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MARKOV PROPERTIES FOR POINT PROCESSES ON
THE PLANE

BY ELY MERZBACH AND DAVID NUALART!
Bar-Ilan University and Universitat de Barcelona

It is proved that for a wide class of point processes indexed by the positive
quadrant of the plane, and for a class of compact sets in this quadrant, the
germ o-field is equal to the o-field generated by the values of the process on
the set. Therefore, there exists a large family of point processes in the plane
(and among them the spatial Poisson process) which satisfy the sharp
Markov property in the sense of P. Lévy. The strong Markov property with
respect to stopping lines is also studied. Some examples are obtained by
taking transformations of the probability measure.

0. Introduction. The problem of finding a good definition for a two-param-
eter (a multiparameter) stochastic process to be a Markov process has produced
an important bibliography. In fact, the story began in 1948, when P. Lévy
defined the Markov property in the following most natural way: We say that the
process {X,, z € R%} has the sharp Markov property with respect to A if the
o-fields o{X,, z € A} and o{X,, z € A°} are conditionally independent given
o{X,, z € dA}. Lévy concluded by asking the following question: Do there exist
nondegenerate two-parameter processes with the sharp Markov property with
respect to a sufficiently large class of sets [9]? In 1976, J. B. Walsh showed that
the Brownian sheet does not satisfy the sharp Markov property in the sense of
Lévy even with respect to triangles ([19]; see also [23] for some generalizations).
To obtain a broader class of processes with a Markov property, several other
definitions were proposed. A weaker definition, called the “germ-field Markov
property” was introduced by McKean [10] and Pitt [14] and was studied in
the Gaussian case by several authors [1, 4, 7, 8, 16, 20]. In this definition, the
o-field o{ X,, z € dA} is replaced by the larger germ o-field of the boundary of
A, that is, by N, . 0{X,, d(2, A) < &}. Another type of definition was introduced
by Nualart and Sanz [13], Guyon and Prum [6] and generalized by Korezlioglu,
Lefort and Mazziotto [8]. However, in these definitions, the partial order induced
by the cartesian coordinates plays a very important role and in the present paper
we will not discuss them.

The last and most recent definition was proposed by Wong and Zakai in [22]
and concerns processes parameterized by smooth curves in R2 . Let y denote a
continuous finite nondecreasing or nonincreasing path and let A(y) and B(y)
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denote, respectively, the vertical and horizontal shadow of y. Let {X,} be an
integrator process and set X, = (X(A(7)), X(B(7))). X will be called y-Markov
if for every connected open set O with piecewise monotone boundary, 5, and
M, are conditionally independent given ¢, where 5, is the o-algebra
generated by X, where y runs over all the continuous paths which are either
nonincreasing or nondecreasmg and belong to O.

Most of the papers on Markov random fields deal with the Gaussian case; the
literature on the Markov property for point processes is very limited.

The first paper in this direction is a work of Carnal [4] (assembled by J. B.
Walsh in 1980 after the death of Carnal), in which it is proved that the Poisson
sheet satisfies the sharp Markov property relative to all bounded open relatively
convex sets, and this property fails to be true for general unbounded open
relatively convex sets. Moreover, quoting him: “We conjecture that the restric-
tion to relatively convex sets is unnecessary, but our methods become cumber-
some when the sets become complex.” The next step was made by Russo [17],
who extended the Carnal result in the following sense. Every two-parameter
point process with independent increments satisfies the sharp Markov property
relative to any finite union of rectangles whose sides are parallel to the axes.

In this paper we extend this result for point processes to a wide class € of
compact sets. This extension of the Markov property for the Poisson process is
based on a detailed analysis of the germ o-field of a class of point processes. In
particular, we show that for a set A of this class ¥ and for an appropriate point
process N = {N,, z € R%}, the o-field #, = o{N,, z € A} is equal to the germ
o-field 9, =N, (%, where A, = {z: d(z, A) < e} This class of sets contains
the sets whlch are the boundary of an open and bounded set and which can be
represented as a finite union of connected nonincreasing and nondecreasing
curves.

The notion of Markov property with respect to nonincreasing or nondecreas-
ing curves leads directly to the notion of a strong Markov process. This kind of
property was first introduced for random fields by Evstigneev [5], but for a
different kind of o-field. In [22], Wong and Zakai conclude their work by defining
the strong Markov property. Here, we prove that every strictly simple Markov
point process whose intensity is absolutely continuous with respect to the
Lebesgue measure, possesses the strong and sharp Markov property relative to
all the bounded stopping lines. For optional increasing paths, the same results
hold if the two sides of the optional increasing path are connected to one of the
axes.

Before starting, let us mention that Markov point processes were studied by
other authors (see for example [15]), but from a completely different point of
view. The Markov property is defined there by considering the behavior of the
process on the neighborhood of a single point.

Only the case of the plane will be considered in this paper, but clearly the
same arguments hold for the R ™-case.

