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CONDITIONED LIMIT THEOREMS OF STOPPED CRITICAL
BRANCHING BESSEL PROCESSES

By TzoNG-Yow LEE

Princeton University

We consider critical branching Bessel processes initially at r > 1 and
stopped at r = 1. Let N be the number of descendants hitting » = 1. We give
the norming constant k(r) and prove convergence, as r — oo, of N/[k(r)]
conditioned on {N > 0}.

The distribution of conditioned limit laws is also investigated. A feature
of this study is an interplay between probabilistic insights and analytic
techniques for Emden—Fowler’s equation.

Introduction. Branching d-dimensional Brownian motion is used in [8] to
study a geographical problem for a mutant allele. Individuals are assumed to
diffuse independently of one another in R according to Brownian motions.
After an exponential waiting time each individual is replaced by a random
number of offspring which will then diffuse away and begin dying and reproduc-
ing themselves and so forth (all exponential waiting times, branchings and
Brownian motions are independent of one another).

The large x asymptotic behavior of the probability that an allelic type
initially at x has some descendant which diffuses within distance a > 0 of the
origin was determined in [8] under the assumption that the branching is critical
with a finite third moment. A natural question then concerns normalized limits
of the number of descendants that diffuse within a > 0 of the origin, conditioned
on some of them doing so. (The sphere of center zero and radius a serves as an
absorbing set.)

Our goal is to prove some conditioned limit theorems of this kind and also
demonstrate an intimate relation between critical branching processes and some
semilinear elliptic differential equations.

We now introduce some notation.

Let X(t) be a Bessel process of index d, d € R, generated by

1 d-1

2 x

L= (D2+ D), x>0,
and let the probability that branching does not occur in the time period (1, s) be
exp[ — [ o(X(¢)) dt] where o(x) is a nonnegative continuous function.

Note that the radial part of d-dimensional Brownian motion is a Bessel
process. Bessel processes are considered instead of Brownian motions because the
influence of d on conditioned limit laws can be seen more clearly and also
because it simplifies notation.
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We shall allow the offspring distribution to depend on the location of branch-
ing, but always assume it to have mean 1 (criticality) and finite variance. Let the
probability of having n offspring when a branching occurs at x be g, (x),
n=0,1,2,..., which is nonnegative and satisfies

2,(x) € C(0,0),

§ gu(x) = 1,

0

inqnm 1

n=1

and
o0

0< Y n(n-1)q,(x) < o
n=2
uniformly in x. Important for us is A(x, v), the probability generating function
(pgt)

o0
h(x,v) = Y, q,(x)ov", -l<v<l.
n=0

It can be shown that h(x, v) > v and satisfies lim ,,,[ A(x, v) — 0]/ 3(v — 1)* <
oo by the assumptions on {q,(x)}. We define f(x,u) by A(x,v)—-v=
1(1 - v)*f(x,1 — v) and make a further assumption on o(x)f(x, u),

(0 lim o(x)f(x,0) =1 and lim|o()f(-,u) = o()F(-,0)l, = 0

The second condition is satisfied when ¥%_, o(x)n(n — 1)g,(x) converges uni-
formly in x. Note that lim, _,  o(x)f(x,0) = 1 instead of a, a > 0, is used only
for simplicity of presentation and that f(x,0) = ¥ n(n — 1)q,(x) is the variance
of the offspring distribution for individuals which branch at x.

Let x =1 be an absorbing point and P, (E,, resp.) be the probability
distribution (expectation, resp.) associated with a single allele initially at x. Let
N denote the number of descendants which diffuse to 1. To study the distribu-
tion of N, we focus on its p.g.f.,

o(x,n) = Ex{(l - n)N}, where 1 > 5 > 0.

By looking into the events that the individual does not or does die after an
infinitesimal time period, v(x, 7) is known to satisfy

1

2

o(l,n)=1-m, ov(eo,p)=1 and 0<ov(x,n) <1,

(D2+ D)v+o(x)[h(x, 0) — o] =0,

where D = D, the differential w.r.t. x. For the derivation see [8] and references
therein. Using f and a new variable u(x,n) =1 — v(x,n) =1 — E{(1 — n)V},
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this equation transforms into (again, D = D,)

- (D2 ; D)u T o(x)f(x, u)u? = 0,

(0.2)
u(l,m) =n, u(oo,m) =0 and u(x,n)>0.

If we consider a constant rate critical death and doubling process, o(x) = 1
and g,(x) = go(x) = 3, this equation takes a simpler form (again, D = D,),
d-1

X

—(D2+ D)u+u2=0,
u(l,m)=m, u(oo,n)=0 and u(x,n)>0.

For easy reference we name one differential equation,

(A) - (D2+ D)u+u2=0.

