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THE CRAMER-RAO FUNCTIONAL AND LIMITING LAWS

By EDUARDO MAYER-WOLF

University of Massachusetts and University of North Carolina

Some versions of the Fisher information matrix and the Cramér-Rao
inequality are considered. We study properties of the Fisher matrix such as
continuity and convexity and use the Cramér-Rao functional as a varia-
tional tool to prove convergence to Gaussian laws. These concepts are
generalized to non-Gaussian limiting laws.

1. Introduction and notation. In the context of statistical estimation,
the Cramér-Rao inequality is well known. Namely, the Fisher information
matrix J, of order m,

T
J, = E, (Ve po(X))(Vozpo(X))
po(X)

(V, is the gradient operator with respect to 6, E, the expectation with density
Dy) is associated with any member of a family {p,},. ;; of probability densities
on R”, sufficiently smooth in # € H (an open set in R™). The Cramér-Rao
inequality provides, in terms of J,, a lower bound for the error matrix of any
unbiased estimator § = h(X):

(1.1) E(0-68)(6-6)">dJ;1, VeeH.

(Throughout, the matrix inequality A > B means that A — B is a symmetric
nonnegative matrix.) Consider the following particular case [cf. Pitman (1979),
pages 36-39] in which n = m: If p(x) is a ““reasonable” density on R” with
< = [prxp(x) dx and if py(x) = p(x — 0) for each 6 in some neighborhood of
the origin, then clearly A(x) = x — u is an unbiased estimator of the location
parameter 6. For 6 = 0, (1.1) becomes

(1.2) : cov( X) zJ_l,v

where X is a random vector distributed with density p and J (= J,) is given
by E[(Vp(X))(Vp(X)T/p(X)?]. Note that (1.2) is an inequality on the density
p, not necessarily connected with any estimation setup, and has a simple direct
proof.

Here, for (1.2), we shall assume fewer regularity conditions on p [p € H(R")
as in (2.2)] than the usual proofs require [cf. Rao (1973)].

This work concentrates on two issues connected with inequality (1.2). In
Section 2 we shall consider properties of the Fisher matrix J = J(u) as a
function of probability measures (such as continuity, convexity, etc.). The main
result in Section 2 is Theorem 2.1, which implies in particular that conver-

Received November 1987; revised November 1988.

AMS 1980 subject classifications. Primary 60F05; secondary 49B50.
Key words and phrases. Fisher matrix, Cramér—Rao functional, convergence in variation.

840

[Z8 (€
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z
The Annals of Probability. STOR ®

WWw.jstor.org



CRAMER-RAO FUNCTIONAL AND LIMITING LAWS 841

gence in distribution is equivalent to convergence in total variation for se-
quences of distributions with bounded trace of the Fisher information. Theo-
rem 2.2 is known with additional assumptions [Barron (1986); Stam (1959)]. It
is included here as an immediate consequence of Theorem 2.1. In Section 3 we
shall exploit the simple fact that equality is achieved in (1.2) iff u is Gaussian
to establish that probability measures which “nearly’’ achieve equality in (1.2)
are ‘“‘close’’ to being normal, thus providing a tool for proving convergence to
Gaussian laws.

In particular, we discuss in Section 3 the use of these methods by Brown
(1982) and Barron (1986) in the classical CLT. Here we just mention that
asymptotic equality in (3.2) for the normalized sums of iid’s has not yet been
established in full generality. On the other hand, we have succeeded in using
the results of Section 3, extended to random measures, to prove a CLT in
nonlinear filtering. Namely, if J; denotes the conditional probability measure
of the state of a diffusion process x, conditioned on the paths y§ of a second
observation process, with 7 denoting the signal-to-noise ratio in the observa-
tion process, then in probability as 7 — o, J/, suitably normalized, converges
to a Gaussian law [Mayer-Wolf (1987)].

Section 4 extends (1.2) to an inequality involving a weighted Fisher matrix.
This extension allows one to obtain, along the lines of Section 3, convergence
to limiting laws other than normal.