In the next section we introduce all the tools and definitions related to a point
process that will be needed later and the geometric structure of our classes of
sets in the plane. Since we define general classes of sets, some theorems of
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measurability are needed, and therefore the selection theorem and a separability
result are stated here. The main theorem is proved in Section 2. It gives
sufficient conditions on sets and processes such that the germ o-field is equal to
the o-field generated by the values of the process on the set. The main idea in
proving this result is that the probability that there is a jump point on a
deterministic set of measure zero, or even near to such a set, is very close to zero
and therefore if we know the behavior of the point process on this set, we can
find out the behavior of the process in any neighborhood of the set. Examples of
sharp Markov processes are given in this section and different kinds of sets which
satisfy the theorem are presented. Also, some counterexamples are mentioned,
showing that our assumptions cannot be weakened.

Section 3 is devoted to the strong Markov property, that is the sharp Markov
property relative to measurable and adapted random sets. We begin this section
with a discussion of the different ways to define the o-field associated with a
measurable random set. The definition proposed here seems to be natural in the
sense that it generalizes the case of a deterministic set. The main result is proved
for bounded stopping lines, but it seems that this can be extended to more
general bounded random sets.

In the last section, we consider transformations of probability measures via
multiplicative functionals under which the Markov property is preserved. This
section is similar to Section 3 of Wong and Zakai [22], and permits us to obtain
many examples of Markov point processes which are transformations of the
Poisson sheet.

1. Notation and preliminaries. The processes are indexed by points of
R?2 , in which the partial order induced by the Cartesian coordinates is defined:
Let z=(s,t) and 2’ = (s’,t'). Then z <z’ if s<s"and t< ¢, and z < 2’ if
s<s'and t < ?.

Consider a random measure N on R? , defined on some complete probability
space (2, %, P), and such that for every w € @, N(w) is a finite or countable
sum of Dirac measures on random and different points Z(w), i = 0,1,... . We
also assume that the measure of the axes is zero and N([0, z]) < oo for any z in
R2. Such a random measure defines a point process on the plane given by
N, = N([0, z]) (see [11] for a detailed study of point processes in the plane).
Since N, is an increasing process, it has limits in the four quadrants @} "=
(z:2<2'}, Q" ={2'=(s,t): ' <s, t<t'},Q; ={2: 2 <z}and Q} =
{z/ = (s/,t'): s <s, t' <t}. We denote these limits by N,"*, N, *, N~ and
N, 7, respectively, and we suppose that the process N is right-continuous:
N,=N".

We fix z, = (s, t;). We are going to introduce a new point process N= on
[0, z,). Let S,,...,S, be the jump points of the one-parameter process
{N*7(s, ty), 0 < s < s,} and in the same way, we denote by T},..., T, the jump
points of the one-parameter process {N~*(s,, ¢), 0 < t < t,}. Then we define

n m n
(1.1) N# = Z Z 8(si,Tj)~
i=1j=1
Note that N is a point process on [0, z,) such that N# > N.
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Suppose that the original process N is strictly simple, that is, P{two jump
points of N have the same first or second coordinate} = 0. In that case, n =
and N? can also be defined by

(12) N#(s, t) = N([0, s] x [0, £))N([0, ) x [0, £]).

DEFINITION 1.1. Let & be the class of Borel subsets A in R2 such that
N%(A) =0 foranyz, € R?%,

where N? is the point process defined by (1.1). The class & clearly depends on
the point process N.

In particular, we will consider the family & of finite sets or the family of sets
having zero Lebesgue measure.

Suppose that E(N([0, z])) < oo for any z in R2 . Then we can introduce the
intensity measure p of N, given by p(A) = E( N(A)) The measure p is a Radon
measure on R%. Let {i* be the intensity measure of N=. Then the family &
contains the class of sets of [i0 zero measure. If (i is absolutely continuous with
respect to the Lebesgue measure for any z, in R%, then & contains the sets of
zero Lebesgue measure.

PROPOSITION 1.2. Suppose that the intensity measure p is absolutely contin-
uous with respect to a product measure p, X p, and N is strictly simple. Then &
contains the sets A such that (pu, X py)(A) =

ProoF. Let A C R2 be a Borel set such that (p; X py)(A) = 0. Then using
(1.2) we have

N=(A) = /[0 z )IA(s, t)N(ds x [0, £,))N([0, s) X dt)
and

E o, )IA(sy t)N(dS X [Oa to)) = E(N(At X [Oa tO))) = H‘(At X [O’ tO)) =0
for all te[0,t,), pyas, where A, = {s€[0,s): (s,t) € A}. Therefore,
f[o sola(s, H)N(ds X [0, ¢,)) =0 as, for all t € [0, t,), po-a.s. and this implies

N#(A) = 0. O

Consider, for instance, the case of a Poisson process (cf. [11]). Then p is the
Lebesgue measure and fi* is the Lebesgue measure multiplied by the factor
1 + syt,. In fact, we know that the Poisson process is strictly simple, and using
the expression (1.2) we get E(NZO(s t)) = E(N((O, s) X [0, ty))N(O, sq) X
[0, £))) = st(1 + syt,). Consequently, in this case the class & contains all the sets
of zero Lebesgue measure, by Proposition 1.2.

