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ON EXTREMAL THEORY FOR STATIONARY PROCESSES'

By J. M. P. ALBIN
University of Lund and Lund Institute of Technology, Sweden

Let {£(¢)),»0 be a stationary stochastic process, with one-dimensional
distribution function G. We develop a method to determine an asymptotic
expression for Pr{sup, . ;. &(¢) > u}, when utsup{v: G(v) < 1}, applica-
ble when G belongs to a domain of attraction of extremes, and we show that
if G belongs to such a domain, then so does the distribution function of
SUP, < ¢ < 5 £(¢). Applications are given to hitting probabilities for small sets
for R™-valued Gaussian processes and to extrema of Rayleigh processes.
Further, we prove the Gumbel, Fréchet and Weibull laws, for maxima over
increasing intervals, when G is type I-, type II- and type IIl-attracted,
respectively, and we establish the asymptotic Poisson character of e-upcross-
ings and local e-maxima.

1. Introduction. Throughout this presentation, we let {£(¢)},., denote a
strictly stationary, real valued, separable stochastic process, with one-dimen-
sional distribution function G. We shall also assume that our basic probability
space (2, F, P) is complete and write —; and & for weak convergence and
sup{u: G(u) < 1}, respectively. Further, we define U = 47, when & < o0, and
U = o0, when & = oo (the symbol U is to be used in “lim,, _, ;,-like” operations).
A quantity of constant interest will be the maximum M(B) of £(¢) over a Borel
set B, i.e., M(B) = sup,c g £(¢), and we shall use the abbreviation M(T') for
M((0, T']), when T > 0 is a real number.

Following such pioneers as Rice (1939, 1945), Kac and Slepian (1959),
Volkonskii and Rozanov (1959, 1961) and Slepian (1961, 1962), the present view
of extremal theory for stationary stochastic processes began with the papers by
Cramér (1965, 1966) [see also Cramér and Leadbetter (1967)], in the case with
finite upcrossing intensity, and by Pickands (1969a, b), when the upcrossing
intensity is infinite. Both Cramér’s and Pickands’ papers concerned Gaussian
processes, but their ideas are of much broader applicability.

Improvements of Cramér’s papers were furnished by Belayev (1966,
1967a, b), Qualls (1968) and others, while, e.g., Berman (1971), Qualls and
Watanabe (1972), Bickel and Rosenblatt (1973), Lindgren, de Maré and Rootzén
(1975), Cuzick (1981) and Leadbetter, Lindgren and Rootzén (1983) provided
improvements of Pickands’ results.

There has been more recent work on extremes for processes with finite
upcrossing intensities, directed away from the Gaussian case. See, e.g., Sharpe
(1978), Lindgren (1980, 1984, 1989), Leadbetter and Rootzén (1982, 1988) and
Aronowich and Adler (1985, 1986). Recent studies of processes with infinite
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upcrossing intensities can be found in Lindgren, de Maré and Rootzén (1975),
Berman (1982, 1983, 1988), Leadbetter and Rootzén (1982, 1988) and Leadbetter,
Lindgren and Rootzén (1983).

In this treatment we consider extrema of (not necessarily Gaussian) processes
with, possibly, infinite upcrossing intensities. Our concept is to apply the meth-
ods of Pickands (1969a), Lindgren, de Maré and Rootzén (1975), Leadbetter and
Rootzén (1982) and Leadbetter, Lindgren and Rootzén (1983) to ideas of Berman
(1982).

We apply our results to hitting probabilities for small sets for multidimen-
sional Gaussian processes and to extremes of Rayleigh processes. In Albin (1987),
they are applied to I'- and VF -like processes (the latter being the quotient of two
processes of the kind introduced in Section 3). In two publications in prepara-
tion, we give an application to a general class of differentiable processes and
[using ideas of Berman (1985)] extend our results to nonstationary processes.

Berman (1982) [see also Berman (1983)] studied maxima over finite intervals
of stationary processes whose one-dimensional distribution function (d.f.) G
belongs to the type I domain of attraction of extremes, with & = co. We shall
extend his setting by studying processes for which G belongs to any of the three
domains of attraction of extremes. More specifically, we shall assume that there
exist functions w and F and constants x; < 0 < x, such that

1 -G(u+ aw(w))
(1.1) 'llgnU = Ga) =1-F(x) forall x; <x <xy.
Hence, as was shown by Gnedenko (1943) [see also de Haan (1970) and Resnick
(1987)], if G belongs to the type I domain of attraction of extremes, then (1.1)
holds with F(x) =1 — e™%, x;, = — o0, and xy = 00, and with lim, , , w(u)/u =
0 when & = o0 and lim,_,w(u)/(& —u) =0 when & < oco. Further, if G
belongs to the type II or the type III domain of attraction, then (1.1) holds with

& = oo, F(x) =1 — (1 + x)~% (for some constant b > 0), x, = —1, x;; = oo and
w(u) = u, and with & < o0, F(x) =1— (1 — x)® (for some constant b > 0),
x;, = —o00, Xz =1and w(u) = & — u, respectively.

In Section 2 we derive an asymptotic expression for the probability
Pr{M(h) > u} when u — U. Our approach is based on ideas of Pickands (1969a),
Berman (1982) and Leadbetter, Lindgren and Rootzén (1983). We show that if
there exist functions w and F such that (1.1) holds and a function g(u) such that
the finite-dimensional distributions (f.d.d.’s) of {((£(g?¢) — u)/w(w)|(£(0) — u)/
w(u) > 0)},. , converge weakly to those of some process {{(¢)},.,when u - U,
then

} ~ hg-(l—_—G(u—)) when u - U,

q(u)
where H = lim, | (1/a)Pr{sup, ., {(ak) < 0}. In order to make this result valid,
we have to impose two extra conditions on £(#). The first one guarantees that, as

expressed by Berman (1982), “after going above a high level u, the sample
function tends to fall quickly to some point below u.” The second condition

(1.2) Pr{ sup £(¢t) > u

0<t<h
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ensures that our discrete approximation becomes sufficiently accurate when the
step length tends to zero.

In (1.2) it is crucial that H is strictly positive, since if H = 0, (1.2) merely
yields an upper estimate for Pr{M(%) > u}. We shall prove that H > 0, while, in
analogues of (1.2) in the literature, it seems unclear if the inequality H > 0
follows from the invoked arguments [see, e.g., Berman (1982)].

We also prove, rather than conjecture, the fact that G and the d.f. of M(A)
belong to the same domain of attraction.

In extreme value theory one often has to impose certain conditions on the
asymptotic accuracy of the discrete approximation. We shall provide a simple
and general criterion, formulated in terms of two-dimensional probabilities only,
which ensures sufficient accuracy of the discrete approximation.

We also show that

 Pe(M(R) > u)
T 6w e T

and

i Pr{M(h) > u} -
eyt - Gw)/a() =%

provided that simple two-dimensional conditions hold.

Berman (1982) uses the “sojourn” approach, that is, he derives results for the
time L,(u) spent above a level u, by the process {£(¢)} . ;5 and then converts
his results to extrema. Our approach shall be different and shall rely on the
method of discrete approximation of Pickands (1969a).

Let w,,...,w, be stationary Gaussian processes. In Section 3 we use the
results of Section 2 to derive an asymptotic expression for the probability that
the process {u(w(2),..., w,(¢)}o << Visits A when u — oo, where A is an open
star-shaped set with Lipschitzian boundary. Our result is valid under certain
conditions on the covariance structure of w,..., w,,.

Let »(¢) be a Rayleigh process, (i.e., the root of a sum of squares of Gaussian
processes). In Section 4 we apply the results of Section 2 to derive an asymptotic
estimate of the probability Pr{sup,_,_,»(¢) > u}, when u — oo, under certain
conditions on the covariance structure, as in Section 3.

In Section 5 we combine our results from Section 2 with results from
Leadbetter and Rootzén (1982), to obtain the Gumbel, Fréchet and Weibull laws,
for maxima over increasing intervals, for processes with G type I-, type II- and
type Ill-attracted, respectively. The conditions we impose on £(¢) are those of
Section 2 and Conditions D and D’ of Leadbetter and Rootzén (1982).

Our last task is to study asymptotic Poisson process characteristics of e-
upcrossings and local e-maxima. The ¢ prefix refers to a method, given by
Pickands (1969a), for handling clusters of upcrossings. Our approach resembles
those in Lindgren, de Maré and Rootzén (1975) and Leadbetter, Lindgren and
Rootzén (1983). Now, writing ¢, £,,... for the e-upcrossings of the level u by
&) and T(u) = q(u)/(HQ — G(u))), we show that the random collection
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{t.,/T(u), i = 1,2,...} converges weakly to a Poisson process on (0, «0), when
u — U. Further, letting ¢, £,,... denote the local s-maxima for £(¢), we prove
that {(¢;,/T(u), (&(t;) — u)/w(u)), i =1,2,...} converges to a Poisson process
on (0, ) X (x, x5), with intensity measure equal to the product of Lebesgue
measure and that defined by the increasing function —(1 — F(x))!~°. Here
¢ € [0,1] is a constant such that q(u + xw(u))/q(u) - (1 — F(x))¢, when u —
U, for x; < x < xy. The conditions required are essentially the same as those
required to establish the limit laws for maxima over increasing intervals.

2. Maxima over finite intervals. In this section we derive an asymptotic
expression for Pr{M(4) > u} when u — U.
In order to formulate our conditions, let A be a subset of R.

ConpITION A(A). This condition is said to hold if there exist a function
F(x), continuous at x = 0, a strictly positive function w and constants x; < 0 <
Xg, such that

2.1 l'm1 ( ())—I—Fx) for all x xX<x
i j— < <
( ) ul—>U l—G(u) ( Y L H

and if there exist a random sequence {{, ,(k)}%-, and a strictly positive function
q, with lim, _ ;; (1) = 0, such that, for all @ > 0,all Nand all y € A,

§(ag) —u  £(agN) —u|§(0) —u
w(u) 7777 w(u) w(u)

>y) =5 (8a, 5(1)5-445 8, ,(N))
(2.2)
when u —» U.

