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CONDITIONS FOR QUASI-STATIONARITY OF THE BAYES
RULE IN SELECTION PROBLEMS WITH AN UNKNOWN
NUMBER OF RANKABLE OPTIONS

By F. THOMAS BRUSS AND STEPHEN M. SAMUELS

University of California, Los Angeles, and Purdue University

In the so called secretary problem, if an unknown number N of options
arrive at i.i.d. times with a known continuous distribution, then only the
geometric, among proper distributions on N, has the property that the
stopping risk depends just on the elapsed time and not on the number of
arrivals so far. But even with such a prior, the optimal rule may, in
general, depend on the number of arrivals so far. The optimal rule is closely
related to the optimal policy in the Gianini and Samuels infinite secretary
problem, except for a linear change in the time scale which depends only on
the parameter of the prior, and not on the loss function.

1. Introduction. An unknown random number N of options, will arrive
at times Z,,...,Zy, where Z,,Z,,... are i.i.d. random variables with some
known continuous distribution F on an interval (0, T'), possibly infinite. The
options can be ranked from best (rank 1) to worst, and Z, is the arrival time of
the ith best. At any time ¢ € (0, T) only the relative ranks of those options
which have arrived so far can be observed. The object is to find a stopping rule
7 based only on the observed relative ranks, which minimizes some risk
function Eq(R,), where R_ is the rank of the option selected by 7 and
{g(i): i=1,2,...} is a prescribed nondecreasing, nonnegative loss function.
We need to allow 7’s which, with positive probability, fail to select any option
(it is convenient to set 7 = T on this event) and to prescribe a loss Q(N) for
“not stopping.”” @(-) should be nondecreasing, with @(0) = 0.

This is the problem we considered in Bruss and Samuels (1987). In that
paper we took Q(N) = g(N) [but we could just as well have chosen Q(N) =
g(N + 1)] and showed that a single stopping rule, say 7*, depending only on
the loss function g(-) is nearly optimal for all stochastically large N. Specifi-
cally, letting v™> denote the minimal risk, we have

v™M < EMg(R,.) <v
and
N 1 in distribution = v 1 v,

where v = v(g(-)) is the minimal risk and 7* is the optimal rule in the infinite
secretary problem of Gianini and Samuels (1976). (The result applies whenever
v is finite.)
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For loss functions that are eventually constant, as in Frank and Samuels
(1980), where the goal is to maximize the probability of selecting one of the m
best [i.e., g(i) =0 for 1 <i <m; q(i) =1 for i > m], a more logical loss for
not stopping is @(N) = ¢ (a constant). If ¢ < max q(-), the above results must
be modified slightly; they apply only to N’s for which P(q(N + 1) = max ¢(-)|
N > 0) = 1. This, by the way, is guaranteed in the best choice problem m = 1.
[However, conceivably one might want the loss for not stopping to be strictly
greater than the loss for accepting some option, even the worst one. In this
case, the results of Bruss and Samuels (1987) do not apply; hence this case will
not be considered here.]

In Section 3 of Bruss and Samuels (1987) we looked at a Bayesian version of
the problem in which N is given a prior distribution. In particular, we showed
that when N has the improper, so called noninformative prior P(N =n) = 1
for all n, the posteriors are Pascal and the risk for stopping depends only on
the relative rank of the current arrival and the elapsed time ¢, and not on the
number of arrivals by time ¢. (Such cases we call quasi-stationary.) It is, in
fact, precisely the stopping risk in the infinite secretary problem of Gianini and
Samuels (1976). Moreover, in the special case of the best choice problem,
results of Stewart (1981) imply that the formal Bayes stopping rule itself
coincides with the optimal infinite secretary problem policy. Some questions
raised by these results are the following:

1. Are there proper priors for which the same result holds for the stopping
risk? If so, what are these priors?

2. For such priors is the optimal stopping rule also independent of the number
of observed arrivals (i.e., does quasi-stationarity imply stationarity?) and, if
so, does the optimal rule coincide with the optimal infinite secretary prob-
lem rule? In other words, does Stewart’s 1981 result generalize beyond the
case of the noninformative prior and the best-choice problem? [In Bruss and
Samuels (1987), we overzealously remarked that it does.]