We denote by N* the point process on R% whose support is the set of points
z = (s, t) such that N[([0, s] X {t}) U ({s} X [0, £])] > 0. Note that the support
of N* includes the jump points of N but it may be larger. In fact, if we denote
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by {L;} the stopping lines which are the boundaries of the sets {N, > n} as
defined in [11], then the jump points of N* are the minimal points of {L/,}. Also,
we have N < N* < N on [0, 2,), for any z, € R2 .

For any set A C R2 we introduce the following subsets of A where B(z) =
{21 d(z,2") <¢):

1. We denote by H; (A) the set of points z = (s, t) € A such that there exists
e > 0 verifying ([0,s) X R,) N A N B(z) = .

2. We denote by H; (A) the set of points z = (s, t) € A such that there exists
e > 0 verifying (R X[0,t)) N A N B(z) = &.

Set H(A) = H{ (A) U Hy (A).

3. We denote by H;"(A) the set of points z = (s, ) € A such that there exists
e > 0 verifying ((s, +0) X R,) N AN B(z) = &.

4. We denote by Hy (A) the set of points z = (s, t) € A such that there exists
€ > 0 verifying (R, X(¢, +®0)) N A N B(z) = @.

5. Let G(A) be the set of points z = (s, ) € A such that for any ¢ > 0 we have

([0,s) X [¢t,0))NANB(z) * @
and
([s,0) x[0,)) NANB(z) # 2.

6. Let F(A) be the set of points z = (s, t) € A, z & G(A) such that for any
¢ > 0 we have

[0,z)NnANnB(2)+ 2.
Then A = H(A) U G(A) U F(A) is a partition of the set A.

DEFINITION 1.3. We denote by % the class of compact sets A € R% verify-
ing the following three conditions:

(i) H7 (A) N H; (A) is finite.
(ii) For any z = (s, t) € F(A), there exists s’ > s (or ¢ > t) such that (s, t) €
G(A) U F(A) [or (s, t) € G(A) U F(A)].
(iii) The sets m(H; (A) U H{'(A)) and my(H;(A) U Hy(A)) are countable,
where ;( ) and m,( ) are the respective projections on the axes.

Let A be a set of the class ¥. We will need the following countable and dense
subset A, of A.Let A, be an arbitrary countable and dense subset of A. For any
s € m(H; (A) U H'(A)) we take a countable and dense subset Ay(s) of the
section A(s) in such a way that any point of A(s) can be approximated from
above by points of Ay(s). In the same way, for any ¢ € m(H, (A) U Hy (A)) we
take a countable and dense subset A(t) of the section A(?) in such a way that
any point of A(¢) can be approximated from the right by points of A(¢). Then
A, will be the union of A, and the set of points {s} X A(s), Ay(¢) X {¢} for all
s € m(H(A) U H(A)) and ¢t € m(H; (A) U H; (A)), respectively.
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For any Borel subset A of R2 we denote by #, the o-field generated by the
random variables {N,, z € A} and the null sets of Q. The germ o-field of A is
then defined by 9, =N,. (%, , where A, represents the e-neighborhood of A.

In the next section we will need the fact that the process N, restricted to a
given compact set A C R2 would be separable. In this sense the next result will
be useful.

PROPOSITION 1.4. Let A be a compact set belonging to ¢ and such that
N(A) =0 a.s. Then the process {N,, z € A}, defined in the probability space
(R, #,, P), is separable and admits A, as a separating set.

Proor. Let z = (s, t) € A. We are going to consider several cases:

(i) Assume that for any e > 0, A, N B(z) N[z, + 00) # &. In that case, N,
can be determined from the values of N on the points of A, N [z, 00).

(ii) If z belongs to H;"(A) or H; (A), it can be approx1mated from the right or
from above by points of A, by the definition of A,.

(iii) Suppose z & H;t'(A) U Hf (A) and Ay N Bs(z) N [2,00) = & for some
8 > 0. Then for any 0 < & < §, we have

A,N B(z) N ([0,5) X (¢, +)) + @
and
A,NnB(2) N ((s,+0)N[0,8)# 2.
In this case we have
N,=max| lim N,, lim N,
2'€A, 2’€A,
2’eqQ;” 2eqQ;*

because N({z}) = 0 a.s. O

DEFINITION 1.5. A mapping «w — A(w) from a complete probability space
(2, #, P) into the Borel sets of R2 will be called 2 measurable random set if
(UN A # @) €% for any open subset U of R2.

We have the following result [18], that will be necessary in the next section.