Berman (1982) has a similar condition in his type I setting, although he
requires continuous f.d.d.’s for the sequence {{, ,(k)}¥-,. If G belongs to a
domain of attraction, then (2.1) holds (cf. Section 1). Further, (2.1) implies that
Pr{(£(0) — u)/w(u) < x|(£(0) — u)/w(u) > 0} converges, and it therefore seems
natural to assume the existence of g and {{, ((k)}%-,, with the listed properties.

We now come to the “short-lasting-exceedance” assumption.

ConNbpITION B. This condition is said to hold if

[~/(aq)]
limsup Y Pr{é(aqgk) > u|£(0) >u} -0
u—=U k=N

when N — oo, for all fixed a > 0.

Condition B is a discrete time analogue of a condition used by Berman (1982).
In Albin (1987), Chapter 5, we exemplify that the asymptotic behaviour of
Pr{M(h) > u} changes when Condition B is only “slightly violated.”

The following conditions ensure accuracy of the discrete approximation.
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ConbpITiON C. This condition is said to hold if the function F(x) is strictly
increasing in a neighbourhood of x = 0, if the function ¢ is nonincreasing and if
i i Pr{M(aq) > u + dw(u), £(0) < u}
msup lim sup =
(2.3) alo u-U a(l - G(u))

for all é > 0.
CoNDITION C°(A). This condition is said to hold if

(u)
lim sup lim sup

q
——FPr{M(h) > u + yw(u),
all u—-U 1- G(u) { ( ) ( )

max £(agk) <u +yw(u)} =0 forall ye A.
O<agk<h

Here and in the sequel, the parameter k& runs over the integers, i.e.,
max0<aqksh§(aqk) = max{é(aqk): k€ Z, 0 < agk < h}. In Theorem 6 we
give a simple sufficient criterion for (2.3) to hold, formulated in terms of
two-dimensional probabilities only [see also Theorems 2(c), 5 and 7].

Observe that the function g(u) is the same in Conditions A, B, C and C° and
that the function w(u) is the same in Conditions A, C and C°.

THEOREM 1. If Conditions A({0}) and B hold, and if either Condition C or
Condition C°({0}) holds, then the limit

lim — Pr{sup{a (k) < 0} H

k>1
exists with 0 < H < oo, and
H(1 - G(u))
Pr{M(h) > u} ~ h——w—— whenu - U.

Proor. Let

H(N,a) =1+ Pr{ max_ $ao(k) < O} + .. +Pr{  max {,, ol k) < O}

and let 0 < 8 < max{—x, xy). Using induction over N, we shall prove the
inequalities

lulrln_'sgp T G( ) {  max ¢(agk) > u — Sw(u)}
(2.4) < H(N, a) — NF(-39),
lllll'lllll}f 1_;7)_ { ma<xN£(aqk) >u+ 8w(u)}

> H(N, a) — NF(8),

for N > 2. To that end, write A(i, j) = {max;_, . ;§(agk) > u — dw(u)} and
B(i, j) = {max, _, . ;é(agk) > u + dw(u)}. We then have, by stationarity, (2.1),
(2.2) and the fact that the d.f. of max, _, < 5 {, o(k) has at most countably many
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points of discontinuity,

e PAO N Br(a(1,3))
o 1-6w S P TI- 6w
+ limsupPr{A(l, N)° £_(0)_—l£ 0}
u—-U w(u)
(2.5) + limsup Pr{u - 81w(u();(< f(O) <u}
u—-U - u

li PI'{A(O, N - 1)}
=T G
+Pr{ max ¢, o(k) sO} — F(-8) forN>2

o 1<k<N
and similarly

.. Pr{B(O,N)} ~ Pr{B(1,N)}
L WO S e o
+ li'?lilr}fPr{B(l, N)° g_(:l)))(u;)u > o}
(2.6) ~ Jimeu Pr{u < £(0) < u+ sw(u))
e 1- G(u)
> Timint B0 N ~ 1)

u-U 1-— G(u)
+Pr{lrsr}ea<xN ¢aolk) < 0} — F(8) forN=>2.
Now, (2.5) and (2.6), by (2.1) and a simple identification, yield that (2.4) holds for
N = 2. If, further, (24) holds for N = M, then (2.5) and (2.6) show that (2.4)
holds also for N = M + 1. Using induction over N, we conclude that (2.4) holds
for all N > 2. Letting & | 0 in (2.4), we readily obtain

. 1
(2.7) ull_r)nUmPr{ Og}eaj(Né(aqk) > u} = H(N, a).

Now, writing C(i, j) = {max,_, . ;&(agk) > u}, we have, by (2.7), Boole’s
and Bonferroni’s inequalities and stationarity

JHNa) h Pr{C(0, N))
aN P aN T1-6(a)

: q(u)
> hfln_)sgp m Pr{ OST;eXs hé( aqk) > u}

... a(u)

= hz?lllljlf 1__G(u7PI'{
hH(N,a) 0

> —_—

= aN pN1

(2.8)

Osrgqa}exshg(aqk) Z u}
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where, letting m = [h/(agN)],

PN = lir:l_)sgp % Osr§8<mPr{C(rN,(r +1)N),C(sN,(s + 1)N)}

. h Pr{C(0,N),C(N,2N)}
lim sup —

IA

u-U aN 1- G(u)
iy h m=1Pr{C(0, N),C(rN,(r + 1)N)}
St aN =, 1- G(u)
h(2H(N,a) H(2N,a)
< —_— —
T a N N
) h /@Dl Pr{£(0) > u, £(agk) > u)
+ limsup — ),
u-U @ p=N+1 1 - G(u)

Here the first term in the last inequality follows from (2.7) and the fact that
Pr{A n B} = Pr{A} + Pr{B} — Pr{A U B}. Now, we have
. H(N,a) 1
Jim == = S Pr{sup £, o(k) < 0} = H,,

so that limy_, (2H(N, a)/N — H2N, a)/N) = 0. Hence we obtain, by Condi-
tion B, lim 5 _, , py = 0. Letting N — oo in (2.8), we thereby conclude

. q(u)
(29) z}gllv 1-G(u) {

Now, let § = q(u — dw(u)) for 0 < § < —x, and assume that Condition C
holds. Then we have, by (2.1), (2.9) and Boole’s inequality, and since §/q > 1,

q(u)

h
max hé(aqk) > u} =hH, = ZPr{ :irl){a'()(k) < 0}.

O<agk<

b, = Jim, =Gy o 8 (0ak) > )

. q(u)
< lllfllllljlf 1= G(a) Pr{M(h) > u}

, q(u)
< limsup ———=——Pr{M(h) > u}

umvU 11— G(u)
(2.10)
< limsup ﬂPr{ max £(agk) > u — 8w(u)}
T usvu 1-G(u) O<agk<h
. q(u) i
+ hzn_)sgp 1= G(a) Pr{M(h) > u, Osr%akxshg(aqk) <u- Sw(u)}

Pr{iM(ag) > u,£(0) <u - dw(u
< h(1 - F(=8))H, + limsuphttiM(ad) > u, £0) ()}
u—-U a(l - G(u))
Let m = liminf, , ; w(u)/w(u — dw(u)) and assume that m = 0. Then, to
each constant a > 0, there exists a sequence {u,}%_,, such that u, > U when
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n — oo and such that aw(u, — dw(u,)) — dw(u,) > 0 for all n. Clearly, (2.1)
yields that u, — dw(u,) » U when n — oo and hence it follows, again using
(2.1), that

1 1- G(un)
1-F(=8) 1-G(u, - ow(u,)

J1- G(u, — dw(u,) + aw(u, — dw(u,)))
- 1-G(u, - duw(u,))

- 1-F(a)

when n - o. Here 1 — F(—8) > 1, since F is strictly increasing, and letting
a0 we obtain 1 = lim_, (1 — F(a)) < 1/(1 — F(-9)) < 1, which is a contra-
diction. Thus we have m > 0, and letting & = u — Sw(u), we therefore obtain,
by a change of variable,

L Pr(M(ad) > u, 4(0) < &)
Y a(1 - G(u))

) Pr{M(ag) > & + ;8mw(&), £(0) < &}
(2.11) < luunﬂsgp(l — F(-9)) (= G(2))

IA

) Pr{M(aq) > u + ;8mw(u), £(0) < u}
e (1= G(w)

Combining (2.3), (2.10) and (2.11), we conclude

) s Pr{M(h) > u} < limsu Pr{M(h) > u}
limsup hH, < i ot G @) /a(w) = "5 (1= G(w)) /()

< liminfh(1 — F(-8))H,
al0

for 0 < § < —x,. Here the middle limits are independent of a and, by (2.3), (2.9),
(2.10) and (2.11), finite. Hence we have limsup,, H, < oo and it follows, by
letting & | 0, that the limit lim,  , H, = H exists and is finite, with

e Pr{M(h) > u} _
u=U (1 = G(u))/q(u)

On the other hand, if Condition C%{0}) holds, then the fact that

RO
o = G(u)/q(u) ~ aloe =

readily follows from taking 6 = 0 in (2.10).
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It remains to show that H > 0. By Bonferroni’s inequality, we have

Pr{max,_ g < 1 §(agk) > u}
hH, = lim —
s (1-G(u))/q(u)
. h W @DI Pr{£(0) > u, £(agk) > u}
eI 5T ew

and since, by Condition B,

. [r/(aNO) Pr{£(0) > u, £(aNgk) > u}
limsup Y

u->U k=1 1- G(u)
1. [h/gq)] Pr{£(0) > u, £(agk) > u)
< limsu
u— Up k=N 1- G(u)

when N — oo, we have H; > 0 for @ sufficiently large. Now,
Pr{OISI}ea:(N ¢(dqk) > u} < Pr{osnzian £((a/n)qk) > u},

so that, by (2.7), H(N, @) < H(Nn, 4/n). This yields
H(Nn,d/n) . H(N,a)

H= lim H;,, = lim lim

—_— Y = —A=H~>O. O
n— oo n—>oo N—- oo Nn(a"/n) N— o0 Ndé @

As a simple consequence of Theorem 1, we have the following theorem.