We show in Section 2.4 that the answer to question 1 is “‘yes,” provided
the priors are geometric. It is convenient to parameterize these priors by p =
6/(6 + 1).

Let us mention that one well known way to get a geometric pair is for N to
have a Poisson distribution with a random parameter which itself has an
exponential distribution. If the exponential distribution has parameter 8, then
the resulting geometric distribution will have parameter p = /(8 + 1).

The posteriors are then Pascal with one parameter equal to (6 + #)/(8 + 1).
For ¢ > 0 these make perfectly good sense even when 6 = 0; they are, in fact,
the posteriors corresponding to the improper, noninformative prior. So the
noninformative prior may be regarded as “included” among the geometric
priors.

The answer to question 2 is not so simple and is somewhat surprising. In
genéral, quasi-stationarity does NOT imply stationarity except for a few very
special loss functions, such as Stewart’s. So Stewart’s result is quite anoma-
lous. To answer question 2, we first need to obtain a general expression for
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Bayes rules (in Section 2.1) and specialize it to the quasi-stationary (geometric
prior) case (in Section 2.2). Then Theorem 2.1 says essentially, that it becomes
optimal to disregard the number of arrivals so far when that number—call it %
—is large enough so that (i) the loss for not stopping will not change,
Q(k) = sup Q(-), and (ii) the loss for stopping remains constant for all ranks
greater than %2 + 1, g(k + 2) = sup q(-).

For the problem of selecting one of the m best, we note that these
conditions are satisfied for all 2 > 1 only for the best-choice problem m =1
and for m = 2. An example at the end of Section 2.2 serves to illustrate the
nature of the nonstationarity for m = 3. Bruss (1988; Theorem 3 and Applica-
tion 3) sheds a different light and additional insight on why the cases m = 1
and m = 2 are special.

2. Results. Without loss of generality, we may take the arrival interval to
be (0, 1) and the arrival-time distribution to be uniform. Let T}, T,, ..., be the
arrival times, in chronological order,

N(t) = number of arrivals by time ¢,
R(t) = rank of last arrival up to time ¢ among all N,
r(t) = relative rank of last arrival up to time ¢ among first N(¢) arrivals,
p;,1(t) = the stopping risk: E(q(R(t))|r(¢) =j, N(t) = k),

fu(#) = inf E(q(R(r))IN(¢) = &),
where the inf is over :;111 stopping rules 7 which do not stop before time ¢.

2.1. Partial solution by backward induction. In the infinite secretary
problem [ N(¢) = ] of Gianini and Samuels (1976) and Gianini (1977),

f(t) = inf E(q( R(7))|the past up to time ¢)
T>1

was shown to be constant (not depending on the past) for each ¢, satisfying the
piecewise differential equation

(1) ()=t L [f()—p(0)]", 0<t<1,
j=1 :
with boundary condition f(1) = sup g(-), where
(2) 0 = T a2 e - o,
0 = E a7y e

The optimal policy has risk f(0) and stops at the first arrival time, say x, for
which p, (%) < f(x), where r€x) is the relative rank of the arrival at time x.
This rule can be expressed in terms of so-called cutoff points s; <s, < ...,
where f(s,) = p,(s;). Hence f(0) = f(s;) = p,(s;) and s, is the earliest time
at which an arrival of relative rank % is acceptable.
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In contrast with the infinite secretary problem, the unknown number of
options problem, which we consider in this paper, presents less technical
difficulties, as one would expect, but the result is not nearly as neat, in general.