PROPOSITION 1.6. Suppose A is a closed-valued measurable random set.
There exists a sequence of random variables {Z,, n > 1} valued in R% such that
Z,€ A, a.s. foralln, and {Z,, n > 1} is a dense subset of A, a.s.

2. The germ o-field and the sharp Markov property. Let {N,, z € R2}
be a point process on R2 . We introduce the following hypothesis.

(H) For any z, = (s, ¢,), the one-parameter point processes { N(s, t,), 0 < s}
and {N(sy, t), t > 0} have no fixed point of discontinuity.
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Recall that & and € are the families of sets given by Definitions 1.1 and 1.3,
respectively.
Now we can state the main result of this section.

THEOREM 2.1. Let N be a point process on R% satisfying hypothesis (H).
Then for any A € § N € we have F, = 9,.

Proor. We fix a compact set A € &N € and suppose that A C [0, zo) We
denote by # the support of the point process N* on [0, z,), and by % the
support of N%. We define a random set #c [0, z,) as follows. For any point
z=(s,t) € ZU {(0,0)} we consider the horizontal segment [s, s,) X {¢} and
the vertical segment {s} X [, £,), and by definition .# will be the union of these
segments. In other words, .# is the union of the axes and the stopping lines
associated with the point process N on [0, z,). Note that on each connected
component of [0, z,) — &, the process N is constant, and its value is determined
by the value of N on the lower boundary of this component.

Define the distances

8, =d(H{ (A) N H;(A), 2)
and
8, =d(A, %).

The fact that A € & implies that 8, > 0 a.s. and condition (i) in the definition of
% and hypothesis (H) imply 8, > 0 as. Set § = min(8,,4,). & is a strictly
positive random variable.

We are going to construct a countable covering of @ by sets {H,, ,, m, k > 1},
such that on each H,, , the o-fields %, and ¢, have the same trace. In order to
show this property we will find, for any fixed m and %k and w € H,, ,,
countable covering A c U¥_,B™ k(w) by random sets verifying the followmg
properties:

(i) For some ¢ > 0, A, c U, B/ *(w), for all w € H,, ,
(i) B™*isa measurable set in the space (H,, 1, #aly, ,» P)-
(iii) B"‘ Fw)ynAy,+ 2. ’
@iv) N 18 constant on each B™ B w).
v) BmHw)nd= 2.

Properties (i)-(v) imply that #,|, =%, |y, , and, consequently, %,|y .
%aln,, ,- In fact, we have to show that {N l} N H,, , belongs to F4|y
any fixed 2 in A,. We have

H,,n{N,=1)= G U ({(N=1n{¢eB"*} n{zeB™* nH,,)
Jj=1%€4A,

which belongs to #,|y , because B™* is a measurable set in the space
( m, k> & Ale » p )
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Consider first the set H, = {§ > 1/k} and denote by %} the trace of the
o-field %, on this set. Define
A=A - U Bl/k(z)’
z€H[ (A)NH; (A)
which is a compact subset of A.

We denote by £ the union of the horizontal components of % and by %,
the union of the vertical ones. We claim that:

(I) ANy and A’'N.Z, are random measurable compact sets in
(H,, #4, P). Note that on H, = {8 > 1/k} we have A’ N L= (A'NZ,) U
(A"NZy)and (A" NFYy) N (A NYLy) = &, because §, = d(A, %) > 1/k.

Proor oF cLaIM (I). In order to show (I) we have to prove that

(2.1) HnNn{UnA NS+ 3} eFf
and
(2.2) Hn{UnA NP, + 3} €Fft,

for any open subset U of [0, z,).

We are going to show (2.1), and the proof of (2.2) would be similar. Without
any loss of generality we may assume that U is a ball of radius r < 1/k centered
at some point ¢ of A’

We introduce the sets

F,={UnAn[(H (A)-H;(A)uGA)] ng,+ ),
F,={UnANFA) NS+ o}
and
M = {3a>1suchthatV n > 1, there exist 2, = (s, ¢,), 2, = (s, 8,),
Sy 28, t,<t,suchthat 2,2z, € AN U, |z, — 2,| < 1/n,
|2, — & <r—1/a,|z,— & <r—1/aand N, > N, }.
Hypothesis (H) and property (iii) of ¢ imply that
(Hy (A)—H (A)NZy=a as.
Consequently, we have
HN{UNANS;+ 2} =(H,NnF)U(H,NF,).
We have
(2.3) F,NnH,c MnH,.

In fact, suppose first that there exists some point 2 € UN A’ N [H; (A) —
H; (A)] N &y. Then z can be approximated from above by points of A, because
z € H{ (A); also it can be approximated in @}~ by points of A,. Therefore
zeM.If ze Un A’ N G(A) N Fy, again the fact that z € G(A) implies that
2z can be approximated in @~ and @, * by points of A,. This shows (2.3).
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We claim that
(2.4) MNnH,c{UNANPy+ B} N H,.