THEOREM 2. (a) If (2.1) and Condition C hold with lim, _, ; q(u) = 0, then
lim sup Pr{M(h) > u} < 0.
wv (1= G(u))/q(u)
(b) If Condition B holds with lim,_,; q(u) = 0, then
. Pr{M(h)>u
B G (]~
(c) If Conditions A({0}), B and C hold, then Condition C°({0}) holds.

PrOOF. (a) Since

q(u) hql-G(&)
lim sup ———>—P k) > i) < limsup — = ———— |
n,flf,‘jp 1 - G(u) r{oggfshg(aq )> u} = f,nf‘,}p adl-G(u)

we obtain, by (2.1), (2.10) and (2.11), and in view of the fact that g is
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nonincreasing,

lim sup Pr(M(h) > u}
umv (1= G(u))/q(u)

h ) Pr{M(aq) > u + 8mw(u), £(0) < u}
< ;1-(1 - F(-8))|1 + hzn_'sgp 1= G(a)

for 0 < 8 < —x,, where, by (2.3), the right-hand side is finite for small a.
(b) An easy analysis of the proof of Theorem 1 yields that, for large N,

Pr{maXOsaqush'f(aqu) > u}

lim inf

u=U (1 - G(u))/q(u)
i 2h W @DI Pr{£(0) > u, £(agk) > u)
=aN T TSPON &, 1- G(u)

(c) The fact that Condition C°{0}) holds follows from letting first a |0 and
then & | 0 on the right-hand side of the readily established inequality

lit;n_)sgp l—_q—%Pr{M(h) > u, Osr‘rzlqa}fshg(aqk) < u}
< limsup —q(LPr{M(h) >u+dw(u), max §¢(agk) < u}
uov 1 —G(u) O<agk<h
+ lim sup Pr{u<M(h) <u+ dw(u))
u— U (1 - G(u))/q(u)
- limsuphPr{M(aq) > u+ dw(u), £(0) < u}
u-U a(l - G(u))
+hHF(8) for0 <8 < xy. O

Theorem 2(c) will be of interest in Section 5. The following result can be
useful when verifying (2.2) [cf. Section 4 and Berman (1982)].

THEOREM 3. If G has a density g and if there exist constants x; < 0 < xy, a
strictly positive function w and a function F(x), continuous at x = 0, such that
(2.1) holds and such that F: (0, xy) — R is a proper d.f. possessing a density f
such that, writing xp = sup{x < xy: F(x) <1},

(2.12) L w(u)g(u+xw(u))  (f(x) foralmostall 0 < x < x,
. wy 1-G(u) o for almost all x, < x,

and if there exist a random sequence {m, (k)}3., and a strictly positive
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function q, with lim,_, ; ¢(u) = 0, such that, for all a > 0 and all N,
(é(aQ) —u  £(agN) —u|£(0) ~u x)

w(u) 7777 w(u) w(u)
_’D(Tla,x(l),---,na,x(N)) whenu — U,
for almost all 0 < x < xj, then Condition A([0, xz)) holds with

il 0 o) b = [T O (sl 52| 150 a

(2.13)

Proor. Write S, S,, G(u; - ) and G, (u; - ) for the d.f.’s of
( a, y(1)7 LR §a, y(N))’ (na,x(l)’ (RS na,x(N))’

§(ag) —u  4(agN) — u|£(0) —u
w(u) 777 w(u) w(u)

-

and
fog) ~u  f(aaN) —u[§O -u

w(u) 77 w(w) w(u) ’
respectively, where y € [0, x). Let 8 = (§,...,8) for § > 0 and let

(x) = w(u)g(u + xw(u))
PAX)=7C G(u + yw(u))

Since S, has at least one point of continuity in each nonempty rectangle and
since, by (2.1) and (2.12), p,(x) = f(x))/(1 — F(y), we have, by (2.13) and
Fatou’s lemma,

f(x)

S(% - 8) = fy"psx(x - E)de

</ “liminf (G.(; ¥)p,(x)) dx < liminf G (u; ¥).

On the other hand, since p,(x), x > y, and f(x)/(1 — F(y)), ¥y <x < xp, are
densities, we get, by Scheffé’s theorem [cf. Berman (1982) and Billingsley (1968),
page 224],
S(x+8) > folimsup(Gx(u; %)p,(x)) dx > limsup G(u; x).
y u-U u—-U

Hence we have lim, _,;; G(u; X) = S(X), for continuity points x of S. O

The idea to use Scheffé’s theorem is taken from Berman (1982).
In Theorem 4 we shall see how (2.1) and (2.12) relate.
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THEOREM 4. (I) If G is type I-attracted and if G has a density g such that
&(u) is nonincreasing for all u > u,, for some constant u, < @, then (2.1) and
(2.12) hold with w(u) =1 — G(u))/g(u), x, = —c0, xy= 0 and F(x) =
1—e™™

(D) If & = oo and G has a density g such that

- ug(u)
ulgr:o 1—G(u) _b>0’
then (2.1) and (2.12) hold with w(u) = u, x;, = —1, x;; = o0 and F(x) =1 —
1+ x)"t
(II) If & < o0 and G has a density g such that

(& —u)g(u)

lim =b>0,

u-U 1-— G(U)
then (2.1) and (2.12) hold with w(u) = 2 — u, x;, = — o0, x5 =1 and F(x) =
1-(1-x)°

Proor. (I) If (2.1) holds with F(x) =1 — e™*, x;, = — o and x; = oo, then

we have
o w(u + xw(u))
(2.14) lim ——————= =1 forallreal x.
u-U w( u)

In order to prove this, assume that lim, _, jw(u + xw(u))/w(u) > a > 1, for
some x € R. Then there exists a sequence {u,}*_, with u, > U when n — oo,
such that, for all n, w(u, + xw(u,)) — aw(u,) > 0. Letting @, = u, + xw(u,),
we therefore get, by (2.1),

1-G(u, + (1 + a)xw(u,))
1-G(u, + xw(u,))

e «

1-G(a, + xw(i,))
=T 1-6(@,)

1-G(a, + xw(i,))
=T 16,

e ifx>0,

—-e* ifx<0,

when n — oo, which is a contradiction. Thus we have

. w(u + xw(u))
limsuyp ———M =
u-U w(u)

and, similarly, it can be seen that liminf, , ,w(u + xw(u))/w(u) > 1, so that
(2.14) holds.

Now, according to de Haan [(1970), page 88], in view of the fact that g is
nonincreasing, (2.1) holds with w(u) = (1 — G(u))/g(u), x, = — 0, xz=
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and F(x) =1 — e * [cf. Lemma 5.1 in Berman (1982)]. Using (2.14), this yields
w(u)g(u + xw(w))  w(u)(l - G(u+ xw(u)))
1 - G(u) ~ w(u + 2w(u))(1 - G(u))
(II) Since lim, _, , ug(u)/(1 — G(u)) = b, Leadbetter, Lindgren and Rootzén
[(1983), pages 16 and 17] show that (2.1) holds with w(u) =u, x;, = —1,
xy = o0 and F(x) =1— (1 + x)~%, so that
ug((L+x)u) 1 (1+x)ug((l+x)u)1-G((1+x)u)
1-G(u) 1+x 1-G(Q+x)u) 1 - G(u)

> 1-F(x)=F(x).

- b(1 +x) D,

(ITII) The proof of (II) carries over with only obvious modifications. O

In Theorem 5, which will be of interest in Section 5, we relate Conditions C
and C° and show that G and the d.f. of M(h) belong to the same domain of
attraction, that is, that there exists a constant ¢ € [0, 1] such that

(2.15) l}gllu(l(t‘;(—gfs)(lt)) = (1 - F(x)) forx, <zx < xy.

THEOREM 5. (I) If Conditions A({0}), B and C hold, with w(u) continuous
for all u> u,, for some constant u, <, x; = —o0, xyz= o and F(x) =
1 — e~ %, then Condition C°(— o0, )) holds. If, in addition, Condition A([0, o))
holds, then there exists a constant ¢ € [0,1] such that (2.15) holds.

(II) If Conditions A({0}), B and C hold, with &t = o, w(u) = u, x;, = —1,
%Xy = o0 and F(x)=1- (1 + x)~%, for some constant b > 0, then Condition
C%(—1, o)) holds. If, in addition, Condition A([0, ©0)) holds, then there exists
a constant ¢ € [0,1] such that (2.15) holds.

(IIT) If Conditions A({0}), B and C hold, with &t < oo, w(u) =0 — u, x; =
-0, x5 = 1land F(x) =1 — (1 — x)®, for some constant b > 0, then Condition
C%(— o0, 1)) holds. If, in addition, Condition A([0,1)) holds, then there exists a
constant ¢ € [0,1] such that (2.15) holds.

PROOF. Suppose we can prove that, for all sufficiently small § > 0,

lim sup lim su Pr{M(aq) > u+ (y + 8)w(u), £(0) < u + yw(u)} =
awp u—»Up a(l — G(u))

(2.16) for fixed y € (x,, xy).

0

Letting & = u + yw(u), for y € (x,, x), we have

i su (1 - G(& + dw(u)))q(@) . 1-F(y+39)
oy (1- G(2)q(a + dw(w)) = 1-F(y)

for § > 0 small,



ON EXTREMAL THEORY FOR STATIONARY PROCESSES 105

and
i su (1-G(a))q(u)
o (- G(u)qg(a) =

(the latter inequality follows from Theorem 1 when y > 0). Hence Theorem 1
yields

— F(min{0, y})

lim su 9(u)
u-»Upl G( )

< limsuph T 1M(09) > @ + du(w), §0) < a)
ey a(l - G(u))
T T sup TR < M(R) < @ + Su(u))

e (- G(w)/a0)

< limsuphPr{M(aq) > i+ dw(u), £(0) < i)

T U a(l — G(u))

1-F(y+39)

T1-F(y)

Letting first a |0 and using (2.16) and then 8 |0, it follows that Condition
CO(xy, x5)) holds. Thus, in order to show that Condition C%(x,, x5)) holds, it
is sufficient to prove (2.16) in cases (I)—(III).