In this paper solutions of (A) are always understood to be positive and tend to
zero as x — oo unless stated otherwise. We shall specify the domain
and boundary data when referring to (A). Note P{N >0} =lim, ,,1 -
E {1 — )N} = u(x,1). Assuming o(x)f(x, u) = f(u) with f(0) < o0, it was
proved in [8] that, as x — oo,

2(4—d)x"? ifd<Ad4,
(0.3) P{N >0} ~ (2x2(logx)™" ifd =4,
B2 if d> 4,

where B, is a positive constant depending on d. In Section 1 we prepare some
mathematical tools and state a basic result of asymptotic probability. To find
appropriate normalization for nondegenerate conditioned limits in Sections 2-6,
it is useful to know that E{N} =1 if d<2 and E{N} = x2~% (same as a
nonbranching Brownian motion due to criticality). In view that d = 2 is the
threshold of E{N} and d =4 is that of P{N > 0}, we expect the norming
constants to be E{N|N > 0} = E{N}/P{N > 0}, behave somewhat differently
in five regimes: d <2, d=2,2<d <4, d=4 and d > 4. We shall prove a
conditioned limit theorem for d < 2 in Section 2, moving to larger d in Sections
3-6 and omitting details when a previous argument works well for new situa-
tions.

When d # 2, our result is, as expected, that N/(E{N}/P{N > 0}) converges
in distribution to some nondegenerate law Z as r — oo conditioned on {N > 0}.
When d = 2, we show in Section 3 that logr - N/(E{N}/P{N > 0}) converges
in distribution to a nondegenerate law Z as r — oo conditioned on { N > 0}. The
picture of the branching diffusion process provides this study with a good deal of
insight. For instance, when tracing back the path of a descendant found on
r = 1, a Bessel process anticipates that this descendant is the G(r)th generation,
G(r) ~ O(r?) as r —> o, and distribution of the ancestors’ birthplace is like
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H(r)dr, H(r) ~ O(r). In view of
E,(N} = B{N = 0} + B{N >0} [ E(N}H(x) dx
1

and E{N} ~1if d<2and ~x*¢if d> 2, we can foresee (0.3) up to the
correct magnitude. This heuristic argument also anticipates that ¢t = r? - oo
(instead of ¢ = oo in this paper) is also an appropriate scaling. We shall postpone
results involving scaling of ¢ to [6]. The results in this paper and in the case
when ¢ = r? > o are closely related to that in [1] where occupation times of a
critical branching Brownian motion were proved to behave very differently
depending on whether d > 4, d=4,d=3,d=2o0rd = 1.

1. Basics. We first state a special form of comparison principle which will
be used many times in this paper. Consider G,u = —(D? + (d — 1)/(x)D)u +
au?® where a > 0 is a constant. We call u a supersolution for G, if G,u > 0 and a
subsolution for G, if G u < 0.

COMPARISON LEMMA. Suppose u(x) is a positive supersolution for G,, u(x)
is a positive subsolution for G, and u(Y;) > w(Y;) where j = 1,2 and 0 < Y, <
Y, < oo. Then u(x) = u(x) for all x € (Y}, Yy,).

u(x) = u(x) for x € (Y, ) if the condition at Y, is replaced by
lim sup, _, ,[7(x) — w(x)] = 0.

PROOF. Our assumption implies that

—(D2+ D)(ﬁ—z_t)+a(ﬁ+1_t)(ﬁ—l_t)20,
(z—-u)(Y) 20 and (- u)(Y,)20.

That (z — u)(x) < 0 for some x € (Y}, Y,) leads to a contradiction to the above
differential inequality at a negative local minima. Therefore #(x) > u(x). O

The scaling structure for (A) can be easily checked.

ScALING LEMMA. If u(x) satisfies (A) in (a, ), then v,(x) = m?u(mx),
m > 0, satisfies (A) in (a/m, ©).
If u(x) satisfies (A) in (a, ), then v(x) = u(kx), k > 0, satisfies

a
—(D2+ D)o+k22=0 in(z,oo).

The following lemma is a slight generalization of a result in [8]. We present a
proof for easy reference and to introduce some arguments useful later on.

LEMMA 1.1. Suppose o(x) and f(x, u) satisfy (0.1) and u(x,n) is as in (0.2).
Then for all v > 0,

(1.1) lim u(x,n)x?=2(4—-d) whend<4
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and
x2log x
2

(1.2) lim u(x,n) - =1 whend = 4.
X — 00

Proor. We first consider the simple case when o(x)f(x,u) = 1and d < 4. A
key observation is that cx~? is a supersolution for G, if ¢ > 2(4 — d), a solution
if ¢ = 2(4 — d) and a subsolution for G, if ¢ < 2(4 — d). The comparison lemma
implies that a solution curve of (A) can intersect y = ax %, a # 2(4 — d), at
most at one x € (0, o0) and that, if intersecting y = 2(4 — d)x 2, it is identically
¥y = 2(4 — d)x 2. It then follows easily from the comparison lemma that g(x) =
u(x,n)x? increases as x > oo and g(x) < 2(4 — d) if 7 <24 — d) and that
8(x) decreases as x — oo and g(x) > 2(4 — d) if n > 2(4 — d).