Indeed, on H, " M we have U N A N ¥y, + &, and we know that (A — A") N
#y = 9 on H,. So (2.4) is true. Now we can write

HnNn{UUANS+#2}=(MnH,)U(M°NF,nH,).

Clearly M N H, belongs to #}*. So, it remains to show that F, N H, belongs to
35"4 k
We can write

H,NF,={w:3m=>2,32,1<n<msuch that z,...,z,_, € F(A),
z,€ F(A) UG(A), 2,€UNA, 2z, and z,,, have one coor-
(2.5) d1nate in common for all n, N, > N“, 1<n<m, and
finally, N, = N, " if 2z, € F(A) and Sm=Sm-1, N, =N, *
if z,, EG(A)ands = Sp_p Or N, >N+‘ if 2z, € G(A)and
tm = m 1} N Hk
Let Fy N H, be the right-hand side of (2.5). First note that Fy N H, c F, N H,.
Indeed N, > N, - implies that z, €% for 1 <n <m. Furthermore
LyNLynA=Z on(s>1/k). Then N, >N;” and s,,_ » imply that
2 €LYy Zm_1 E.,SPH, and, therefore z, GZH for l<n< m On the other
hand N, =N, " and ¢, . imply that 2, €%y, 80 2, | €%, and we
have agam that 2, EQH for 1 <n<m. F1nally, N, =N, " for 2, € F(A)
and s, also imply that z,, & .%,. Conversely, suppose Sthat z€ U N A’
N F(A) N Z Applymg condltlon (ii) of the definition of the class € we can find
a finite sequence z,,..., 2, such that z, =z, z2,,...,2,_, belong to F(A),
2, €%y forl <n<m,and z,, verifies one of the following conditions:

z,€F(A), s,=s,, and N, =N, ",
z,€G(A), s,=s,, and N, =N, *,
z,€G(A), t,=t,, and N, >N~

If none of these possibilities happens to be true for z,,, we have necessarily that
2, € F(A) and N, > N, . It is not possible to have an infinite sequence of
points z,, € F(A) verifying N, “> N, . So we must stop at some instant and
this shows that Fy N H, > F, N H,.

We can finally show that Fy N H, € £/} by expressing the set Fy in terms of
the values of the process N, on points z € A, by means of Proposition 1.4. Note
that for z € F(A), N~ is #,-measurable and for z € G(A), N;'~ and N, * are
#,-measurable.

(IT) By the selection theorem (Proposition 1.6), the measurability of the sets
A’ NZ, in the space (H,, %}, P) implies the existence of two sequences of
random variables in this space: {X,, n > 1}, {Y,, n > 1} such that X, € A’ n
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Ly, Y, €A’ NZ, as. and the sets {X,, n > 1} and {Y,, n > 1} are dense a.s.
in A’ N%y; and A’ N ¥#,, respectively.

Consider the balls B, ,.(X,,), B, 2;(Y,). Now we are going to introduce a first
family of open sets which will satisfy conditions (ii)-(v) (with H, replacing
ILmk)

Let %, be the family of the following sets:

The balls B, ,,(2), 2 € H (A) N Hy (A), and the sets

By X = B1/2k(Xn) n {(3’ t):t< Xf}’ By X = B, /3x(X,) N {(3’ B):t> Xr?}’
By = Bl/2k(Yn) n {(3: t):s < Ynl}: By X = Bl/2k(Yn) N {(s, t): s = Ynl}

verify properties (ii)—(iv):

If z € H (A) N H; (A) and @ € H,, the ball B, ,,,(2) has an empty intersec-
tion with %, because 8§, > 1/k. Consequently, N is constant on each of these
balls. On the other hand, they are deterministic and intersect A,. For the other
type of random sets, their measurability in (H,, %}, P) follows from the
measurability of X, and Y,. Also, N must be constant on each one of these
sets (on H,) because each ball B, ,,(X,,) contains a unique horizontal segment
of £, passing through X, and B, ,,(X,) N %, = &. Similarly, each ball
B, 5,(Y,) contains a unique vertical segment of £, passing through Y,
and B, ,)(Y,) N %y = @. It is also immediate that BP?* N A,+ @ and
B2Y N A, #+ . Finally, the definition of the set A, shows that By X n A, #
@ and B¥Y N A, # 2.

(ITI) Set
0 0
A=A -|U B, oi(X,) U U By 2i(Yn)
n=1 n=1
=A- U B.
Be %,

A” is a measurable compact set in ({§ > 1/k}, Z, P). We have that n =
d(A”,Z)>0.8et H,, ,={6>1/k,n>1/m} C H,.