(I) Assume that y > 0. Clearly, the arguments used in (2.10) and (2.11) also
yield

Pr{M(h) > u + yw(u), Osrgqe}exshg(aqk) <u+ yw(u)}

+(1 — F(min{0, y}))rH|1 —

q(u)
hH, < hmmf G )Pr{M(h) > u}
<h(l- F(—8))

(2.17)

M(aq) >u + 18 ,£(0) <
hmme — + limsup Pr{M(aq) > u + 38mu(u), £(0) < u}

for 6 > 0,

where § = q(u — dw(u)). Letting a |0, we get liminf,_ ;(g/q) > 1/
(1 — F(—4)). Hence we have

(2.18) lim sup M

u—-U q(u)

Now we have, by (2.14), u — 2zw(u) + zw(u — 2zw(u)) < u < u + zw(u) for
large u < & for fixed z > 0. Hence, since w is continuous, the functions v,(z) = u
and vy(u) = u + zw(u) must run over the same set of values for large u < &.
Thus the change of variable u — u + zw(u) is allowed in limit operations.
Choosing a & > 0, letting N = [(2/p)(y + 8§/2)] + 1 and using (2.14) and (2.18),

< 2 for some constant p € (0,1).
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we therefore get

q(u - (¥ + 38)w(u))

lim sup
u—U q(u)
q(u - Njpw(u))
< limsup ——mmM
u—U q(u)

(2'19) < 1\1,:[1 lim sup q(u —(n+ 1)%pw(u))

n=0 u-U q(u - n%pw(u))

=TT timenp 2 (n = Dipw®) = (n+ Dipu(u + (~ Hipu(w))
0

v a(u+ (n=})iow(n) - njow(u + (n - })iow(w)))

N-1 u— pw(u
Writing & = u — (y + 38)w(u) and § = q(i), we conclude, by (2.19) and (2.3),
lim sup Pr{M(aq) >u+ (y + 8)w(u), £(0) < u + yw(u)}
u-U a(l - G(u))
< limsup Pr{M(aq) > i+ (y + 8)w(ir), £(0) < & + yw(i)}
. a(l - F(-y - $8))(1 - G(u))

< Ii Pr{M(a2"q) > u + (8/4)w(u), £(0) < u}
g a(l - F(-y - 38))(1 - G(u))

so that (2.16) holds for y > 0. The case when y < 0 is treated in a similar way.
[Actually the proof is simpler when y < 0, since (2.19) automatically holds.]

(II) First assume that y > 0. Clearly, (2.17) and (2.18) still hold, and choosing
an ¢ € (0,3p/(1 + »)) and an integer N with 1 — Ne € (3 /(1 + »),1/(1 + )),
we have, by (2.18),

on,

-0 whenalO,

u u — Neu
limsupq(u)_lq(i—_'_—y-) < limsup%
N-1
. g(u— (n+1)eu)
= 1] imep = e

1-—

Arguing as in the proof of (I), we conclude that (2.16) holds for all y € (x,, xg).
(III) Since the d.f. of (& — &(¢)) ! belongs to the type II domain of attraction
[cf. Albin (1987), Chapter 9] and since

1 7Y 1 1 . t-u 1
— — - = <x iff = <1-
a—u a—-§¢& G-u —u 1+x

N-1
=TI limsupq(u)_lq(u -

n=0 u—o00

€
u) < 2N,
ne

for all x > —1, it is a routine matter to derive (III) from (II).
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It remains to prove (2.15) in cases (I)-(II).

(I) Let G(y; - ) denote the d.f. of £(¢) — yw(u) and write & = u + yw(u) for
¥ 2 0. Then we have (1 — G(y; u + xw(u)))/(1 — G(y; u)) » 1 — F(x) and, by
Condition A([0, x;)),

§(ag) —&  &(agN) - &
(2.20) w(u) 777 w(u)
_)D(ga,y(l)""’ ga,y(N)) - ).

Now, an analysis of the proof of Theorem 1 shows that if Conditions A({0}), B
and C°({0}) hold for a “u-dependent” process £,(t), (stationary for each fixed u),
then the conclusion of Theorem 1 still holds. Consequently, we obtain

1-G(yu)
q(u)

1 - G(u+ yw(u))
q(u)
where H(y) = lim,  «(1/a)Pr{sup, ., {, (k) < y}. On the other hand, we have
1 - G(u+ yw(u))

q(u + yw(u))

Hence we deduce lim,_, q(u + yw(u))/q(u) = H(0)/H(y) = v(y) for
y = 0. Now, by (2.14),

£(0) — @ >0)

w(u)

Pr{M(h) > u + yw(u)} ~ hH(y)
(2.21)

= hH(y)

when u > U,

(2.22) Pr{M(h) > u+ yw(u)} ~ hH(0) when u - U.

olx +3) = lin. q(u+ (:(Z)y)w(u))
- qu+ (x + y)w(u))
=o(%) uh—l»nu q(u + xw(u))
. q(u+ xw(u) + (y - 8)w(u + xw(w)))
= v(x)uh_l}}] q(u + xw(u))

=v(x)v(y —8) ford > 0.

Letting 6 | 0, we infer v(x + y) < v(x)o(y~) for x > 0, y > 0. Similarly, we get
o(x +y) > o(x)o(y") for x > 0, y > 0. Writing &(x) = In(v(x)), we thus con-
clude

o(x) + 8(y*) <(x +y) < ¥(x) +8(y~) forx>0, y> 0.
Since ¥ is nonincreasing, ¥ has a continuity point x, > 0. Hence we have
0<d(x—e)—d(x) < —d(e*) < —(2¢) < d(x7) — 6(x, + 2€) 10

when & 0 for x > 0 and, similarly, 0 < §(x) — &(x + ¢) < —5(e*) |0 when & 0.
Hence #(x) is continuous for x > 0 with #(x + y) = #(x) + ( y) for x, y > 0,
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which yields #(x) = —cx for x > 0 for some constant ¢ > 0. We conclude that
o(x) = e~ for x > 0, where, in view of Theorem 1 and the definition of v, we
have ¢ < 1.
In order to treat the case when x = —y < 0, we observe that, by (2.14),
g yw(u)  qut (- w(u) — yw(u + (y - g)w(u)))
liminf ——————— = liminf
u—U q(u) u—sU q(u+ (y — e)w(u))
- lim q(u)
T umvq(ut (v - e)w(u))
and, similarly, limsup, _, ; g(u — yw(u))/q(u) < e°?*® | e when ¢ 0.
(IT) Writing G(y; - ) for the d.f. of £(¢) — yw(u), for y > 0, we have, by (2.1),
A - G(y; u+ xw(u)))/A — G(y; u)) = 1 — F(x/(1 + y)). Further, (2.20) still
holds. We conclude that (2.21) and (2.22) hold, so that by arguing as in the proof
of (I), the limit lim,_ q(u + xw(u))/q(u) = v(x) exists for x > —1. This
yields

=eY"91e% when |0,

. qlwyu)  q(ayu) q(yu)
o(xy —1) = lim ——— = lim ——— ———
uso q(u)  u-w q(yu) q(u)
=o(x - 1o(y-1)
for x, y > 0. Now, v (being nonincreasing) is measurable, and hence we have by
Aczél [(1966), page 41], v(x) = (1 + x) %, for some constant ¢ > 0, where, by

Theorem 1, ¢ < 1.
(III) This follows from (II) in the way indicated above. O

Observe that although we do not try to treat processes other than those for
which G belongs to a domain of attraction, the application of Theorem 1 in the
proof of Theorem 5(II) makes it necessary to require (2.1) with a general F,
rather than simply require that G belong to a domain of attraction.

We now give a criterion for (2.3) to hold. The idea to impose restrictions on
the increases of £ is taken from Berman (1982), although his criterion is
three-dimensional while ours is two-dimensional.

THEOREM 6. If there exist constants A, p,e,C,8,> 0, ug < and d>1
such that

(2.23)  Pr{£(qt) — £(0) > Mw(u), £(0) < u + Sqw(u) |£(qt) > u} < CtA~
forall 0 < t’ <X <Ajanduy < u < i, then (2.3) holds.

PrOOF. Let Y denote the set of dyadic numbers in [0, 1), choose a u > u, and
let 0 < § < 2min{8y, Ay}. In order to show that

Pr{0::1<paq£(t) >u+ dw(u), £0) < u}

(2.24) 5
< Pr{ sup £(t) > u + Ew(u), £(0) < u},

te Yaq
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le¢ D= {d,}3_, be a countable separating set for {§(V)}o<t<aq [see, eg.,
Billingsley (1979), page 468], with 0 € D, and define D(n) = {dy,..., d,}. Clearly,
mMax, ¢ p(ny §(£) TSUPg < ;< oq £() When n — oo, for almost all w € ©, and hence

lim Pr{{ sup £(t) >u+ 8w(u)}

n—o0 0<t<aq

(2.25)
~{ max £(6) > u + 8w(u)}} —o.

teD(n

Now, to each pair of integers n, k satisfying 1 < k < n, choose a yre0,d,]n
Yaq such that d, — y;' < (8/2)/°q/n. Then ((d,, — y)/q)* < 8/2 < A, so that
by (2.23),

Pr{&(dk) —&(yp) > —g—w(u), £&d,) >u, 8(yP) <u+ gw(u)}

-d
- n~%
2

Letting Y(n) = {y/,..., 7}, this yields

$ d/p—e
o

Pr{{ max)&(t) >u+ 8w(u)} N {tgllegr{z)g(t) <u+ gw(u)}}

teD(n
n )
< X Pre(d) - €08) > qulu),6dy) > u + duw),
k=1 2
(2.26) s
€8) < u+ Gulw)
)
2
Combining (2.25) and (2.26), we conclude

d/p—e
sC( ) n= @Y 50 whenn - w.