It remains to prove g(o0) = 2(4 — d). For convenience we suppress 1 and use
u(x) for u(x,n). The following elegant proof was pointed out to me by the
referee: If u(1) < 2(4 — d), then u(x)x*>1 A <24 — d). If u,(x) = m*u(mx),
then Gu,(x) = 0 and, as m — o0, u,,(x) = w(mx)(mx)?/x* 1 u (x) = g(0)/x2
for all x > 0. Since a locally bounded pointwise limit of solutions of G,u = 0
must be a weak solution, hence a solution by Weyl’s lemma, g(c) can only be
2(4 — d). The case u(1) > 2(4 — d) can be similarly treated.

An alternate proof is to rewrite (A) as (x% 'u’) = x? 'u? and integrate it:
29t (x) — M9 W(M) = — [M 29" 'u?(z) d2. We assert existence of M, — oo
such that lim,_, , M 'w/(M,) = 0. This implies that z? 'u?(2) is integrable
and also

(1.3) 2@ ' (x) = —szd_luz(z) dz.

(1.3) is useful later on. We prove our assertion by contradiction: Note that
u'(x) <0 for all x > 1 because the structure of (A) obstructs existence of
positive local maxima of u(x). If no such M, as asserted exists, there must be
8 > 0 such that —8x'~? > u/(x) for all large x, say, x > Y. Integration then
yields that wu(x)>[8/(d — 2)]x2"? for x > Y for d > 2 and that u'(x) ¢
LY, ) for d < 2. Both conclusions contradict u(x) ~ O(x~2). Multiplying
(1.3) by x!~¢ and integrating yields

u(x) = ooyl'd ooz"’_luz(z) dzdy,
/x ‘/y
ie.,

(19) g(x) == [y [T 2) .

y

Note that g(x) = 2(4 — d) is a solution.
As x = o0, (1.4) implies that

g(0) = %, ie, g(w)=24-4d).

(1.1) is proved for (A).
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When d = 4, we have that cx~?(log x) ! is a supersolution for large x if ¢ > 2
and is a subsolution if ¢ < 2. The above argument with simple modification
yields (1.2) for (A).

For general o(x) and f(x, u), we first show limsup, _, ., u(x)x® < 2(4 — d)
when d < 4. Let u(x) be the solution of

—(D2+ D)ﬁ+

inf o(x)f(x, u)}ﬁ2 =0
Y
with #(c0) = 0and u(Y) = u(Y).

Consider #(x) as a solution and u as a subsolution for G,, a =
inf, _ .y x>y 9(x)f(x, u). The comparison lemma implies that u(x) < u(x) for
all x > Y.

Results for (A) and the scaling lemma imply that

X —> 00

-1
limsupx2u(x) < lim x%u(x) < [ in(fy o(x)f(x, u)} 2(4 — d).
x—> 0 usu(Y) R
x=>Y

Letting Y tend to oo, it follows that limsup, _, , u(x)x? < 2(4 — d). Since the
same kind of argument works nicely to prove liminf, _, , u(x)x? > 2(4 — d), the
proof of (1.1) is complete. The above-mentioned procedure also yields (1.2). O

2. The case when d < 2. When d <2, P{N > 0} ~ 2(4 — d)r ? (Lemma
1.1) and E,{N} = 1 suggests existence of lim,  , E,{e""™"|N > 0}. In view
of

E{e "™/™; N> 0} = E,{e"™/™} - B{N = 0}
(2.1) = E{e"™/™} — 1+ B{N > 0}
=P{N>0} —u(r,1 —e "),
where u(x, - ) is as in (0.1)—(0.2), we first establish

THEOREM 2.1. For all 1 > 0 we have
(2.2) lim r2u(r, r-2n) = qU(4"/?)
r—oo

for u(x, - ) as in (0.2) where U(x) is the unique solution of (A) for x > 0 with
U@ = 1.

Small x asymptotics of solutions of (A) in (0, o0) are pivotal. We first show

LEMMA 2.1. There exists a unique U(x) which satisfies (A) in (0, o) with
Uo+)=1.

ProOF. First note that solutions of (A) in (0, c0) are monotonically decreas-
ing since the structure of (A) implies the absence of positive local maxima. It
suffices to find a constant upper bound at x = 0 for some solution u(x) of (A) in
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(0, o0) because the monotonicity of u(x) will then ensure the existence of u(0)
and an appropriate scaling, namely, U(x) = u(0) ! - u(u(0)~/2x) will yield U.
Uniqueness follows from the comparison lemma. Our upper bound is ob-
tained using a subsolution. For d > 0 choosing 0 <e<2—-d and c=
[e2 — d — €)]¢/**? and letting u(x) = ¢ — x°, we see that

d-1

X

—(D2+ D)z_z+y250 on (0,c"¢) = {x:u(x) > 0}.