Again applying the selection theorem (Proposition 1.6) we can find a sequence
of random variables {Z,, n > 1} in the space (H,, ;, Zaly, , P) such that
Z, € A” as. and theset {Z,, n > 1} is dense in A”. Now, let &%, , be the family
of balls B, ,,(Z,), n > 1. These balls again verify properties (ii)-(v). Finally,
By, Y B, will be a family of random sets satisfying properties (i)-(v) with
e <min(1/2m,1/2k). 0

REMARKS. We have already seen that & contains the sets of i* measure
zero, or the sets of p; X p, measure zero if p << p; X p, and N is strictly simple.
Therefore, we have

COROLLARY 2.2. Let N be a strictly simple point process on R2 verifying
condition (H) and with an intensity p < p, X py. Then %, = 9, for any set
A € ¥ of measure p; X p, zero.
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As a consequence of this corollary, the equality %, = ¥, is true for any set
A € € of zero Lebesgue measure, if N is the Poisson plane process.

Suppose that A is a compact subset of R2 which can be expressed as a finite
union of nonincreasing and nondecreasing lines. Then, for A to belong to the
class %, only the condition (ii) needs to be satisfied. Therefore we have

COROLLARY 2.3. Let N be a strictly simple point process on R% with an
intensity p. absolutely continuous with respect to the Lebesgue measure. Then
Y, = %, for any set A which is a finite union of nonincreasing and nondecreas-
ing lines and verifies (ii).

This condition (ii) cannot be removed, as is shown by the following example.
Let N be the Poisson plane process. Then, for A = {(s, s), 0 < s < 1} we have
Fa4 L 9y, because {N(D,) = 1} N {N(D,) = 0} belongs to ¥, but not to %,,
where D, = {(s,t) €[0,1]* s > ¢} and D, = {(s, t) € [0,1]% s < t}. This ex-
ample has been inspired by the paper of Carnal [4]. Here condition (ii) is not
satisfied. However, if A is the set given by Figure 1, for example, property (ii)
holds and %, = ¥4,.

Note that (ii) is always satisfied for a closed curve without double points,
which is a finite union of increasing or decreasing lines.

We can apply the preceding results to study the Markov property for a point
process on the plane.

DEFINITION 2.4. Let N be a point process on R%. We say that N has the
sharp Markov property (SMP) relative to a set A C R2 if %, L %,./F(JA).
We say that N has the Markov property (MP) relative to A c R2 if %, 1L
Fac/Y(0A).

Then, as an immediate consequence of Theorem 2.1 we deduce the following
general result.

PROPOSITION 2.5. Let N be a strictly simple point process on R% verifying
hypothesis (H) and such that p < p,p,. If N has the MP with respect to a set A
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such that A or A° is bounded and dA € % and (p, X py)(dA) = 0, then it also
has the SMP relative to A.

If we assume that this intensity p of N is absolutely continuous with respect
to the Lebesgue measure, then (H) is satisfied, and the MP with respect to a set
A whose boundary is a finite union of increasing or decreasing lines and verifies
(i1), implies the SMP relative to this set. In particular, using the results of Russo
[17], we deduce that any point process with independent increments which is
strictly simple and with an absolutely continuous intensity has the SMP relative
to any open connected and bounded set with a piecewise decreasing or increasing
boundary. In the case of a Poisson process this improves the results of Carnal [4],
where the SMP was proved for open bounded and relatively convex sets, and
those of Russo [17], where the SMP was established for finite union of rectan-
gles.

3. Markov property for stopping lines. We shall say that L is a decreas-
ing line if L is the image of a continuous function y: [0,1] — R2 such that y(0)
belongs to the y-axis, y(1) belongs to the x-axis, y((0,1)) C (0, )% and vy is
decreasing, that means 6, < @, implies v,(8;) < v,(6,) and v4(0,) = v5(0,), where
v(6,) = (v,(0,), v2(0,)). To every decreasing line L we associate the set D(L) =
{z € R2: there exists z’ € L such that z < z’}. The relation z < L means that
z € D(L) and z > L means that z > 2’ for some z’ € L. If L, and L, are two
decreasing lines, the relation L, < L, means that D(L,) € D(L,) and [L,, L,]
will denote the set {z: L, <z < L,}. We denote by ¥ the set of all the
decreasing lines.

Suppose that an increasing, right-continuous and complete family of o-fields
(£, z € R%} is given. Then a random decreasing line L: Q@ — % is called a
stopping line if for every z € R2, {w: z < L(w)} € % ([3], [11], [21]). For any
le ¥ weset Fp,, =V, ,# and we also define #5;,) =N, (Fp;, that means
Foay= 91y We do not know, in general, if the family {F#,,, 1€ £} is
right-continuous. As in the one-parameter case, to every stopping line L we can
associate the o-field 75, = (A € F#: AN (L <1} € #p,, foralll € £}. The
family of o-fields {#f;,, L stopping line} is increasing and right-continuous.
That means Z,, = N, %5, , if L,| L. These facts are proved by the same
arguments as in the one-parameter case. Note that for o-fields generated by the
Brownian sheet, the right-continuity was proved in [3] for a very similar
filtration.