The following notation will be used. For any topological space X, B(X) will
denote the Borel o-algebra, P(X) is the set of probability measures on
(X, B(X)) and 2a,, is the Lebesgue measure on (R", B(R")). Weak convergence
in P(X) will be denoted as usual by =. We use the standard C*(X), Cy(X)
and L7P(X) function spaces 1 <p < o (with respective norms | |,
[l llws Il - II,). Also, for any finite signed measure u on (X, B(X)), its total
variations norm is ||ull; = SuPscc x),fp.-11/x F(X)uldx)|. In P(X) we say
that u, converges to u in total variation and write u,, =, p if || — u,ll; — 0.

The trace of a matrix A = (a;;)is tr A = ¥;a;, and V is the formal (weak)
gradient operator acting on functions of n real variables Vf = (df/dx,)I_;.
Finally, the n-dimensional Gaussian densities are denoted by ¢, \(x) =
((27)" det A)~1/2exp(— 3(x — a)’A"}(x — a)), the corresponding distribution
functions by ¢, , and the measure they induce on (R”, B(R")) by u, .

2. The Fisher matrix and its properties. For a region D c R”, let
W12(D) be the Sobolev space of functions belonging to L2(D) together with
its first (weak) derivatives [cf. Adams (1975)] equipped with the norm || f|l; , =
(LF1Z + 11VA1'/2, and define

- d
(2.1) H(D) = {# € P(D)lp = a—;i exists and p*/2 € W“(D)}

n

and

(22) H(D) = {u & HD)| [ jiu(de) < o).
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For u € H(D), we define the Fisher matrix

(2.3) J(p) =4 [D (Vp2(x))(Vp/2(x))" dx,
while if u € H(D),

(2.4) i = [D xp(dx)

and

(2.5) 2(w) = [ (v = B)(x = B) "w(de).

REMARKS. (a) Setting A = {x € D|p(x) = 0}, w(A) = [p 14(x)p(x)dx = 0.
Then the matrix J(u) can be rewritten as any of the following equivalent
expressions:

[ (Vp(x))(Vp(x))"
D p(x)

_ (Vp(x) )(Vp(x)
p(x) ]\ p(x)

(2.6) ) n(dx)

fD(v1np<x))(wnp<x>)%<dx)

—fDVVTlnp(x)u(dx).

(The last term requires further regularity for p.)

(b) For n = 1, it follows from Sobolev’s imbedding theorem [Adams (1975)]
that if p € H (D) then p is necessarily bounded and continuous. For n > 2,
this is no longer true.

(c) We shall not distinguish between a random vector X and the measure
px it induces. Thus, terminology such as X € H(D), J(X) or “the mean of
w”” will be adopted freely.

THEOREM 2.1. Let D be a region in R™ and (u,),., a sequence in H(D)
with densities p;, and p, = u € P(D) as k — ». Furthermore, assume that

(2.7 trd(u,) <M <ow, VEkx>1.
Then:
(@) u € H(D) (with density p).
(i) tr J(u) < liminftr J(u,).
(iii) p), = p in L' as k — « (equivalently u, —, ,u.)
“ProoF. First we note that if v € H (D) with density 7, then
(2.8) w7213, =1+ 3trJ(v).
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Assume now that D is a bounded region. By (2.7), pi/? is a bounded
sequence in W1 2(D) and thus by the Rellich—-Kondrachov compact imbedding
theorem [Adams (1975), Theorem 6.2] a compact sequence in L%(D). It follows
that there exists a subsequence of pi/? (which, without loss of generality we
shall assume to be p;/? itself) such that pi/?2 - g, in the weak topology of
W/2(D) and p}/? - g, in L%(D). It is straightforward to verify that g, = &,
a.e. We have :

1Pk — &3lls < IPx"* + &oll2llPx”® — &ollz < 2IlPy"* — &ollz = 0,
which proves that g2 is indeed u’s density p and that conclusion (iii) holds.
Since g, € W-2%(D), (i) also holds. Furthermore, since in any Banach space
the norm is a lower semicontinuous function in the weak topology and in view

of (2.8),
trJ(u) = 4lgolli2 — 4 < 4iminflp}/?[} » — 4 = liminf tr(J(k,)),

which proves (ii).