Note that m2u(mx,n) is, by the scaling lemma, a solution of (A) in (1/m, %)
with boundary value m?yn at x = 1/m. Let m be so large that 1/m < c'/* and
then let 1 be so small that m2?y < u(1/m). The comparison lemma now ensures
that the extension of m2?u(mx, n) to x € (0,1/m) gives a solution of (A) which is
bounded by c. For d < 0, it was pointed out to me by the referee that the only
modification needed is to have 0 < ¢ < 2 instead of 0 < ¢ < 2 — d. This can be
easily checked. O

Proor oF THEOREM 2.1. We first consider a simple case where
o(x)f(x,u) = 1. Fix n > 0. For sufficiently large r, there exists m = m(r) such
that m*U(m) = r~2yn with lim, _, , m(r) = 0. More precisely, rm(r) — n'/? and
by the scaling lemma u(x, r~2n) = m?*U(mx) and hence lim, _, , r2u(r, r~2n) =
lim, _,  r’m?U(mr) = nU(n"/?).

We now extend the result to general o(x) and f(x,u). Let a(Y,¢) =
inf,_, ,.yo(x)f(x,u), §=a(l,¢) and A(Y,¢) =sup,_, ,.yo(x)f(x,u) and
M = A(1, ¢). It follows from our assumptions that

lim a(Y,e) =1= lim A(Y,e¢).
Y-

Y- oo
e—0 e—0
First, we prove
(2.3) u(x,r™%n) ~r 2y asr- oo,all x € (1, ).

By the scaling lemma, u(x) = m2U(mkx) is a solution of

—(D2+ _ D)u+k2 2=0, u(w)=0.
Thus if m; = m,(r) are chosen such that
(2.4) miU(m,M"?) = r=2n = m3U(m,8"2),
where lim, _, m;(r) = 0, then by the comparison lemma
(2.5) m2U(m, M%) < u(x, r~2q) < m2U(mH"%x)

for x € (1, 0). By (24), my(r))~r 2y as r— oo and (2.3) follows from
U0 + ) = 1 and (2.5) for fixed x. Since u(x, ) is an increasing function of 5 by
the comparison lemma, one can choose Y sufficiently large so that u(x, ) < e for
x > Y. Similarly, if m,(r) are now defined by

(26)  miU(mA(Y, )" *Y) = u(Y, r~*n) = miU(ma(Y, &)°Y),
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where m,(r) = 0 as r — oo, then
2.7) m2U(m,A(Y, e)/’x) < u(x,r 29) < m3U(m,a(Y, e)"/’x)

for x € (Y, o). Again m,r - 7% as r > o by (2.3) and (2.6) for fixed Y. (2.7)
with x = r implies that
nU(n1/2A(Y, 8)1/2) < liminfr2u(r, r~2n) < limsupr’u(r, r-29)

r—oo
< nU(nWa(Y, 8)1/2). .

Letting Y tend to oo and ¢ to 0, the proof is completed by the continuity
of U.O

REMARK. From the viewpoint of differential equations, note that the varia-
tion equation of (0.2) about identical zero is —(D? + (d — 1)/(x)D)w = 0, i.e,,
w = const. and that the linear approximation of u(x, r~29) by w = r~ 2y can at
best be valid for intervals like [1, O(r)] due to x~2 decay of u(x, r %n). The
scaling in Theorem 2.1 makes this clear by showing that u(r,r %n) ~
qU(n/?)r=% as r - oo, indeed not ~ w(r) = nr~2 For the other four regimes of
d, similar structures persist which we shall not dwell on. Our treatment on scaled
limits of solutions of differential equations (Theorems 2.1, 3.1, 4.1 and 5.1)
applies to a large class of semilinear equations, e.g., equations with u? replaced
by u?, p > 1 (fiveregions: d <2, d=2,2<d<2p/(p—1),d=2p/(p—1)
and 2p/(p — 1) < d show very different behavior).

THEOREM 2.2. Suppose X(t) is a critical branching Bessel process initially
at r generated by L, = 1(D* + (d — 1)/(x)D), —o0 < d < 2, associated with
branching rate o(x) and offspring distribution {q,(x); n = 0,1,...} that satisfy
(0.1). Then:

(2.8) P{N>0} ~2(4—-d)r? asr— o.
(2.9) Conditional on {N > 0}, % converges in distribution to Z
which is characterized by

E{e "} =1- Z—(%

Let k(d) = min(2 — d/2,2). We also have have Prob{Z = 0} = 0 and
E(Z¥D-¢) < o and E{Z¥D*¢} =

(2.10)
for every small ¢ < 0.

ProoF. Recalling from P{N > 0} = u(r,1), Lemma 1.1 implies (2.8). As in
(2.1),

1. Er{e—ﬂ(N/rZ); N > 0} 1 . u(r,]. - e—r-271)
rln:o R,{N > 0} B r—>nolo 2(4 - d)r'2 ’
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and

1—e " =r2+0(r*) asr— oo.
Since u(x,n) is monotonic in n by the comparison lemma, (2.9) follows from
Theorem 2.1 and the continuity of U(x). It follows from lim, _, , qU(7'/?) =
2(4 — d) that Prob{Z =0} =lim,_  E{e "} = 0. Recall from (1.3) that
U'(x) = —x'"9* 297U %(2) dz. Integration yields

U(x) -1 = —foxyl‘dfwzd'lU2(z) dz.

y

When 0 < d < 2, we have [° 297U ?%z)dz = b < o0 and

b
(2.11) U(x) -1~ - -(2_—d)x2_d asx — 0.
When d < 0, a simple asymptotic evaluation shows

2

X 1
- ?log— ford = 0,

(2.12) U(x) -1~ ) *
- (Td)x2 ford < 0.