LEmMma 2.1. For 0 <t <1,

fi(8) = 1i(2 + 8) +0(5)

= 1 R+l .
(3) _n=§+1 [ £(8) = Frea(B)] + T JE‘,I [ Fosa(t) = ) ea(2)]
(n—k)s
XﬁP(N= n|N(t) = k),

with boundary conditions f,(1) = Q(k).

Proor. We first note the fact that the posterior distribution of N, at time
t, depends only on N(#), and not on the times or relative ranks of the arrivals

up to time ¢, i.e.,
P(N = nIN(t)’ Tla T2’ LR} TN(t)’ r(Tl)’ r(TZ)a ) r(TN(t)))
= P(N =n|N(t)).
Indeed, this conditional independence of N and the arrival times and ranks,
given N(t), is an immediate consequence of the fact that, for every n > &, the
conditional distribution of T,,T,,...,T,, given N =n and N(¢) = k, is just

the order statistics of % i.i.d. uniforms on [0, £].
Now let f,(¢) be defined above. Then, by standard backward induction,

fi(t) = P(no arrivalin [¢,¢ + 8]|N(¢) = k) - f,(t + &)
(4) + E[min( fo4 (Tos1)s Prery, o b+ 1 Ths 1)) <1y, <40V () = E]
+ 0(8).
The middle term on the right side of (4) is just
min[ frsea(2), pr(t),k+1(t)]P(N(t +8) > kIN(¢) = k) + 0(93).

Conditioning on N and the uniformly distributed relative rank of the £ + 1st
option yields (3) after some rearrangement. O

We now note that if there are k arrivals by time ¢, then the posterior
distribution of N is

(Z)(l — )" *t*P(N = n)
(5) P(N =n|N(t) =k) = —= ” .
r—~k
= (p)a-nt PN = 1)
r=~k
The posterior distribution, at time ¢, of the actual rank of an option—which
has relative rank, say j, and is one of, say %, arrivals by time ¢—clearly
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depends only on ¢, j and %, and not on the order of arrivals or the arrlval
times. Hence

P(R(t) = iN(2) =k, r(2) =J)
(6) = Z_jkP(R(t) = iIN = n,N(t) = k,r(t) =j)P(N = n|N(t) = &),

i - 1 n-—i
k—Jj
m .
(k)

2.2. Geometric prior, Pascal posterior. If N is geometric with parameter
0/(0 + 1), then, from (5), N + 1 has, conditionally, given N(¢) = k, a Pascal
distribution with parameters £ + 1 and (6 + t) /(8 + 1), and (6) also becomes
Pascal, with parameters j and (8 + ¢)/(6 + 1). Notice that this latter distribu-
tion does not depend on k. When we substitute these Pascal dlstrlbutlons into
(8), it simplifies to

Pt +8) —f®() 6+1
T k
= 1 9) t) — (9) t
+
) +0(9),

(8) k+1 0+t
[ léi)1(t) _Pj(0+ 1)
0<t<l,

+ Z
where p;(-) is given by (2). If we let f*((0 + £)/(0 + 1)) = f{®(¢) and substi-
tute into (8), we get

where

(1) P(R(#) =ilN=n,N(t) =k,r(t) =j) =

ProrosiTIiON 2.1.
kE+1

(&) (s) =s M (k+ D[ fr(s) — ffa(s)] + ;I[fk*ﬂ(s) _pj(s)]+)’

0/(6+1) <s<1.

(9)

The optimal policy stops at the first arrival time, say x, for which p,(y) <
f*ney), where r(x) is the relative rank of the arrival at time x, N(x) is the
number of arrivals by time x and y = (6 + x)/(6 + 1).

