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RANDOMIZATION IN THE TWO-ARMED BANDIT PROBLEM

BY RoBERT C. DALANG

University of California, Berkeley

We give a short new proof of the existence of optimal solutions to a
continuous time formulation of the two-armed bandit problem, using a new
topological embedding of the set of randomized optional increasing paths. We
do not make any hypothesis on the two-parameter filtration, other than
completeness and right-continuity.

1. Introduction. The objective of this note is to give an elementary solution
to a general form of the continuous time two-armed bandit problem. This form
of the problem was suggested and solved under rather weak regularity assump-
tions by Mazziotto and Millet [11]. The theory of multiparameter processes had
already been used in the two-armed bandit problem by Mandelbaum [10], who
studied the case of diffusion bandits. A different formulation of the problem had
initially been solved by Karatzas [9]. References to the discrete version of this
problem can be found in [2] and [13]. .

The approach used in this note is that of [11]. The two-armed bandit problem
is expressed as the maximization of a function ¢ defined on the set of optional
increasing paths by

(Zu)uE_R+ i E(j'; XZu dv;):

where (X,),cgr2 is a (sufficiently regular) random process and (V,),cg, is a
bounded process with nondecreasing sample paths. The proof of the existence of
an optional increasing path (0.i.p.) at which ¢ is maximum uses the notion of
randomization, as developed by Baxter and Chacon [1] and Meyer [12] and used
for optimal stopping problems by Ghoussoub [8] and Dalang [4, 7] as well as by
Mazziotto and Millet [11]. The set of o.i.p.’s is embedded into a compact convex
set £, on which ¢ is extended to a (regular) affine functional ®. This extended
functional will attain its maximum at an extremal element of Z,. It turns out
that this element is, in fact, an o.i.p. and is thus a solution to the problem.

Many of the ideas in this note can already be found in [11], to which reference
could be made throughout. However, the topological embedding of the set of
randomized optional increasing paths is new and enables a resolution of the
problem that requires only straightforward topological arguments. Furthermore,
we carry out the proofs rather carefully and this allows us to remove an
unnecessary hypothesis on the two-parameter filtration (termed F5 in [11]). So
the theorem of Mazziotto and Millet becomes one of the first nontrivial results in
the theory of two-parameter processes which does not require any extra condi-
tion on the two-parameter filtration.
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2. Formulation of the problem. We first introduce some notation. The set
R, is endowed with its usual total order <, whereas on R% it is natural to
consider the two orders < and A defined by

s=(s,8)<t=(t,t,) ®s <t ands, <,
s=1(8,8) At=(t,¢t) = s <t and s, > ¢,.

For t € R%, we set |t| = t, + t,.

We shall add to R, and R? an extra element, denoted in both cases co, and
will set R,=R_ U {0}, RZ=R2U{c0}. These sets will be equipped with their
usual metric topologies making them compact. We will also suppose that ¢ < oo,
for all ¢ in either R, or R2.

Let (2, #, P) be a complete probability space. A two-parameter filtration
is a family (#,),cgz of sub-c-algebras of # which is increasing for < (s <t =
&, C %,), complete and right-continuous, ie., % =0N;s %, Vs €RL (t>s
means ¢, > s, and ¢, > s,). A random variable T: @ — R2 is a stopping point
provided {T < t} € %,V t € R2. ‘

An optional increasing path is a family Z = (Z,), g, of stopping points such
that u = Z,(-) is increasing (for <), |Z,| =u as.,V u € R, and Z_ = o as.
[note that Z, = (0,0) a.s.]. The set of all o0.i.p.’s will be denoted Z.

The following lemma is the crucial observation that allows removing Hypoth-
esis F5 of [11]. Its short proof, which can also be found in [6], Lemma 2.2, is
included for completeness.

21 LEMMA. LetZe€ %. Thenfor 0 <v <u,
(Z,A(v,u-0)) €Z,, ..

PrROOF. Set Z, = (Z, Z?2), and observe that
(Z,A(vu-0)}= N U {Z'sv+eu—v<Z2<u—v+e}.

e€Q, reQ,

Since Z, is a stopping point and (#,),c 2 is right-continuous, this event belongs
to #, 4, O

Let X = (X,);cr2 be a real-valued two-parameter process defined on
(2, #, P) with upper-semicontinuous (u.s.c.) sample paths such that
E(sup;cg2 X;) < o and let V= (V,),cr, be a bounded nonnegative right-con-
tinuous process with nondecreasing sample paths. The main theorem of this note
is the following.

2.2. THEOREM. For each Z € Z, set R(Z) = E( [z X, dV,). Then there is
an o.i.p. Z* € & such that R(Z*) = sup, . o R(Z), i.e., Z* is an optimal o.i.p.

2.3. REMARKS. (a) We do not assume any supplementary condition on the
two-parameter filtration. In particular, Hypothesis F5 of [11] is removed.
(b) We do not assume separability of the process X, as was the case in [11].
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(c) In Theorem 2.2 of [11], the random measure dV, is not assumed to be
positive. However, if dV, is for instance negative, the map Z — R(Z) will be
lower-semicontinuous instead of u.s.c. and it is not difficult to construct examples
where there is no optimal o.i.p.