Pr{{ sup £(¢) >u+ 8w(u)} - { sup £(¢) >u + gw(u)}}

0<t<aq te Yaq

IA

Jimsup Pr{{ sup (1) > u + bu(u)) - { max £(¢) > u + gw(u)}}

n—oo 0<t<agq teY(n

IA

lim sup Pr{{ sup &(t) >u+ 8w(u)} - { max)é(t) >u+ 8w(u)}}

n— oo O<t<agq teD(n

+ liﬁszp Pr{{tgl&!f;)g(t) >u+ 8w(u)} N {tgx%)g(t) <u+ —g—w(u)}}

=0
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and hence (2.24) holds. It is therefore sufficient to prove that

1
limsup limsup —————=
alo u->U a(l - G(u))

(2.27) ) Pr{

sup £(¢) > u + Sw(u), £(0) < u} = 0.

te Yaq

In order to prove (2.27), let £ € (0, p) with ee < d — 1,let @, = (1 — 27°)8)'/*
and p, = 271 — 27°)4. Then we have

£(aqt) — £(0) = le: (g(aqniIZ_kbk) - é(aq i 2'kbk)) forte Y,
n=0 k=0 k=0

for some nonnegative integer N, where b, = 0 and b, € {0,1}. Clearly, ¥ p, = 4,
so that, writing ¢, = 27*b, and C, = b, + 27, + - -+ +27"b,, we obtain

{¢(aqgt) > u + dw(u), £(0) < u)
N .
e | U (eaatenn + ) - HaaC) > patw)|

N{£(0) < u} N {¢(aqt) > u + dw(u)}.

Now, if » € € is a member of the event on the right-hand side of (2.28), then
there must exist a largest integer n = n(w) such that

w € {£(aq(cuer + C,)) — £(aqC,) > pw(u)}
N{&(agt) > u + dw(u)} N {£(0) < u}.

Hence ¢(aq(cy., + Cp)) — £(aqC,) < ppw(u) for k=n +1,..., N, so that by
summing these differences and observing that £(aqt) > u + dw(u),

w € {¢(ag(cyiy + C,)) — é(agC,) > pw(u), £(ag(c .t + C,)) > u}.
This yields
{¢(aqt) > u + dw(u), £(0) < u}

N
(2.29) < {ngo{g(aq(crwl + Cn)) - £(aqC,) > pw(u),

K(aglennr + C) > u}} N (£0) < ).

Now, if w € © is a member of the event on the right-hand side of (2.29), then
there must exist a smallest integer n = n(w) such that

w € {¢(ag(c,,, + C,)) — é(aqC,) > pw(u), £(ag(c .y + C,)) > u}
N{£(0) < u}.
Letting C_, =0, and since £(0) < u, there further exists a largest integer
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le {—1,...,n — 1) such that £(aq(c,,, + C;)) < u. Hence
¢(ag(cyyr + Cy)) — £(aqC,) < pw(u) fork=1+1,...,n-1,

so that by summing these differences,

wE {g(aq(cn+l + Cn)) - g(aqcn) >pnw(u)’ é(aq(cn+1 + Cn)) > u,

£(aqC,) < u + dw(u)}.
We conclude that
(¢(agt) > u + duw(w), £0) < u)
N

c U {&(ag(cpsy + C,)) — £(aqC,) > pw(u), £(aq(c .y + C,)) > u,

n=0
£(aqC,) < u + dw(u)}.
Using (2.23), we therefore obtain

s GG ™ 2 €0 > ut bu(w), £0) < u)

oo 2"-1

1 -n 1 —-n
< nz=:0 kz=:0 mPr{g(aq2 (k+ 1)) — ¢(ag27"k) > pw(u),
¢(ag2 (b + 1)) > u, £(aq27 k) < u + Sw(u)}
X 2z ) (p)

forall0 < a <a,,0 <8 <min{§,,A,} and uy, < u < 4.
Here the right-hand side tends to zero when a |0 and hence (2.27) holds. O

C
a

We shall now study the case when £(¢) has finite upcrossing intensity p(u) of
each level u by applying a criterion due to Leadbetter and Rootzén (1982) [cf.
(2.30) below]. To that end, define J(u) = (1/s)Pr{£(0) < u < &(s)} for s > 0, so
that (under very mild restrictions) J(u) — p(uz) when s | 0.

THEOREM 7. Assume that £(t) has finite upcrossing intensity p(u) of all
levels u > u, for some constant u, < &t and that £(t) possesses continuous
sample paths with probability 1. If Conditions A({0}) and B hold and if
(2.30) lunlglf hmlnfp(u) Joo(u) 2 1,

al u—

then Condition C°({0}) holds and the limits

1
lim —Pr({,,(1) <0} = Eand hmaPr<i|iI;§ao(k)<0} H

exist with 0 < H < E < o and
_ w(u)q(u) Pr{M(h) > u}
lim =E and lim = hH
umU 1 — G(u) u-U (1 — G(u))/q(u)
ProoF. Clearly, by (2.1), lim,_,;(Pr{£0) = u}/(1 — G(u))) =0, so that
Pr{$(0) < u < £{(aq)}/(1 — G(u)) and Pr{¢(0) < u < £(aq)}/(1 — G(u)) are
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asymptotically equivalent. Hence we obtain, by (2.7),

q(u)

1
m Jug(u) ~ —('—T(u‘)‘)‘Pr{ max §(aqk) > u} ps

(2.31)
- ZPr{fa’O(l) < 0}

Now, an analysis of the proof of Theorem 1 shows that Conditions A({0}) and B
imply lim SUP, | o H, > 0, so that Pr{{; (1) < 0} > 0 for some & > 0. In view of
(2.31) and since JJ, (u) < p(u) [cf. Leadbetter and Rootzén (1982)], we therefore
get

1 - G(u) 1 - G(u)
limsupp(u) ' ——— < limsupd; (u) ' ———
meapk(u) "oty = el o)
(2.32) 5

] <
Pr{{; o(1) < 0}
Again using (2.31) and the fact that J(u) < p(u), (2.32) yields

Jog(8) . (q(u)Jaq(u) 1- G(u))

1> lim sup lim sup = limsup lim sup

al0  u-U p(u) al0  u-U 1-G(u) p(u)q(u)
_ limsu (Pr{{a o(1) <0} limsu 1-G(u) )
a0 a g p(@)a(u)

while (2.30), (2.31) and (2.32) combine to show

Pr 1) <0 1-G(u
1 < liminf liminf aq( x) = liminf( {fa,o( ) } liminf—(l).
al0

ato u-U p(u) a u—sU p(u)q(u)

It readily follows that the limits lim, ((1/a)Pr{{, 1) <0} = E and
lim, (1 — G(u))/(p(u)q(w)) exist, Wlth strictly positive ‘and finite values, and
with hmu—->U p(u)g(u)/(1 - G(u)) =
Further, as observed by Leadbetter and Rootzén [(1982), Lemma 5.1(ii)], (2.30)
implies that
Pr{M(aq) > u, £(0) < u, {(aq) < u}

" lim sup —- 0 when a0,
u—U aq(u)p(u)

which yields

(u)
lim sup

q
mSUP T ) Pr{M(h) > u, Oslgiakxshé(aqk) < u}

< limsup Pr{M(aq) > u, £(0) < u, £(aq) < u}

Eh
usu ag(u)p(u)
+ limsup — 2h _—_Pr{g(O) =)

h .
msup -~ 1-G) 0 whenalO
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Hence Condition C°({0}) holds, so that, by Theorem 1,
Pr{M(h) > u}
(1-G(u))/q(u)

As an easy consequence of Theorem 7, assuming that Conditions A({0}) and B
hold, (2.30) is equivalent with requiring that the limits lim,_, p(uw)q(u)/
(1 — G(u)) and lim,, | ((1/a)Pr{{, (1) < 0} exist, with a common value E satis-
fying 0 < E < oo.

We remark here that one can replace Condition C with the requirements that
g is nonincreasing, that £(i) possesses continuous sample paths, that p is finite
and that

- hH. O

hmllgxf 11m1nfu(u + yw(u)) ™! o +yw(u)) 21 forallx, <y <zxy
a u—

in the hypothesis of Theorem 5, without violating the conclusion that Condition
CO%(xL, xy)) and (2.15) hold. We omit the details.

In extremal theory, a (2.30)-like condition is needed in order to couple
Condition D (cf. Section 5), which is formulated in discrete time, to the be-
haviour of continuous-time extrema. In the classical approach to extremes, in
order to show that Pr{M(hA) > u} ~ u(u), one further has to verify that

(2.33) E{N(N,—-1)} =o(p(v)) whenu-U,

where N, is the number of upcrossings of the level u by £(¢) for 0 < ¢t < 1.

As indicated by Theorem 7, one cannot in general expect that (2.33) holds,
since, in general, E # H [see, e.g., Albin (1987) for examples].

Even when (2.33) holds, it is frequently more complicated to verify (2.33) than
to verify Conditions A({0}) and B. The reason for this is that estimation of
E{N/(N, — 1)} requires quantitative knowledge concerning four-dimensional
densities [cf. Belayev (1968) and Marcus (1977)], while Condition B is formulated
in terms of two-dimensional probabilities. Observe that even if (2.33) can be
proven readily, one must still estimate such two-dimensional probabilities in
order to verify Condition D’ of Section 5. Further, if (2.33) holds, then

' 1 1
lim — P 1) <0} = lim—Pr k) <03}.
lim = Pr{{,o1) < 0} = lim = Pr{supg,o(#) < 0)

Thus the sequence ({, ((k)}%_, must be degenerate in some sense, which should
make it particularly easy to verify Condition A({0}).