Substituting x by 7'/2 in (2.11) and (2.12), (2.9) implies (2.10). The proof is
complete. O

3. The case when d =2. When d = 2, we naturally believe in the same
heuristics as stated before Theorem 2.1. The suggested scaling N/r? neverthe-
less converges in distribution to Z = 0. We prove the appropriate normalization
to be (log r) - N/r? by first establishing

THEOREM 3.1. For all n > 0 we have

(38.1) lim r?u(r, r=279) =0,
(3.2) lim r2u(r,(r"2logr)n) = qU(n/?)

for u(x, -) in (0.1)-(0.2) where U is the unique solution of (A) for x > 0 with
limxlo[(U(x))/_ logx] = 1.

We first prove

LEMMA 3.1. If d = 2, then there exists a unique U(x) which satisfies (A)
and lim, | o[U(x)]/(~log x) = 1.

ProOF. We first show that there exists V(x) satisfying (A) and [§° xV2(x) dx <
0.
In view that u = e2(x ¢ — 1) satisfies —(D? + (1/x)D)u? + u? < 0 on (0,1]
for 0 < & < 2 with u(1) = 0, the same argument as in the proof of Lemma 2.1
yields the existence of V(x), the solution to (A), such that V(x) < u(x) for small
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x. When ¢ < 1, we see that [{°>xV?(x)dx < oo. It then follows from (1.3) for
d = 2 that

(3.3) —aV'(x) = /:o(zV')’dz = '/:on2(z) dz.

(3.3) implies that —V’(x) ~ O(x~3) as x > oo and ~ [[P2V%(2z)dz]x"! as
x — 0, hence that V(x) ~ [ [°2V%(z) dz](—log x). Again, an appropriate m
makes m?V(mx) ~ (—log x) which we choose as U. Lemma 3.1 is proved. O

ProoF oF THEOREM 3.1. The case when o(x)f(x,u) =1 is again simple.
Since ¢(m) = m2U(m) ~ m?log(1/m) — 0 as m — 0, m = m(r) can be defined
for large r by ¢(m) = m?U(m) = r~24. Then rm(r) — 0 and r2u(r,r 25) > 0
since u(x, r~2n) = m®U(mx). For u(r,(r %logr)n), the above computation
needs to be modified slightly. We now have u(x,(r~2log r)n) = m2U(mx) where
m satisfies r~2(log r)n = m2U(m). This leads to lim, _,,, mr = '/ and therefore
lim, _, , r?u(r,(r=2log r)n) = qU(7'"/?).

For the general o(x) and f(x, u) the same kind of argument as used for d < 2
goes through. We omit the details. O )

Theorem 3.1 has the following probabilistic interpretation.

THEOREM 3.2. Suppose X(t) is a critical branching Bessel process initially
at r generated by 1(D*+ (1/x)D) with branching rate o(x) and offspring
distribution {q,(x); n > 0} that satisfy (0.1). Then

P{N >0} ~4r? asr— o.

Conditioned on {N > 0}, (log r)N/r? converges, as r — o, in distribution to Z
which is characterized by

E{e "} =1 — qU(9'/?).
In particular, E{Z} = o and E{Z'~%} < o« for any small ¢ > 0.
4. The case when 2 <d <4, When 2<d<4, P{N>0} ~2(4—d)r?
and E{N} = r2~¢ suggests existence of lim, _, _ E{e” "™/ )N > 0}. Since
1-— E,{e‘"‘N/"“”}

E{e ™™™ N >0} =1-

B(N>0)
ru(r,1 —e ™)
- 2(4 — d) ’

we first prove

THEOREM 4.1. For all 7 > 0 we have
lim r2u(r, rd—4,q) — 112/(4_‘1)U(111/(4'd))

r—oo

for u(x,-) in (0.1)-(0.2) where U is the unique solution of (A) such that
U(x) ~x2"%asx | 0.
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First we show the existence of U.

LEMMA 4.1. When 2 < d < 4, there exists a unique U(x) which satisfies (A)
and lim, x4 2U(x) = 1.
Proor. Since cx2~% ¢ > 0, is a supersolution, the comparison lemma implies
that x?~2u(x) increases as x | 0 if u is a solution of (A) on (0, c0). We prove that
lim, , x%72u(x) < oo for some solution of (A) on (0, ) again by constructing a
subsolution as in the case when d < 2.