In the sequel we will assume that % is the natural filtration of a point
process N = {N,, z € R%}. That means % =%, ,, for any z € R?%, and
therefore the above definition of %, =V,_,% is consistent with the one
given in the previous section, i.e., #p;, = o{N,, 2 < 1} V A", where 4" denotes
the family of null sets. Lemma 3.2 will imply the right-continuity of the family
of o-fields {F#p,), I € #}. Notice that here we have %), ,, = 9,,,, without any of
the supplementary assumption required in the previous section. Notice also that
if the filtration is generated by the Brownian sheet, then the right-continuity of
Zp, was proved in [21].
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DEFINITION 3.1. Let A be a random set, that means {1,(z), z € R%} is a
stochastic process. Then, we define %, as the o-field generated by the random
variables N,1,(z),14(z), z € R2, and the null sets of 2. We shall see below that
again this definition is consistent with the definition of ;) when L is a
stopping line, i.e., #p{1) = Fp(1)

LEMMA 3.2. Let L, be a decreasing sequence of stopping lines converging to
the stopping line L. Then, in the sense of Definition 3.1,

ng‘-nu,,,) = g‘-D(L) and ﬂfu,, L]~ Fy.
n

n

Proor. First we will show that N, %, , is included in % 1,. It suffices to
see that the random variables of the form N,.1 (@<L, planep,y 121, are
FpcLy-measurable. The sets H, = {N( L, L,]) = N(L)} increase to €. Let & be
the distance between L and the support of N|p ). 8 is a strictly positive
random variable. Let H, , = {d(L, L,) <1/k < 8}. We have that w € H,, ,, for
n > ny(k, w). The sets H, , = {d(L, L,) <1/k < §)} C H, also increase to Q
when n 1 oo and & 1 0. Consequently it suffices to show that on every set H, ,,
the random variables N,»1 .., , and1,._, , coincide with an Fp, ; -measurable
random variable. On H, , we have

sz”l{z{‘sl:n} = N(D(L) N [O’ Zf])l{zg‘sl,,,y
The random variable N(D(L) N [0, 2']) is Fp-measurable. This follows

from the definition of %, ,. Note that {z] <L,} €%, and 1., , is a
function @ of a countable collection of random variables {N;, { < 2['}. Then

g, ercry = ler<iyliaer, n<yre<sln, lers1y t1n, Ler<ny
=®(N(D(L) n[0,¢]), £ < Zin)l(d(z{',L)<1/k}1Hn Lirs1y
t1lg Lercry

Then 1,~_, , is %y ymeasurable on each H,, ,. This completes the proof of
the inclusion N, %y ) C Fpp ).

The proof of the’ 1nclus1on N,F1,11< %, Iis similar, but proceeds by
replacing N(D(L) N [0, £]) by N(L N[0, €]). 0

LEMMA 3.3. For any stopping line L, we have
Ty ={AEF: An (L <1} eFpy,, foranyl € &}.

PROOF. As before, set #f;, = (A €F: AN (L <1} €Fpy, for any l €
&}. The families of o-fields #¢;, and %p,, are right-continuous. On the other
hand, using dyadic approximations (see [3]) we can approximate any stopping
line by a decreasing sequence of stopping lines L, such that for any n, L, is a
stepped line determined by points of the form (i7", j2°"), i, j € N. Conse-
quently, it suffices to check that %p,, =%, when L takes a countable
number of possible configurations.
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The inclusion %, ), C #f;, is easy to prove, for an arbitrary stopping line
L. In fact, we have to show that the generators of %, belong to #f,,. If

—{z<L} then {z<L}n{L<l}={z<l}n{z<L}n{L <1} and
{z<Lye# cFp, ifz<land {L <l} € %, because

(L4} = U {z2<L} ey, forale>0.
2€Q?
21, d(z,l)<e
If A={N,=k}Nn{z<L}, then {N,=k} N {z<L} N {L <1} also belongs
to #p1, by the same argument.

To show the reverse inclusion, let G € %;, and suppose that L takes only a
countable family of configurations {[;, i > 1} € %. Then, G =U2 (G N {L =
I;})and forany i > 1, wehave GN {L =1} =GN {L=1} N {L <!} eFp,,
because G N {L < /;} and {L = [;} belongs to ;. Indeed,

{L=li}=( U (:4L)
P
z<l,d(z,1)<e

m( N {zsL})eZ,‘)e Ve>0.

2
zel,NQ%

S0, 11—y, is a function of N1, _,, = N1y and of 1,,_,, and those
random variables are %, ; -measurable. O

THEOREM 3.4. Let N be a point process on the plane verifying the SMP
relative to the sets {D(l), | € #}. Then, for any stopping line L we have

Ty L I/ T L

REMARK. From Theorem 2.1 it follows that the SMP relative to the sets
{D(1), l € &} is equivalent to the MP under hypothesis (H’).