3. Asymptotic hitting probabilities for small sets for Gaussian pro-
cesses. Let {w(?)},., be a separable R™-valued stationary Gaussian process,

with independent component processes wy,..., w, possessing covariance func-

tions R,,..., R,, such that, for some constants 0 < « < 2 and C,,..., C, >0,

(3.1) R,(t) = Var{w;(0)} — C;|¢|* + o(|¢|) whent—0,fori=1,...,n,
R,(t) = Var{w,(0)} — o(|¢|*) whent— 0,fori=n+1,...,m

We shall derive an asymptotic expression for the probability that the process
{uw(t)}o << Vvisits a fixed set A, when u — oo. Our problem relates to those of
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Berman (1983, 1984, 1985), although he considers “sojourns” rather than ex-
tremes.

DEFINITION 1. An open nonempty subset A of R™ is an open star-shaped
Lipschitzian domain (o0.s.L.d.) if the following three conditions hold.

(a) M, = sup{|x|: x € A} < c0.

(b) Ax € A for all X\ €[0,p,(X)) and for all ¥ € R™, where pa(X) =
sup{A > 0: Ax € A}.

(c) There exists a constant K, such that |ry(X) — r,(¥)| < K4|xX — ), for all
%, y € R™, where r (%) = sup{A > 0: (1/A)x & A} = py(x)*

THEOREM 8. If Aisano.s.L.d. and if n > 2/a, then there exists a constant
LY(A; Cy,...,C,) with 0 < L7(A; C,,...,C,) < oo, such that for each h >0
satisfying max15,<nVar{w,(0)} R(t) < 1 for all 0 < t < h, we have

lim u™**Pr{uw(t) € A, for somet < [0, h]}

m m E{w,(0 2
- h i=I"[1Var{wi(0)}_l/2)exP(_ ) ﬁﬁ

i=1

Lm(A;C,,...,C,).

n

PrROOF. Let G be the d.f. of py(w(t)). Clearly, since uw(t) € A iff py(w(t)) >
u, since, by routine calculations,

1= 6(w) ~ 2 [ var(o0) ™|
i=1
(3.2)
X exp| — f" M NY(A)u~™
i-1 2Var{v,(0)}

when u — oo, where A" is the Lebesgue measure over R™, and in view of
Theorems 1 and 6, it suffices to show that the process {p,(©(t))},. , satisfies (2.2)
with w(u) = u and q(u) = u~?/* (and with the limit process depending on a, m,
A and C,,..., C, only) and that Condition B and (2.23) hold.

In order to prove (2.2), let Xx; = (r(gqt)x,..., r,(qt)x,) and w*(t) =
u(w,(gqt) — ri(gt)wy(0),..., w,(qt) — r,(qt)w,(0)), where r(¢) =V, 'R,(t) and
V, = Var{w;(0)}. Writing f, for the density of uw(¢) and observing that »(0) and
w*(t) are independent, we obtain, by routine calculations,

Pr{ ﬁ {%(PA(‘B(qtk)) -u) < zk} PA_(5_(_(:%)_:_U > 0}

k=1

uw(0) = x} ﬂ—— dx

_ f { N {pa(u@(qts)) < 2, + 1} - G(u)

- m)—/:;eAPr{ kD1{pA(au(tk) PR Sat 1}} *

Clearly, letting {,(¢),...,{,(t) be independent zero-mean Gaussian processes,
with Cov{{; (s),{(t)} =C(t*+s*—|t—s|*) fori=1,...,m and with ¢, (t) =
for i=n+1,..., m, we have, by (3.1), E{w¥(t)} — E{{ (1)} for i=1,.
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and
Cov{wi(s), wi(t)} = u?V(r(q(t—s)) - ri(gs)r,(qt))

- COV{fi(S)’ ft(t)}
for : = 1,..., m. Hence the f.d.d.’s of
{((1/u)(pa(@(qt)) — u) [(1/u)(pa(@(0)) — u) > 0)},.,

converge weakly to those of {p,({(t) + X) — 1},. ¢, where X is an R™-valued
random variable, independent of the process {(¢) and uniformly distributed over

A.
Now, the density g, of u(w,(0), w(2),..., (0), w,(2)) satisfies

_ -1/2 ~1/2
8%y, yi5e-0sx,, 3,) < Ku 2”(1 - rl(t)2) Ceee (1 - rn(t)z) ,

where (here and in the sequel) K denotes a positive generic constant. Using the
easily established fact that p,(¥) < M,|x|™', we therefore deduce

Pr{p,(@(0)) > u, py(a(t)) > u}
< Pr{|uw(0)| < My, [ua(t)| < M,)}

(3.3)

< l=l_nll Pr{juw;(0)] < My, luw,(t)| < M,) i=1;££1 Pr{|uw;(0)] < M,}

n -_—
< Ku ™]] (1 - ri(t)Q) 2 for0<t<h.
i=1

Choosing constants A, e > 0 such that 1 — r(¢)2> At* for 0 <t <, for 1 <
i < 7, we obtain, by (3.2) and since 1 — ry(¢)? is bounded away from zero for
e<t<h,

Pr{p,(@(0)) > u, ps(&(qt)) > u} < K(1 — G(u))t™ "% for0 < qt < ¢,
Pr{py(@(0)) > u, ps(@(qt)) > u} < K(1 — G(u))u™" fore < qt < h.
Using the fact that n > 2/q, it is now readily seen that Condition B holds.
Now, let 8 € (0,1) and choose constants B, ¢ > 0 such that 1 — r,(¢) < Bt*
for 0 <t<e for 1<i<m, and let r = min,_,_, ri(qt), E =
(E{w(0)},..., E{w,(0)}), V = max, _; ., V;,
1 (1-8)?7 @1-95)>
1-8’ 4BK,M,’ 8BK,|EVm

and x(qt) = (r(gt)w(qt),..., r(qt)w,(qt)). For r,(w(qt)) <1/u, we then
have

Ao = min{e*/2,

A1 - 8)?
o(qt) — @xqt)l < (1 - r)|a(qt)| < B(qt)“MA% < —(iKAu)

and

A1 - 8)°
(1 - r(qt))E;| < 8(7:%27

for 0 < ¢*/2 < X < X\; and u > u, = 1. Writing ® for the standardized Gaussian
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distribution function, we therefore get, by Definition 1(c), the triangle inequality
and Boole’s inequality, and using the fact that ®(0) — w(q?) and w(gqt) are
independent,

Pr{pu(3(at)) — pa((0)) > Au, po(5(0)) < 7 ea(@(at)) > u)

sPr{rAw(o»—m(fo(qt))>A(l—&)m(&(qt»,m(a(o»z -

ru(@(a) < 5
< Pr{ K0(0) - 8(a0) > Mt - 9) 2= - Ka(0) - a(at)]

lwta) < o)

~ _ AM1-8)? 1 1
= Pr{|w(0) - a(qt)| > TS CEDE ra(@(qt)) < ;}

< Pr{|a(o> ~a(an1> S 1 naan) < 1}

<(1-G(w) é Pr{lwi(O) - ri(gt)wi(gt) - (1 - r(qt))Ey

A1 -8)%1
~ 8K im Z}

(1-8)°A
<2m(1 - G(u)){l - Q(SWKAt“/z)}’

for0 < t*2 <A <Ay and u > u,.

Clearly for each constant p > 1, there exists a corresponding constant K, > 0
such that 2m(27)~ Y 2(1/x)exp{— ;2% < K, x7P for x > 0. Using the well-
known inequality 1 — ®(x) < (27)~/2(1 /x)exp{— 1x?}, for x > 0, we therefore
obtain

ﬁ;—(v)‘Pr{pA(G(qt)) — p4(®(0)) > Au, ps((0)) < l—g—g, pu(@(gt)) > u}

KA\
Choosing p > 2/a, we conclude that (2.23) holds. O

/2 p
<K( )
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In Albin (1987) we give a formula for L}*(4; C,,...,C,,) and, in particular,
show that, in the notation of Theorem 7, E = H iff A is convex. Further, we
show that L7(A;C,,...,C,)=Cm(m — 2) when A is the unit ball in R™
(m>=3)and C, = --- = C, = C. In Albin (1987) it is also proven that Condi-
tions D and D’ of Section 5 hold for the process p,(@(t)) if max,_;_,,|R(%)| =
o(t~") when t — oo, for some constant y > (m/2 — 1/a)” %

4. High level extremes of Rayleigh processes. Let {&(?)},., be a separa-
ble R™-valued stationary Gaussian process, with independent standardized com-

ponent processes w, ..., &, possessing covariance functions r,,..., r,, such that,
for some constants 0 < a <2 and C,,...,C,, > 0,
(4.1) ri(t) =1—-C|t|*+ o(|t|*) whent— 0,fori=1,...,m.

We shall study high level extremes of the Rayleigh process |w(t)| =
(0 (t)? + -+ +w,()%)'/% when (4.1) holds. We remark here that Sharpe (1978)
and Lindgren (1980, 1984, 1989) treated the cases when r, = --- =r, and
a = 2, and when a = 2, respectively, while Berman (1982) studied sojourns when
= o=r,.

THEOREM 9. There exists a constant HJY(C,,...,C,) with 0 <
H™C,...,C,) < oo, such that for each h > 0 satisfying max,_;_, ri(t) <1
for all 0 < t < h, we have

lim u2‘2/"‘”‘exp{§u2}Pr{ sup |@(t)| > u}

u— o0 O0<t<h

h
= 2-(m=2/2[m(C . C).

I(3m)
PrROOF. Since g(x) = 2™ 2/2T(m/2) x™ 'exp{ — 1x?}, x > 0, the fact

that (2.1) and (2.12) hold with w(u) = 1/u and F(x) =1 — e™* follows from
observing that

ng(x)dx

= %e@{—%uz}fj(l + yu‘z)mﬁlexp{—y - %(—)2} dy

(u/2)" "

~ ——F(%m—)exp{~5u2}, when u — oo.