It is tempting to think that because the stopping risks p; do not depend on
k, the number of arrivals by time ¢, we ought to have f*(-) = f* ,(-). If this
were so, and if @(k) = Q(k + 1) = g(k + 2) = sup ¢(-), then (9) would reduce
to precisely (1), restricted to the subinterval [08/(6 + 1),1]. [Note that if
qCk + 2) = sup q(-), then, for all j >k + 1, p,(¢) = sup q(-) = f(¢), so all but
the first 2 + 1 terms of the sum in (1) vanish.] But, as we shall see, equality
does not hold in general, though it does hold in certain important special cases.
The basic results are the following.
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THEOREM 2.1. For N geometric and any s € [0, 1],
Q(k) =sup@() = f.(s) <fi*(s),
q(k +2) =supq() = [fp.(s) =2£F(s).
For the case Q(n) = g(n + 1),
fia(s) =fi(s) = q(k+1)=supq("),
whereas for the case Q(n) = sup q(-),
fifa(s) =fi¥(s) = q(k+2)=supq(").
The proof of this theorem is given in Section 2.3.

Applied to the problem of maximizing the problem of choosing one of the m
best options, the theorem yields the following.

CoroLLARY 2.1. Ifq(i)=0 fori<m,q(i)=1 fori>m and Q(n)=1
V n>1,then forany /(0 +1) <s <1,

fi¥(s) =fi(s) =f(s) ifk=2m—1,
fi¥(s) > fi¥a(s) ifk<m—1,
where f(-) is defined in (1).

Thus, for m = 1, the best choice problem, and for m = 2 as well, the Bayes
rule coincides completely with the optimal infinite secretary problem rule, with
time advanced from ¢ to (8 + ¢)/(6 + 1). Stewart’s (1981) result, which was
mentioned in the introduction, may be regarded as covering the case m = 1,
6 = 0. Notice also that, in the best choice problem, if § > 1/(e — 1), then the
optimal rule simply selects the first arrival.

For m > 3, however, when there are fewer than m — 1 arrivals by time ¢,
then the smaller % is, the greater f,*(s) is; hence the greater the temptation to
stop. We illustrate this phenomenon for the case m = 3.

Lemma 2.2.  If f*(0) = fi5,(*), then
(fi1)'(s) = s [ firo(s) — fi¥(s)]

+(f)(s) = s f#(8) = ppar($)]”
Let h(s) = fi* (s) — f*(s). Then

R(s)  kh(s)  [fE(w) = prea(s)]”

(11) sk gkl gh+1

(10)

The solution is

jl [fk (u) - Pk+1(u)]

k+1

(12)

[ Note that h(1) = Q(k — 1) — Q(k).]
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If, in addition, @(n) = sup q(+) and q(k + 1) < q(k + 2) = sup q(-), then

(18)  fx1(s) =F(8) + (s/55:1) h(s4s1), Vs:0/(0+1) <s<s,,,,

where f(-) is the solution to (1) and s,,, is the cutoff point such that
f(s) > p, . (s) if and only if s > s, , .

Proor. From (9), we have
k
(£r)(s) =7 LFir(8) = pua(] "+ L [ £i7() = pi(s)]”

because f7*(+) = f* (). Replace £ by £ — 1 in (9) and use the above expres-
sion to substitute for the sum; this gives (10).

Rearrange (10) and divide by s* to get (11). Notice that the left side is the
derivative of h(s)/s*; hence (12) follows immediately.

The additional conditions insure that f;*(-) = f(-); existence of the cutoff
point is then well known from Gianini and Samuels (1976). Hence the right
side of (11) is zero for 0/(0 + 1) < s < s, and (13) follows immediately. O

ExampLE. The above conditions are all satisfied in the choose one of the m
best problem with 2 =m — 1. When m = 3, the stopping risks p,(s) =
(1 —8)3, pys) =(1 —s)%(1 + 25) and p4(s) = 1 — s3 Hence p,(s) + py(s) +
ps(s) = 3(1 — s), so, on [s3, 1],

f'(s) =s7'[8f(s) —3(1 -s)],
f(s) =1—3s+ 35

Hence s; = /3/5 and
h(s) = —3s>—3s +4s?=5(1-5)(3s - %), sy;<s<]1.