Choosing 0 < ¢ < min(4 — d, d — 2) and v(x) = cx2~ %1 — x°), which is posi-
tive for 0 < x < 1, computation shows that

- (D2 + D)v + o2 = —ce(d—2 —e)xt ¢+ c%(1 — x°)’x*2¢
<clec—e(d—2-¢)]x*"?9<0
for0 <x <lifc<e(d—2—e¢).
The same argument as used in the proof of Lemma 2.1 ensures existence of u
such that lim,  ,x? %u(x) = a is a positive constant. U(x) = m?u(mx) with
m = a~“~9 then has U(x) ~ x2-¢ as x — 0. The proof is complete. O

PrOOF OF THEOREM 4.1. When o(x)f(x, u) =1, u(x, r¢ *n) = m?>U(mx)
where m is determined by m2U(m) = r?~*y. This implies lim, _, , mr = n*/4-%
and therefore

lim r2u(r, r4n) = lim m?r2U(mr) = n>/ 4" DU(y/4- D).
r-o

r— oo

For general o(x) and f(x, u) let 8, a(Y, ¢), A(Y, €) and M be as in the proof of
Theorem 2.1. Again, our first step is to prove

(4.1) u(x, 7% %) ~ qri~%2"% asr - oo

for all x € (0, o0). First, since m2U(mC) ~ m*~9C? % as m — 0,

(4.2) m?U(mCx) ~ m*U(mC)x%¢
as m — 0 for all constants C and x. Define m; = m(r) by
(4.3) m2U(m,M*?) = ré=4ny = m3U(m»5'?).

Then by the comparison lemma
(4.4) m2U(m M%) < u(x, r*~*n) < m3U(m.8"*)

for all x € (1, ). The relations (4.2)-(4.4) imply (4.1). Similarly if m,(r) are
defined by

(45)  miU(mA(Y,¢)""Y) = u(Y, r~*n) = m§U(m,a(¥, ¢)*Y),

then m2U(m,A(Y, €)/?%x) < u(x, r¥~*n) < m3U(m,a(Y, e)l/éx) for all x> Y.
The relations (4.5), (4.2) and (4.1) imply that m,r — A(Y,e)"/¢~Dyl/¢-),



CRITICAL BRANCHING BESSEL PROCESSES 283
myr = a(Y,e)l/¢-Nqglt/4=d) a5 r - o0, and
A(Y’8)(d-2)/(4-d),n2/(4—d)U(A(Y, £)1/(4—¢il),',1/(4~d))

< liminfr2u(r, r¢=*yg)
r—oo

< limsupr2u(r, r¢—*y)
r— oo

< a(Y,e)(d—2)/(4~d)n2/(4—d)U(a(Y, E)l/(4—d)n1/(4__d).

Letting Y tend to oo and ¢ to 0, Theorem 4.1 is completely proved. O
A probabilistic counterpart of Theorem 4.1 is

THEOREM 4.2. Suppose X(t) is a critical branching Bessel process initially
at r, generated by L, = L(D? + (d — 1)/(x)D), 2 < d < 4, and with branching
rate o(x) and offspring distribution {q,(x); n > 0} that satisfy (0.1). Then:

(4.6) P{N>0}~2(4-d)r? asr— .
N
(4.7) Conditional on { N > 0}, prer converges, asr — o,

in distribution to Z which is characterized by

n2/ 4= DY (/G- D)

E{e_"Z} =1- 2(4 _ d) ’

We have that Prob{Z = 0} = 0,
E{Z¥¢-D"¢} < 0 and E{Z¥“ D*¢} = o0 for any small e > 0.

(4.8)
PROOF. Again, (4.6) is a probabilistic interpretation of (1.1) and (4.7) is an
interpretation of Theorem 4.1 because

_pd-4
Er{e_n(N/r4—d)|N S 0} -1 u(r,l —e 11)

P{N>0)
We now turn to prove (4.8).
Prob{Z = 0} = lim E{e™ "} =1 — ————— lim n¥“-NU(y/¢-D) = 0.
n—00 2(4 - d) n—> 00

To study 7%/ 4~ DU(n'/4~D) for a small 7, first rewrite the differential equation
of U as [x%~4x9 2U )Y = xU? which can be integrated to yield

(4.9) x4 (x) - 1 = —fxyd‘3f°°zU2dzdy.

Y y
The proof of (4.8) will be carried out for (i) 2/(4 — d) < 2, (ii) 2/(4 — d) = 2,
(iii))2 < 2/(4 — d) <3 and (iv) 2/(4 — d) = 3. The rest of d can then be treated
using the same procedures over and over again and we shall omit the details.
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()1 <2/4—-d)<2ie., 2 <d< 3. In view of

-3
(4.10) 2U%(2) ~ {O(z ) asz- o,
2524 asz — 0,
we have
(4.11) yad=3 foozU2(z) dz ~ foozU2(z) dz-y?3 asy—0.
y 0

(4.9) therefore implies that
U(x) ~x27¢ [1 -

7= 2x""2 + o(x?72)| asx >0,

ie.,

(4.12) ¥ 4-DY(q/G-D) ~ g —

— 2n2/(4—d) +o(n¥4=D) asy -0,

where a = [{*zU%dz.
(i) 2/(4 — d) =2, i.e., d=3. Noting 5 — 2d = —1, (4.11) therefore is re-
placed by
f 2U%z)dz ~ (—logy) asy—0

y

and (4.12) is replaced by
n2/ @ DY(g/4=D) = 5 + n?logn + o(n*logn) asn — 0.