Proor. Fix z,,...,2, in R2 and let f: R?* > R be a continuous and
bounded function. We want to show that

E[f(NAgsrp sy Nlis L= 0)/Fow)]

= E[H(Ndsrpleany o Nods 1= 1) /%]
NOtice that 1{2,2[4} = 1(21> L) + l{zlGL) and Nz,«l(ziELPl{z,EL} are fL-meaSura-
ble. Consequently, it suffices to show that
E[f (21>L)’1(21>L)’ Nzkl{szL)’l{ZkzL))/'gz—D(L)]

= E[f(N1s Loy N a1y Liga 1)) /Z2] -

Assume first that the stopping line L takes only a countable number of
possible configurations {/;, i > 1} € . Then, the left-hand side of (3.1) can be
written as

(3.1)

[ee]
32) Y E[1poiyf(Nlisiylasiy s Nls 1l s0)/Fow)-
i=1
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We have already seen that the set {L = [;} belongs to %, N Zpq, and on
this set the o-fields #,,,, and %, have the same trace. Therefore, (3. 2) is
equal to

Z E[I{L l}f s 13 L0y N1(2k>1}’1{z,,>1} /5‘"0(1)]

ZI(L WE[F(NA sy Loy Nl Lesn) /%],

which is &%;-measurable. In fact, each term can be expressed as
1{L=l,-}q)i(Nz}1{zjeL)’ jz1),

where ®; are measurable and bounded functions.
In the general case, we consider the sequence of stepped stopping lines L, | L
introduced in the proof of Lemma 3.3. Then, using Lemma 3.2 we have

E[f(N1is Loy Nl 0l 5)/Fow)|

= WmE[f(NAgo 1 sty N g0l 10)/Fi,)]
= limE[f(Nzll{zl>Ln}71(zl>Ln)’ yNod s Ly Lo 1) /1L, 1)

= E[f(Nles Loy N s 101 (g 1)) /%]
which completes the proof of (3.1). O

A companion to the notion of stopping lines is the concept of optional
increasing path which is defined to be a random continuous increasing path
L = L(¢) such that for any z € RZ and ¢ >0, {L(¢) < 2} € %. An optional
increasing path L splits the positive quadrant into two regions: the right-bottom
side denoted by L and the left-top side denoted by L as was done in [12]. L can
be approximated in Lorin L by stepped optional increasing paths.

Suppose that N is strictly simple and that N has no discontinuity on any
optional increasing path L: N(L) = 0 a.s. For instance, this property is true
when N is the Poisson sheet (cf. [11]). For any optional increasing path, let
Z, = (S,, T,) be its end point and consider the random sets

L*=LU((8,t),0<¢<T,) and D*(L)={(s,t):0<s<8S),teL).

Then, by the same arguments as before, the strong Markov property holds for
L*. That means, %, L Fogre/ L

4. Transformations of point processes. Using the same ideas as in [22],
we can consider absolutely continuous transformations of measures that leave
the Markov property (or the SMP) invariant. Let % denote the family of Borel
subsets A of R2 such that |JA| = 0 and A or A° is bounded. Consider a family
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of random variables {a(D), D € %}, satisfying the following properties:

1. a(D, U Dy) = «(D,) + a(D,) if D, N D, = ¢.
2. a(D) is Z,-measurable.
3. E(a(D)) < oo for any D.

Let L = [exp a(R2)]/(E(exp a(R2))). Then we have (cf. Proposition 3 of [2])

PROPOSITION 4.1. If the point process N has the SMP relative to sets A € %,
then it has also the SMP relative to sets A € &, under the new probability
measure d@ = LdP.

Consider the following example of application. Suppose that N is the Poisson
process on R X R, with intensity p(ds, dt) = p,(ds)dt, where p, is some
o-finite measure on R. Let {A(z), z€ R X R} be a 2-predictable process such
that |A(2)| < 1/2 and A is uniformly bounded by a square integrable determin-
istic function. That means |A(s, ¢)| < ¢(s) and [gd*(s)u,(ds) < co..

Define

L= [ (u)(N(du) - p(du)), 20,
R X[0, ¢]

and

M,=exp L, JT[(1 + AL, )exp(—A%L,)].

v<t

We introduce the random measure

N0 = [ gafs+ [hlo,)do|Ndw ), seR,e20
R %[0, ¢] 0
Let @ be a new probability measure given by
d!
@ .
dP |z,

where %, = 6{ N(A X [0,7]),0 <7 < t, A € #(R)} completed with the null sets
of #.

We remark that M is a strictly positive martingale, because |AL,| < 1/2.
Then, following the arguments used in [2], we can show the next result.

PROPOSITION 4.2. Under @, N is a Poisson process with intensity p.

PRrRoOOF. First note that N! is a point process since it is obtained as an
integral of an indicator function with respect to N. The one parameter process
{(N(s, t), t > 0} is F-adapted. Then it suffices to show that {N(A X [0, ¢]) —
tu,(A), t >0} is an F local martingale under @, for any A € Z(R). For the
proof of this fact we refer to [2]. O
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