The net effect of this is to advance the earliest effective time, s = (8 + ¢)/ (0
+ 1), at which the optimal rule simply selects the first arrival, from s;:
f(s) = p(sp to si: f(s¥) + (sf/55)%h(s5) = py(sF) = (1 — s§)2.

We can solve for si* as follows: First, note that f(sj}*) = f(0) which was
evaluated in Frank and Samuels (1980) to be 0.2918. Next, substituting
s3 = y/3/5 into the formula for A(s) above, we get h(s;) = 0.0762. Substitut-
ing these values yields sj = 0.3266, which should be compared with s, =
0.3367, as given in Frank and Samuels (1980).

As the above example illustrates, for loss functions that are eventually
constant, there is a starting point for calculating the f;*’s. For other loss
functions, if the infinite problem optimal risk is finite [see Gianini and
_Samuels (1976) for sufficient conditions], then a sequence of truncations will
eventually lead to the solution—at least in principle.
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2.3. Proof of Theorem 2.1. The essence of the proof is a version of the
censoring argument used in Bruss and Samuels (1987).

Fix ¢t and & + 1 = N(¢). For our family of Pascal posteriors, those arrivals
after time ¢ which are better than the worst arrival before time ¢ have the
same distribution as would all of the post-t arrivals if N(¢) were k. Hence to
every stopping rule, 7 > ¢, which can be used when N(¢) =k, there is a
corresponding rule, say 7', which, if used when N(¢) = 2 + 1, does not select
any option worse than the worst pre-¢ arrival and has the same risk as 7 used
when N(t) =k, except that 7' may incur a higher loss for not stopping,

because @Q(n) is nondecreasing in n. But if @(k) = Q(k + 1) = ..., then the
losses for not stopping are certain to be equal.
On the other hand, if gq(k + 2) = ¢q(k + 3) = ..., then an optimal rule,

when N(¢) = k + 1, will never stop with an option worse than the worst pre-
arrival. Hence this optimal rule could also be used when N(¢) = k.

Sufficiency, in the two special cases, is immediate. To prove necessity, we
first note that if g(% + 2) < sup q(-), there is positive probability that it will
be better to accept an option worse than the worst pre-t arrival than not to.
For example: Say q(k + 2) < q(1). Suppose the 2 + 1 best options all arrive by
time ¢ and the next [ — 2 — 2 best all arrive after the [th best, which itself
(having relative rank % + 2) is preceded by at least [ — 2 — 3 worse options
and arrives so close to time T' = 1 that it cannot be turned down.

The fact that this scenario has positive probability guarantees that, in both
cases, f;*(¢) # fi* (8) if q(k + 2) < sup ¢(+). To complete the necessity argu-
ment we need only consider the case Q(n)=q(n + 1) when ¢(k + 1) <
g(k + 2) = sup q(+). Here the optimal policy is the same whether N(¢) = k£ or
k + 1, and the loss is the same unless there are no post-z, arrivals better than
the worst pre-t arrival. There may, of course, be no post-¢ arrivals at all; hence

fifa(s) = f#(s) > [Q(k + 1) — Q(k)]Po(N =k + 1N(¢) =k + 1)
=[q(k +2) —q(k + 1)]s**T,
where s = (0 + ) /(0 + D).

2.4. Necessary and sufficient conditions for quasi-stationarity.

THEOREM 2.2. The modified geometric prior distribution on N is the only
prior for which, for all loss functions, the stopping risks p; ,(t) do not depend
on k.