This implies (4.8).
(i) 2<2/(4—d)<3,ie,3<d< 2 In view of 5 —2d < —1, (411) is
replaced by
0 1
d-3 2 - 3-d 0
y fyzU(Z)dz 6-za)” =70
which leads to

U(x) = x2‘d[1 -

TB-d)4-d)”

4-d 4 o(x*"9)| asx — 0.

Using this finer expansion in (4.9) and the same argument, we obtain
1

2U%(z) = 2°7% - (3—d)(4—d)z

9-3d 4 0(29739) asz -0,
(4.13)
¥4 [UH(z) de =
y 2(d - 3)
where b is a positive constant. This leads to
1
x
2(d-3)(4-d)

3=d _ pyd=3 4 O(yd—a) as y - 0,

4—d

U(x) = x2'd[1 - 2972 + o(x97?)

T d-2)

asx >0
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and hence,

1 b
2/(4—d) 1/4—d)) — o — 2 4 2/(4-d) 4 2/(4—d)
n U(n )=n d A" T @ 9" o(n )

asn — 0.
This implies (4.8).
(iv) 2/(4 — d) = 3, ie,, d = }}. We follow the computation in (iii) with (4.13)
replaced by

d-3
yd_3j:°2U2(z)dz _ 2(d1_ 5 yid 4 (dy_ 3);Zg_yd) + o( y*~?log y)
as y = 0.
This leads to
1 7’ log n

2/(4—d) 1/(4—d)) — — 2 _
OO = = S TG =) T (d-3)d - d)(d-2)
+ o(n’logn) asn -0,
which implies (4.8) O

5. The case when d = 4. Whend = 4, P{N > 0} ~ 2r%logr) tasr —» o
and E,{N} = r~? suggests the convergence of N/log r conditioned on {N > 0}
which amounts to

THEOREM 5.1. For all 7> 0 we have, for u(x, - ) in (0.1)-(0.2), that

1 _ n
lim r?(log r)u(r,2(0gr) 1) = 77

PrROOF. First, assume o(x)f(x,u)=1 and let U(x) = u(x,1) in (0.2).
Since m2U(m)l0 as m |0 for d = 4, there exists m = m(r) = o such that
u(x,2(log r)~1n) = m2U(mx) where m*U(m) = 2(log r)~ 1. It then follows that
lim, _, (log r/log m) = n and therefore

1
lim 3 m?r?(log r)U(mr)

r—->o

1
lim —2-r2(10g r)u(r,2(log r) " 'n)

logr M

im = .
row logmr 1+

For general o(x) and f(x, u) the proof is similar to that in Theorem 2.1. We only
sketch it. If m — oo, then m2U(mC) ~ 2(C?log m)~" for constant C and thus

(5.1) m2U(mCx) ~ m*U(mC)x~% asm — oo
for constants C and x. Hence,

(5.2) u(x,2(log r)"'n) ~ 2(log r) 'nx™? asm - o
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for all fixed x € (1, ). If m(r) are defined by
U (m, ACY, /7Y) = (Y, 2087)"n) = mU(maa(Y, 07,

then

log r
(5.3) lim —o
r-w logm,

=nA(Y,e) and lim =na(Y, )
r—ow log mgy

and, by the comparison lemma,
m2U(m,A(Y, €)"*x) < u(x,2(log r) ") < m3U(mya(Y, €)/*x)

for x > Y. Substituting x by r, (5.3) and (1.2) imply

L ! NS .
1+ A(Y, &) . Y0 < llgloglfz(r logr)u(r,z(log,.) )

. .
< limsup —(r?log r)u(r,2(log r)_l)
r—oo 2
] 1
< . .
1+a(Y,e) a(Y,e)

Letting Y tend to oo and ¢ tend to 0 completes the proof. O
A probabilistic interpretation of Theorem 5.1 is

THEOREM 5.2. Suppose X(t) is a critical branching process initially at r,
generated by 1(D®+ (3/x)D) and with branching rate o(x) and offspring
distribution {q,(x); n > 0} that satisfy (0.1). Then

P{N>0} ~2(r2logr)”"

and, conditioned on {N > 0}, N/log r converges, as r — o, in distribution to
an exponential variable of mean 3.

6. The case when d > 4. We first establish a crucial analytic result.

LEMMA 6.1. Let u(x,n) be as in (0.2) for the case o(x)f(x,u) = 1. Then
u(r,m) ~ B(n)r2=?¢ as r > oo where B(n) is a positive increasing function of .

