=/3)""1 the
time spent in I is covered by n* X n* dyadic squares. Now there are 2"/2 X
2n/2 x 2n/2 x 2"/2 dyadic cubes of order n/2 in [0, 1]*; therefore the chance that
there is a dyadic cube of order n/2, J, such that the time spent in J by
{(W(s, t): (s, t) € [1,2]?} cannot be covered by n® dyadic cubes of order n, is less
than

22"(cn‘1/3)n_1.

Since these terms are summable in 7 we can invoke the Borel-Cantelli lemma
to complete the proof.

3. In extending the proof of Section 2 to the general case 2N = d. We note
that the argument goes through essentially as before once we have shown that
the random variable

1

A= dt
1,21V max{lW(t) — W(l)d_z,(2‘")(d_2)/2}

satisfies E[ A"] < r!(mn)” for some constant m not depending on n. But this we
can do by using the inequalities of Rosen (1981). These show that given n — 1
time points {t,, £5,..., t,_;} in [1,2]¥"! the conditional distribution of W(¢,)
given the values of W at the other ¢,_, is Gaussian with componentwise
variance greater than

min{ec|t, — ]l <i<n-—1}.
This allows us to conclude that
E[A"] < r!(emn)’,

where m is

ds.

1 1
sup — -
teq1, 2]V n [1’2]N—lmax{|t _ sld—2’ (2—n)(d 2)/2}

4. An application. Using essentially the same arguments as in the first two
sections, we can prove the following theorem.

THEOREM 3. Let {O(:): s > 0} be an Ornstein—Uhlenbeck process on d-
dimensional Wiener space. If d is greater than or equal to 4, then a.s.
V Borel sets E in R%2, dim{O,(¢):(s,t) € E} = 2dim E.

Using this and ideas from Hawkes (1971), we can easily deduce the following
proposition.



1462 T. S. MOUNTFORD

PROPOSITION 3. Let B be a Borel set in R® with dimension equal to
B € [d — 4,d — 2]. Then the supremum of the a such that

dim{x: x € B, x = O,(t) for some (s,t)}>a
with positive probability, is equal to 4 — d + B.
If d = 4, then with probability 1,
dim{x: x € B, x = O,(t) for some (s,t)} =4 —d + B.
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