3. Randomized optional increasing paths. Let & denote the space of
continuous processes Y = (Y,), g, such that E(sup,g,|Y,|) < co. ¥ equipped
with the norm |Y|| = E(sup,|Y,|) is a Banach space (processes that differ on an
evanescent set are identified). _

Following Meyer [12], a randomized random variable on R , is a nonnegative
process (A,),cw, With nondecreasing sample paths such that A, =1 as. Each
random variable S: > R + can be identified with the randomlzed random
variable defined by A, = I;5_,, and so the set of all random variables identifies
with a subset of the set % of all randomized random variables. It is convenient to
set A, =0 when v <0.

The set % is clearly convex and it is well-known that % is compact for the
Baxter—Chacon topology ([1], [12], [8]), that is, the smallest topology on % for
which the maps (4,),cw,~ E( [z, Y, dA,) are continuous, for all (Y,),cr, € ¥.

Observe that if (Z, )uEIR is an o.d.p., then Z, takes its values in the set
{s € R%: |s| = u} and so we can identify Z, with the element A* = (A}),cg, of
4 deﬁned by

(3~1) Ay = I{z},sv} = I(Z,,A(v,u—v)}’
By Lemma 2.1, A* satisfies
(3.2) A'is %, , measurable forall v <uand AZ=1 as.

For u € R, let " be the subset of elements of % for which (3.2) holds and
let %> consist of the single probability measure §,,.

3.3. LEMMA. %" is a closed subset of % and thus is compact.

PrRoOF. If ¥ is a sub-o-algebra of #, then an integrable random variable S
is @measurable if and only if E(SS) = E( E(S|9)8), for all (bounded) random
variables S. Now by the definition of the Baxter—-Chacon topology on %, the
conclusion of the lemma will follow from the observation that (3.2) is equivalent
to the following (since the filtration is right-continuous):

for all ueR,, v <u, ¢> 0, for all bounded random vari-
ables S and for all continuous functions f on R, such that

f=1lon[0,v]and f=0on[v + ¢ 0],
34 u| _ ,
(34) E(Sfﬁj(v)dAv) (E(S| veu-o) [ f(t)dA)

and, for all continuous functions g with support in [, c0],

E(S‘/':&g(v)dA‘;) = 0. O
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We can now embed the set 2 of 0.i.p.’s into the convex set I, g, % *, which is
compact for the product topology. However, this set is too large to be of interest,
since there is nothing in the definition of this set that corresponds to the fact
that o.i.p.’s are increasing families of stopping points. Now if (Z,),cw, is an
oi.p. and A? is defined as in (3.1), then the fact that u — Z,(-) is increasing

translates into the condition
(3.5) Al L <A'<AY Via<uVoe[0u],

utov =
so it is natural to define the set Z, of randomized optional increasing paths by
z - {A = (A%uer, € T 2 (35) holds}.
ueR

This definition is equivalent to that of [11].
3.6. LEMMA. £, is a closed subset of Il,cx %" and thus is compact.

Proor. By the definition of the Baxter—Chacon topology, it is sufficient to
observe that condition (3.5) is equivalent to the following:

for all & < u, for all bounded nonnegative random variables S
and for all nonnegative nonincreasing continuous functions f

(3.7) ©onR.,

E(sfmf(u—am)dAﬁ) <E

S/ﬁj(o)dAﬁ) < E(sjmf(u)dAg). O

3.8. LEMMA. £, is a convex set. The extremal elements of %, are exactly
those which correspond through (3.1) with elements of Z.

Proor. Convexity of &, is clear. From (3.1), it is also clear that each
element of & defines an extremal element of Z,.Now if A = (A*), g, € Z,, we
can define two elements ‘A and %A of Z,. by the formulas 'A% = m1n(2A 1) and
A% = max(2A* — 1,0). Then A and %A satisfy A = 1A + §2A and so A can be
an extremal element of %, if and only if 'A = A =2A. These equalities imply
that AZ € {0,1}, for all u,v. So A identifies through (3.1) with the o..p.
(Z,)uer,, Where

Z,=(Zu-2!) and Z.=inf{v: A%=1}. o

4. Existence of an optimal optional increasing path. Lemmas 3.6 and
3.8 show that 2, satisfies appropriate convexity and compactness properties.
We shall now show that the function ¢y: 2°— R defined by

ox(Z) = R(Z) = E( [EXZM qu)

extends, for regular processes X, to a regular affine function on Z,. A natural
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affine extension of ¢y is the function ®5: 2, > R defined by
®,(A)=E av,| dAXX, . .|
X( ) (‘/;i+ uj;i+ v “‘o,u u)

4.1. LEMMA. Suppose X € €. Then ®y is continuous on Z,.

The (technical) proof of this lemma will be given below. We now use this
lemma to prove Theorem 2.2.