1 - G(u)

In view of Theorems 1, 3 and 6, it is therefore sufficient to show that (2.13) holds
with g(u) = u~?/* and that Condition B and (2.23) hold.

In order to prove (2.13), let w¥(t) = u(w,(qt) — r,(qt)w,(0)) and A, (¢) =
u(u + x/u)1 — r(qt)), and write k™ for the (m — 1)-dimensional Hausdorff
measure over R™ [cf. Federer (1969), page 171]. Then we have, by a Taylor
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expansion,

pr{ N (u(ialat) - ) < 2)

=1

u(|@(0)] - u) = x}

f(m=1)Pr{ N {u(l@(gts) = [@(0)]) + x < 2,)

k=1

w(0) = (u + 2)5}

27) ™ (u + x/u)™ " de™(%)
g(u+ x/u)exp{%(u + x/u)z}

I‘(%m) N m
) qu:ﬂﬂ}Pr{ krjl{igluxi(wi(qtk) = @(0) +x +0(1) < zk}
w(0) = (u + %)x} dx™(%)
r(im) YN -
T ggm/? ‘/;lf|=1)Pr{ kol {x C@%(t,) — i§1xiAi(tk) +x+0(1) < zk}}
Xdk™(X).

Now, let {(?),...,¢{,(t) be independent zero-mean Gaussian processes with
Cov{{i(s), §i(8)} = C(t* + s* — |t — s|*). Since, by (4.1), Ai(t) — C;t° an appli-
cation of (3.3) yields that the f.d.d.’s of {(u(|w(g?)| — u)|u(|w(0)| — u) = x)},50
converge weakly to those of {n(¢)},. o, Where

N
Pr{ kn {n(t) < zk}}
(4.2) -
F(%m) ~ A d a 240 m( =
= W-/;|§|=1}Pr{ N {x -(t) - i§1Cixitk +x < zk}} dk™(X).

k=1

Now, choose constants A, B, ¢ > 0 such that At* <1 — r(¢) < Bt* for 0 <
t<e for 1<i<m, and let R=max,_;_,,7(qt), r=min,_;_, ri(qt) and
w;(qt) = (ri(gt)wy(0),..., r,(qt)w,(0)). We then have, by the triangle inequality,

u(l — R) <|a(qt)| — Rl&(0)] < |&(qt)| — |&:(qt)| < |w(qt) — w:(qt)],
for |w(qt)| > |w(0)| > u. Using symmetry we therefore get, by Boole’s inequality,
Pr{|5(qt)| > u, |&(0)| > u}
= 2Pr{ja(qt)| > [a(0)] > u)
< 2Pr{|w(0)| > u, |&(qt) — w:(qt)| > u(l — R)}

<2(1 - 6(w) ¥ Pr{alat) - r(at)w,(0) > m~/2u(l - )}

(1-R)u )}
-7

<4m(1 - G(u)){l -
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where ® denotes the standardized Gaussian distribution function. This yields

I—:—le Pr{|w(qt)| > u, |&(0)| > u} < 4m(1 = (D(A(sz)—l/?ta/z))
forO < gt <e,
e Praa) > w1800 > ) < 4m(1 =~ @(m™w)

fore<qt<h,
where A = 1 — sup, ., _, max, _;_,, 7/(s), from which it is seen that Condition B
holds.

Now, choose a & € (0,1), choose constants A, ¢ > 0 such that r,(¢) > § and
1—-r(t)<At* for 0<t<e for 1 <i<m, and let A\, = min{e*/%1/(8A)}.
Further, let u, =1 and @,(qt) = (r,(qt) 'w,0),..., r,(qt) '®,(0)). Then we
have 1 N

15(at)| = 13(0)] < (r! = 1)[&(0)] < 24(qt)"u(l +8) < 44—t <
for 0 < t*2 <X <X,, u>u, and |&@(0)| < u + 8/u. Hence we obtain, by the
triangle inequality and by arguing as in the verification of Condition B,

A )
Pr{3(a0)| - 50)) > 7,180 < u + . (at) > u)
A
< Pr{ja(a0) > w.16(at) - a(a0) > 5.

A
<2m(l1 -G 1-0 —m ;.
m( (u)){ (4mta/2)}
Arguing as in the verification of (2.23) in Section 3, we conclude that (2.23) holds
also in the present context. O

Clearly, if C;, = --- = C,, = C, then the right-hand side of (4.2) is indepen-
dent of m. Comparing Theorem 9 and Pickands (1969a), we concluded that
H™C,...,C)=HYC) = CY*H,, where H, is the constant introduced by
Pickands. It is known that H, = 1 and H, = #~/2, Lindgren (1980) calculated
HYC,,...,C,). We also remark here that Conditions D and D’ of Section 5 hold
for the process |w(t)|, if max, _;_,,|ri(¢)] = o(1/In(¢)) when ¢ — oo [cf. Albin
(1987N)].

5. Maxima over increasing intervals and asymptotic sample path be-
havior. In this section we prove a limit law for maxima over increasing
intervals and establish the asymptotic Poisson character for e-upcrossings and
local e-maxima. Since our process under consideration, in general, has infinite
upcrossing intensity, we consider Pickands’ e-upcrossings, i.e., clusters of ordi-
nary upcrossings, and local e-maxima, rather than ordinary upcrossings and local
maxima. We also remark here that traditional approaches to Poisson-conver-
gence results for processes with finite upcrossing intensity only apply when, in
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the notation of Theorem 7, E = H, while the present approach applies also when
E # H, i.e., when clustering occurs. Our proofs use ideas of Lindgren, de Maré
and Rootzén (1975), Leadbetter and Rootzén (1982) and Leadbetter, Lindgren
and Rootzén (1983).

We have to impose two further conditions, first given by Leadbetter and
Rootzén (1982).

CoNDITION D(x,,...,x,). This condition is said to hold if for each fixed
7 > 0 there exist constants a, > 0 and u, < # and a function a,(a, - ), such that

|Pr{£(sl) <uy,.., 8(s,) <u,, 6(8) <o, 8(2,) < vp,}

—Pr{&(s)) < uy,..., &(s,) < up}Pr{é(tl) <o,..., (L) < vp,}| < a,(a,d),

for any levels u,,...,u,, vy,..., v, belonging to {u + xw(u),...,u + xw(u)}
and any points s, < -+ <s,<¢ < -+ <t, belonging to {agk: k€ Z,0 <
agk < tq(u)/(1 — G(u))} with ¢, — s, > 8, for all § > 0 and u, < u < &, where

Aq(u)
*1- G(u)

lim o,

) =0 forall A > 0, for all fixed 0 < a < a,.
u—-U

CoNnDITION D', This condition is said to hold if for all fixed a > 0,

[A/(1-G(u))]
lim sup Y Pr{{(agk) > u|£(0) > u} » 0 when A |0.
u= U k=[h/(ag)]+1

Condition D is a mixing condition, while Condition D’ bounds the probability
for clustering of clusters of upcrossings of the level u. Clearly, Condition D’ holds
if, e.g., Pr{£(0) > u, &(t) > u} < K(1 — G(w))* for ¢t > h.

Now, let ¢ > 0 be an arbitrarily chosen fixed number. We adopt the original
definition of e-upcrossing due to Pickands (1969a).

DEFINITION 2. The process £(¢) has an e-upcrossing of the level u at the
point ¢, if £&(t,) = u and if £(¢) < u for all ¢ € (¢, — ¢, t,).

THEOREM 10. Assume that Conditions A({0}), B, C°({0}), D(0) and D’
hold, with F continuous, and let T(u) ~ q(u)/(HQ1 — G(u))) and xp=
sup{x < xy: F(x) <1}. If there exists a constant c € [0,1] such that (2.15)
holds, then

lim Pr{—u—)-(IT)(M(T(u)) —u) < x>

= exp{ -(1- F(x))l_c} forallx; < x < xp.
If, in addition, ¢ possesses continuous sample paths with probability 1 and
NF(A) = #{t < 1T(u)A: ¢ has an e-upcrossing of u + xw(u) at t}
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for A € (0,00), 1> 0 and x € (x,, xp), then N converges weakly to a Poisson
process on (0, o) with intensity 7(1 — F(x))* <.

Proor. In view of Theorem 1, Theorem 4.3 of Leadbetter and Rootzén
(1982) yields lim,_,, Pr{M(AT(u)) < u} = e for all A > 0: Clearly, their
proof only needs that their equations (3.7) and (4.1) hold for a single A > 0
[rather than for all A € (0, h,)] for which Condition D’ holds and for which
Pr{M(h) > u} ~ § Pr{M(2h) > u}. In our setting, the latter condition on A
holds, since Conditions B and C°{0}), in view of Condition D’ and Boole’s
inequality, also hold when # is replaced by 2A.

Letting A = (1 — F(x))! ¢, we therefore obtain, by a change of variable,

lim Pr{ ((1 = F(x)) " “T(u + xw(u))) <u+ xw(u)}

= exp{—(1 - F(x))'"}.

Here T(u + xw(u)) ~ (1 — F(x))"®~9T(u) and the limit law for maxima fol-
lows.