Proor. Take i =j = 1 and substitute (5) and (7) into the right side of (6);
call it g(¢), since it does not depend on k. Then '

5} D 1)a- 0"t P = n)

k=1,2,....
(g ) -0 RN =)

(14) g(t) =
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If we now let
h(t) =(1—-g(2)/(1-2),

then (14) becomes, after some rewriting,
Topei(n = 1), (1 = 8)""P(N = n)

£ran(n)i(1 = )" IP(N = n)
which, after further rearrangement, becomes

A(t) _ Iio(m)(1 - )" *[P(N - 1=n)/P(N>0)]
P(N>0) ~ Ti_(m(1-0" "P(N=n)

(15) h(t) =

b

(16)

The denominator and numerator of the right side of (16) are the kth deriva-
tives of the probability generating functions of N and of (N — 1)|[{N > 0},
respectively. So, letting ¢ > 1, we see that P(N=n +1)/P(N=n) is a
constant for all n = 1,2,..., so N must have a modified geometric distribu-
tion [i.e., P(N = 0) arbitrary; (N — 1)|{N > 0} geometric]. O

We can also show that, if the posterior distribution of N is Pascal, i.e., if (5)
reduces to

(Z)u — )" **P(N = n)
() - e =)

for each ¢ € (0,1) and for £ = 0,1,..., n, then the prior distribution must be
geometric. Indeed (17) is equivalent to

(17) = (})etria—ep

1-t\""1
—P(N =n).
1- ¢ (2

= r _ r—k,k =r) = i g
(18) rz:jk(k)(l £) *t*P(N = r) ( )(

(2

For fixed ¢, the right side of (18) is manifestly a constant function of n for
n=~kk+1,..., s0

(19) P(N=k+m)=(11__¢;t)mP(N=k)

for each 2 > 0 and m > 1. But the prior distribution of N does not depend on
t, 50 (1 — ¢,)/(1 — ¢) must be a constant and N has a geometric distribution.
Specifically, (1 —¢,)/(1 —#) =1—P(N =0), so, if P(N=0)=06/(6 + 1),
then ¢, = (0 + ) /(6 + 1).

2.5. An open problem. We have seen that quasi-stationarity occurs only
for geometric priors and that quasi-stationarity does not imply stationarity.
What about the converse? We would be quite surprised if stationarity did not
imply quasi-stationarity, but we have no proof.
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It is our feeling that the lack of stationarity which we have demonstrated
here serves to underscore the importance of the minimax results in Bruss
(1984, Table 1) and Bruss and Samuels (1987).

Acknowledgments. This research was supported in part by grant ST2J-
0277-C from the European Communities for the Study of Automatic Decision
Strategies. Part of the research for this paper was carried out while the first
author was Visiting Associate Professor at the University of California at
Santa Barbara and part at the University of Arizona and at Purdue University,
while holding a research fellowship from the Alexander von-Humboldt Foun-
dation. He would like to thank the foundation for its support and these
institutions for their hospitality. .

REFERENCES

Bruss, F. T. (1984). A unified approach to a class of best choice problems with an unknown
number of options. Ann. Probab. 12 882-889.

Bruss, F. T. (1988). Invariant record processes and applications to best choice modelling. Stochas-
tic Process. Appl. 30 303-316.

Bruss, F. T. and SamMuiLs, S. M. (1987). A unified approach to a class of optimal selection
problems with an unknown number of options. Ann. Probab. 15 824-830.

Frang, A. Q. and SaMUELs, S. M. (1980). On an optimal stopping problem of Gusein-Zade.
Stochastic Process. Appl. 10 299-311.

GiaNINT, J. (1977). The infinite secretary problem as the limit of the finite problem. Ann. Probab.
5 636-644.

Gi1aNINI, J. and SAMUELS, S. M. (1976). The infinite secretary problem. Ann. Probab. 4 418-432.

STEWART, T. J. (1981). The secretary problem with an unknown number of options. Oper. Res. 29

130-145.
DEPARTMENT OF MATHEMATICS DEPARTMENT OF STATISTICS
UNIVERSITY OF CALIFORNIA PURDUE UNIVERSITY

Los ANGELES, CALIFORNIA 90024-1555 WEST LAFAYETTE, INDIANA 47907