ProoF oF THEOREM 2.2. 'This proof is similar to that of [4], Proposition 3.2;
[11], Theorem 2.2 and [7], Theorem 7.2. By the proof of Proposition 7.1 of [7],
there is a nonincreasing sequence (X "), < of elements of € such that

X (0) = lim | Xw), VteR2,Vwel
n—oo
(a similar statement for bounded separable processes was proved in [4]). Since
dV, is a nonnegative measure, we obtain
n— oo
By Lemma 4.1, this shows that ® is u.s.c. on Z,. Hence ® attains its maximum
on Z, and since @ is affine, this maximum is attained at an extremal element of

Z, ([3], I11.58, Proposition 1); by Lemma 3.8, this extremal element is an o.i.p.,
which is clearly optimal. O

We now turn to the proof of Lemma 4.1. Let .# denote the deterministic
elements of Z,, ie, a =(a"),cg,€# provided each a“ is a nonnegative
nondecreasing function such that a*(z) = 1 and

a (i —u+v)<a“(v)<a*(v), O0<i@<u,ve[0,u].

Let x be an integrable function on R%. For a € ./, let a(x): R,— R be de-
fined by

a(x)(u)=/ﬁx(u,u—u)dag, ueER,, a(x)(w)=x(x)

(note that if v > u, da” = 0 and so we can define x on R%2\ R?% arbitrarily).

4.2. LEMMA. If x is continuous on R2, then {a(x): a € A} is an equicontin-
uous set of functions on R _, i.e., for all € > 0, there is 8 > 0 such that

(4.3) lu—i| <8, acM = |a(x)(u) — a(x)()| <e.
PRrROOF. Since R + 1s compact, a standard argument shows that we only need

to prove that for all ¢ > 0 and for each fixed u € R ,, there is 8 > 0 such that
(4.3) holds. The case u = oo follows immediately from the continuity of x at co,
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so we assume u € R ,. Now

la(x)(u) — a(x)(@2)] < fﬁx(v,u—v)da{j—/ﬁx(o,u—v)daff

+

+

j%x(v,u—v)daﬁ—[ﬁx(v,ﬂ—v)da,’f

Since x is uniformly continuous on R2, the second term on the right-hand side
will be small for all @ whenever i is close enough to u. So we only need to prove,
given a continuous function g: R, — R, that for all » € N and for each fixed
u € R, there is £ € N such that

(4.4) lu—idl <2 *aen = <27,

/ﬁ g(v)(da¥ — da?)

Fix n€N and u € R,. Set M = sup,|g(v)| and choose k2’ € N such that
|g(v) — g(¥)] <27 "/3 whenever |v — & <2 %+l Let /€N be such that
127F >u+1.

Fix k2 € N such that 2*~! > [M2"*2*¥'+3 and let @ € /. Since 0 < a*(v) < 1
and a(-) is nondecreasing, each interval J(j — 1)27%, j27*#7] contains at least
one dyadic point v; of order £ (v; depends on a and on u) such that

aﬁj+2-k - at'jj_2-k < 2_"—k’_3/(lM).

Indeed, the interval ](j — 1)27%, j27%] contains at least 2% /27%+1 =
2k—1=F > IM27+#+3 disjoint intervals of length 2#+1, Set v, = 0. Observe that
for | — u| < 1, the definition of &’ implies that

12F

[ &(v) dai~ ¥ g(v,)(al - ak )| <27"/3.
R, J=1

J

Now if |u — i| < 27%, then

[ &(v)(da¥ - da?)| < 227"/3
R,
9% 2% } .
(4.5) +| X g(v)(as —a¥ ) - X g(v)(al —al_)
j=1 J=1
12F .
<2278+ MY (ja¥ - a| + |a¥  —al |).
Jj=1

Using (3.5), it is not difficult to see that
lay, — all < af v —al_p-s <2773 /(IM),

both when & < u and when & > u. So the last expression in (4.5) is not greater
than 27" /4. This completes the proof. O
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PrROOF OF LEMMA 4.1. Let V* denote the increasing process defined by

k2t
Vuk = Z AV}k I(ﬂ"’su)’ where AVJ'k = ‘/}2_k - V(j_1)2_k.
J=1

Since X € ¥, it is not difficult to see using 4.2 that

sup
AeZ,

r

- 0 a.s.
k— o0

[ A @) av, - [ AX)(u)avt

Fix £ > 0. Again since X € ¥, it follows that we may choose £ € N such that

(4.6) E ( sup
AeZ,

/ﬁ A(X)(u)dv, - [ﬁ A(X)(u) dV

) <¢g/3.
Fix A € Z,, and define an open subset 0 of &, by
E((A(X)(j27%) - A(X)(j27)) av})|

<k7l27Res3, j=1,..., k2k}.

(0={A'e£’,:

Using (4.6), we see that for A € 0,

‘E(fﬁff(X)(u)qu) - E(fﬁ+A(X)(u)qu)

<2g/3 + <e

E(/ﬁ+A(X)(u)dV,,") - E(/ﬁ+A(X)(u)quk)

by the definitions of ¢ and V*. This completes the proof. O
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