PrROOF. We prove this lemma by the method of supersolution and subsolu-
tion. Since bx2~¢ is a supersolution for any b, the comparison lemma implies
that x9-2u(x,n) decreases. We now prove lim,_, ., x% 2u(x,n) > 0 by con-
structing a subsolution u(x), (1) <, on (1, ). Use a fixed positive ¢ < d — 4
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and consider u(x, ) = cx2~%1 + x~¢). Computation shows that
d—-1

X

- (D2 + D)g +ul=—ecx " %(e+d—2) + A1+ x)xt2
which is negative if ¢ is sufficiently small and x > 1. This implies
lim, . x% 2u(x,m) = ¢ > 0 and we denote it by B(n). The proof of the lemma

is complete. O

Lemma 6.1 says that P{N > 0} ~ B(1)r?>~, the same order as E,{N} = r2~¢.
This anticipates convergence of N as r — oo conditioned on {N > 0}. This is
very different from the other four regimes of d where N/[k(r)] with
lim, _, ., k(r) = oo has to be considered.

If we consider general o(x) and f(x,u) in Lemma 6.1, B(7) =
lim, . x% %u(x,n) depends on o(x)f(x, u). We therefore expect the condi-
tioned limit of N to depend on o(x)f(x, ). This is indeed so and we now
illustrate the result for d > 4 only for the simple situation o(x)f(x, u) = 1.

Let U(x) be u(x,1). We have

THEOREM 6.1. Suppose X(t) is a critical branching Bessel process initially
at r, generated by L, = 1(D* + (d — 1)/(x)D), d > 4, and with branching rate
o(x) and offspring distribution {q,(x); n > 0} that satisfy o(x)f(x, u) = 1. Then

(6.1) P{N >0} ~B(1)r*"¢ asr — cowhere 0 < B(1) < 1is a constant

and

(6.2) conditional on { N > 0}, N converges in distribution to Z,
characterized by E{(1 — 7)%} =1 — m*~%n), 1> > 0, where m(n) is such
that m?U(m) = 7 and

(6.3) there exists ¢ > 0 such that E{(l + c)Z} < o0,

i.e., Prob{Z > n)} is less than some geometric decay as n — oo.

PROOF. (6.1) is a result of Lemma 6.1. In view of

. . 1-E{(1-2)"} B(n)
E{(1 =n)7} = lim1 P{N>0) TR
we need only relate 8(7) to the special function U. The scaling lemma implies
that u(x,n) = m2U(mx) where m = m(n) is determined by m2U(m) = n and
therefore B(7n) = lim, _, , u(x, n)x% 2 = lim,_, , m%*% 2U(mx) = BQ)m*~%n).
(6.2) is proved. To prove (6.3) note that there exist ¢ > 0 and w(x) > Oforx > 1
such that

d-1
(6.4) (D2 + TD)w+ w?=0, w(l)=candw(x) ~O0(x>"?) asx— 0.

This was proved in [2], Table 2, Cases 2 to 4, and can also be proved by
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a monotonic iterative method (see, e.g.,, [6]) which we now sketch.
Consider 0 < e <d — 4 and #(x) = (¢/2)1 + x7%x2"% which satis-
fies (D> + (d - 1)/(x)D)a +u2<0, u(l)=c>0 and #u(x) ~ O(x2" %)
as x > oo when c is small. Consider also u(x) = (c¢/2)x?~? which satisfies
(D% + (d = 1)/(x)D)u + u® = u?> 0 for all ¢ and #(x) > u(x) for x > 1. Let
uyx) = u(x) and u,,,(x) be the solution of (2¢ — A)u,,, = 2cu, — u: with
u,(1)=candlim__,_u,, (x)=0for & > 0. It follows easily from the maxi-
mum principle that v > u, > u, > -+ > u. lim,_,_ u,(x) then serves as the
desired w(x).
We next show that

(6.5) Ex{(l + c)N} <1+ w(x) forx=>1.

This is ensured by the minimality of the probabilistic solution as follows. Let %,
be the o-algebra generated by our stopped branching process up to time ¢ and
N(t) the total number of particles (including those at x = 1) at time ¢. Due to
the Markovian property (l_[j"fﬁ?[l + w(x,(1))], #,) is a positive martingale (see,
e.g., [3, 7]). Now letting ¢ tend to oo, we see that N(¢) tends to N and, from
Fatou’s lemma, that

14 0 = B{ TT 1+ wao)]) = fim 5 TT 1+ wla0)])

N

> Ex{ I1a+ c)} = E{(1+c)"}.

Jj=1
From (6.4) and (6.5) we now have

N, Ny
E{(1+¢?} = lim E'{(;;N) >’(Z)\;> i =1+ lim 2 (;(-:)Cr)z—}d -

< 00.

This proves (6.3). O

This paper encounters monotonic solutions of some Emden-Fowler equations
(see [2]). We were unable to find in the literature the asymptotics as x — 0 of
solutions with known asymptotics at x — co. These small x asymptotic behav-
iors are important and are proved in the present paper using a comparison
principle which can be extended to more general Emden-Fowler equations. Also,
the scaling limit in Theorems 2.1, 3.1, 4.1 and 5.1 seems an aspect worth studying
for a general class of semilinear differential equations (see a brief remark
following Theorem 2.1). The result in [8] has been extended in [4] to the case of
measure-valued critical branching process and the case of an infinite variance
branching mechanism. It can be seen that the result in this paper is extendable
to the same direction.
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