Next we observe that, letting & = u + xw(u), by Theorem 1 and continuity of
sample paths, and using the facts that Pr{M(%) = u} = o(Pr{M(k) > u}) (since
F is continuous) and that Pr{A° N B} = Pr{A U B} — Pr{A},

_T.(ST) ~ Pr(M((0, ¢]) < & < M((e,2¢)))
el 55 <= -

when u — U. Thus we have, since NJ(0, ¢/(7T)) <1 and T(u) ~
(1 — F(x))'~T(&),

E{N:((c,d])} = —c)——:,:Pr{le((O,%)) - 1}

- 7(1 = F(x))'"*(d - ¢)

for 0 < ¢ <d< oo [cf. Lemma 124.1 in Leadbetter, Lindgren and Rootzén
(1983)]. Further, we have

o —pif U (wl(o7e,.77,]) - )|

(5.1)

< Pr{ rkﬂ {(Nz((cp d]) = 0}} - Pr{

k
< ¥ Pr{M((rTc,,Tc, +€]) = &} —0
p=1

for 0 <ec, <d, < -+ <¢,<d, < oo [since (1 — G(u))/q(u) - 0, when ¢ is
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continuous]. In view of Theorem 4.7 in Kallenberg (1983), the Poisson result
therefore follows if

Pr{ pél {M((+Te,, Td,]) < u + xw(u)}}

(5.2)
k
- exp{— Y (1- F(x))l_c(dp - cp)}
p=1
for 0 <c, <d; < -+ <¢,<d, < 0. Here (5.2) follows from applying the

inequality (5.9), proven below, and from choosing suitable A’s in the law
Pr{M(AT(u)) <u} > e > O

Theorem 10 proves the Gumbel law

1
lim Pr{
u—-U

w(_u;(M(T(u)) —u) < x} =exp{—e *} forx € R,whenc <1,

the Fréchet law
1
lim Pr{ ;M(T(u)) < x} =exp{—x" "9} forx>0
and the Weibull law

lim Pr{u(ﬁ - M(T(ft - %))) < x} =1-exp{—x0"9"} forx>0
when G is type I-, type II- and type III-attracted, respectively.

If G belongs to a domain of attraction and if Conditions A, B and C hold,
then Condition C° and (2.15) hold (cf. Theorems 2 and 5). See the discussion
following Theorem 7 for conditions in terms of requirements on p.

The invoked Theorem 4.3 of Leadbetter and Rootzén (1982) requires Condi-
tions C°, D and D’ and that one can handle probabilities of the type occurring in
Condition B (in order to verify Condition D’). Hence, the extra work introduced
in order to get rid of their requirement that an asymptotic expression ¥(u) for
Pr{M(h) > u} is known, virtually adds up to little more than the verification of
Condition A.

O’Brien (1974, 1987), Mittal and Ylvisaker (1975), McCormick (1980),
Leadbetter (1983), Hsing (1987) and Hsing, Hiisler and Leadbetter (1988) studied
possible types of limit results in the sequence case when Condition D or D’ is
violated.

Also our definition of local e-maximum differs slightly from the one used by
Lindgren, de Maré and Rootzén (1975) and Leadbetter, Lindgren and Rootzén
(1983).

DEFINITION 3. The process £(¢) has a local e-maximum at the point ¢, if
£(t) < &(¢,) for all t € (¢, — ¢, t,) and if £(2) < &(¢,) for all ¢ € (¢, ¢, + ¢).



ON EXTREMAL THEORY FOR STATIONARY PROCESSES 123

THEOREM 11. Assume that Conditions A({0}), B, C°((x., xp)), D(xy, ..., x,)
and D’ hold, for all families of constants x; < x,,...,%, < xp, where F:
(0,xy) > R is a continuous proper d.f. and xp= sup{x < xy: F(x) <1}.
Further, let t, t,,... be the local e-maxima for £(t) and let T(u) ~ q(u)/
(HQ1 — G(w))). If ¢ possesses continuous sample paths with probability 1,
if there exists a constant c € [0,1] such that (2.15) holds and if S(x) =
(1 — F(x))'~¢, then the random collection

t

i E(t) —u .
{(T(u)’ w(z) ),1—1,2,...}

converges weakly to a Poisson process on (0,00) X (x,,xp), with intensity
measure equal to the product of Lebesgue measure and the measure defined by
the increasing function —S.

Proor. Let s, . =inf{s € I: (§(sT) — u)/w > x}, s, , mf{s 28y, tTe&
(§(sT) —u)/w = x},fori =2,3,... and M;(I) =max{i € Z:i = Qors; , € I},
for I c (0, ). Further, let

e
N (A) = #{t € TA: £ has an ;-upcrossing of u + xw at t}
for A c (0, 0),

Nu(B)=#/i€Z:(ti g_(_%;‘ﬁ

) c B} for B € (0, 00) X (x,, %)

l T
and let N, , = N/} ,. In view of Kallenberg (1983), it suffices to prove that
(5.3) E{N((c,d]) x (v,8])} = (d = c)(S(y) — S(8))

for0 <ec<d< 00,0 <y <8< o, and that

k J(i)
Pr{ U (e dl x U (v 9] = }

(5.4) =1 f

k Jl . .

- T1 nexp{ ~(d; - ¢)(S(v}) - 8(8)))}

i=1j =1

for 0<¢ <d, - <¢,<dp<o0, 0<y <8 < -+ <yjy <8y < 0,...
k< gk k k

and 0 < vy <87 < -+ < Yjp) < Ofp < .

Now we have, by (5.1), E{N;((0,1])} ~ E{N, ,((0,1])} and in view of the
readily established fact that M((0,1]) > N, ,((0,1]), we obtain

0< E{M;((O, 1]) - Nx, u((O’I])}
- E{M:((Oﬁl]) - er,lu((o’ 1])}

[T/e]+1 1 1
< Y Pr{M((ks,(k + ;)e]) > u+xw} ~ ;S(x) when u — U.
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Letting n — oo, we deduce E{M}((0,1]) — N, ,((0,1])} — 0 and, more generally,
(5.5) limUE{M,f((c, d]) = N, ((c,d])} =0 forall0<c<d< 0.
Clearly, N,((c,d] X [x,0)) = N, ((c,d]) — 1, with strict inequality when

M((dT, dT + €]) < u + xw. Since MZ((¢, d]) = N,((¢c, d] X [x, 00)), we obtain,
by (5.5),

0= limjng{M:((c, dl) = N, (¢, d])}

limjng{Nu((c, d] x[x,0)) = N, ,((c,d])}

[\

(5.6)

[\

liminf E{N,((c, d] X[, %)) = N, (e, d])}

v

— limsupPr{M((dT, dt + ¢]) > u + xw} = 0.

u-U
Combining (5.6) and (5.1), (5.3) readily follows (since S is continuous).

In order to prove (5.4), choose constants x; < x; < -+ <x, < xp, let N,
be a Poisson process on (0,00), with “points” {0,}%2, and intensity S(x,)
and let {8}, be {1,...,r}-valued iid. variables, independent of N;, with
Pr{B; = s} = (S(x,) — S(x4.1))/S(x,) for s =1,...,r, where x,,, = xp. Fur-
ther, define Nj(A) = #{o; € A: B, > i} for A C (0,00), for i = 2,..., r, and let
N{(B) = £;_,N(B N {x = x)) and N, (B) = Z/_\N, (B N {x = x;)) for B c
(0, 0) X (x,, xz). In order to prove

k J(i)
Pr{Nf,u( U (cind] x U (Yf, 3;]) = 0}

Jj=1

(5.7)
k J@
AL;J](C;" dt] X U (‘Y;a 8;]

j=1

- Pr{Nf

=0},

we can assume that for each i€ (1,..., k} there exists a smallest I(i) €
{1,...,r} such that x,; € (8}, y}] for some j € {1,..., J(i)}. Then, by routine
calculations, the right-hand side of (5.7) is equal to [1%_, exp{ —(d; — ¢;)S(x 1))+
Further, we have, for 1 <i <j < r, by Boole’s inequality and by Theorems 1
and 10,

lim sup Pr{ij, A(e,d]) > N, A(e, d])}

u—-U
(=, = Car s
( K K ¢

1
u-U 0

o]
)2}

K—
< limsup Pr{ U
b=

K-1 d-—c d-c
+ limsup Pr{ U {Nx, u ( kT, (k+1)T
u-U k=0 7 K K

< K(l - (1 +8(x) c)exp{—S(xj)dI_{ C}) -0
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when K — oo [cf. Lemma 9.3.1 in Leadbetter, Lindgren and Rootzén (1983)].
Hence (5.7) holds iff

Pr{ N {le(,), (e d]) = 0}} - ;=I_[1 exp{ -(d; - ci)s(xl(i))}'

i=
Arguing as in the proof of Theorem 10, we deduce that it is sufficient to show

k k
(5.8) Pr{ N {M((Tci, Td]) <u+ x,(i)w}} - E exp{ —(d; - c,-)S(xI(,-))}.

i=1

Now, it is relatively straightforward to establish the inequality

lim sup
u-U

pef () (M7, 74]) <+ 0]

k
-T1 Pr{M((TCi» Td]) <u+ xl(i)w}
i-1

2T *
< limsup limsup — Z (d;=¢)
(5.9) a0 wsu h D

xPr{M(h) > U+ xpw, Osrzlt?kxshg(aqk) <u+ xl(i)w}

k
+ limsup limsup2 ), Pr{M(h) > u + x;,w}
al0 u->U =1

i . kil ( i) q(u) )

+ lim sup lim su o la, ¢y — Q) <7 |»

a,I,Op u—»Up i=1 i H(l - G(u))

where, in view of Conditions C%(x,, x)) and D(x,,..., x,), the right-hand side

equals zero. We conclude that in order to prove (5.8), it suffices to prove

k k
i=l_I1 Pr{M((Tci’ Td]) <u+ x,(,-)w} - l=l—[1 exp{ —(d; = ¢;)S(x)) }-

Choosing suitable A’s in the law Pr{M(AT(u)) < u} - e, as in the proof of
Theorem 10, we therefore deduce that (5.8) holds and hence (5.7) holds. Since, by
(5.1), E(N, (¢, d] % (1,8])) > E{(N{(c, d] X (v,8])}, it follows that N,
converges to N;. Hence, by routine calculations, the probability

Pr .rkj ﬁ) {Ny;., (e d]) = Na;, (e, dz])}}

i=1j =1
converges to the right-hand side of (5.4). Since the arguments leading to (5.6) also

yield Pr{N,((¢c, d] X [x,0)) < N, ((c, d])} — 0 and since S is continuous, we
readily conclude that (5.4) holds. O
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Results of the kind established in Theorem 11 have been given for sequences
by Qualls (1969), Pickands (1971), Resnick (1975) and Adler (1978).
Recall that we analyzed Condition C%x,, x;)) and (2.15) in Theorem 5.
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