Now let D be an arbitrary region, not necessarily bounded. Choose ¢ &

C*R) such that 0 <y(p) <1 V pER, Y[_wp =1 ¥lpo =0 and
W2 p)/W(p) <C, <o ¥ p&(0,1). [An example of such a function is
Y(p) = exp{—p3/(1 — p?)}, 0 < p < 1.] For a sufficiently large positive N, we
truncate any probability measure 1 with density = to a probability measure
1Y by defining its density 7V(x) = aM(m)y(jx| — N)ar(x), where aN(qr) is a
positive normalizing factor. Note that as N = », a¥(5) > 1 and #V¥ - 7 in

L (D), uniformly on any tight family of probablhty measures. Furthermore, if
n € H(D), one can verify directly that n € H(D) and

) [tr(J(n)) + Cn({lx| > N})],

(2.9) trd(nV) <
an
where C is a constant independent of N and 7.

Returning to the given sequence u,, for any sufficiently large N it is
obvious that u¥ = u" and from (2.9) it follows that (2.7) is satisfied for {u}},
hence the theorem’s conclusions (i), (i) and (iii) hold for the truncated
measures, i.e., u¥ € H(D N {jx| < N + 1}) (with a density we shall call p" by
an abuse of notation) and p — p% in L.

Now, being weakly convergent, {u,} is a tight sequence so that, by a
previous remark, {p¥ }v»1 are L'-Cauchy sequences uniformlyin & = 1,2,...,
by which {p*}y., is also Cauchy, thus converging in L' to a density p which
is obviously u’s density. From (2.9) and the tightness of {u,}, it follows that for
each € > 0,

\vj 2
f(|x|<N)l ;)' (%) dx < “N(”“)tr(J(“N)) < ay(p)lim inf tr(J(u}))

<ay(w) llmlol;lf N( 5 [tr(J () + Cup({lx| > N})]

<(1+ e)h}cnlnftrJ(p,k) + €
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for all N sufficiently large, from which we obtain the theorem’s first two
conclusions. Finally, conclusion (iii) follows by using the equivalent result for
the truncated measures and a standard €/3 argument. O

REMARKS. (a) Among other things, what Theorem 2.1 says is that in P(D),
equipped with the topology of weak convergence:

(1) For each M > 0, HM(D) =[un e ﬁ(].?)[tr(J(;u)) < M1 is closed.
(2) tr J(u) is lower semicontinuous on H(D).

(b) Let w € R™ have positive zomponents and consider the weighted trace
of a matrix A = (a,;) € R"*", namely,

n
(2.10) tr, A=) wa,.
i-1

Then Theorem 2.1 obviously remains true if tr is replaced everywhere by tr,,.
[The Sobolev space W 2(D) should be equipped in this case with the equiva-
lent norm ”f“l,z,w = (”fﬂg + X7 lwi”af/axi“2)l/2']

LEmMA 2.1, Let X be a random vector in H®R"), b € R* and TA a nonsingu-
lar n X n matrix. Then AX + b € HR") and J(AX + b) = A" 1J(X)A™ L.

Proor. Follows immediately from the definitions. O

CoroLLARY 2.1. Conclusion (i) of Theorem 2.1 can be replaced by the
stronger statement:
(ii") For each a € R, aTJ(wa < liminf, ., a"J(p,)a.

_ In particular the function aJ(-)a, extended to +% on P(D)\ H(D), is
lower semicontinuous on P(D).

Proor. First let € > 0 and conclude (ii) of Theorem 2.1 with tr,, replacing
tr (as in the remark following the theorem) where w, = (1, ¢, ¢, .. ., )T e R™.
Letting € — 0 we obtain J(u);; < liminf, |, J(u,);;.

Next, given 0 # a € R"”, consider a nonsingular matrix A with « as its first
column. Letting & = p° A, i, = u, © A and using Lemma 2.1,

a’J(p)a = (AT (p)A)y =J(R)1 < li{crii;lfJ(ﬂk)u

= lizn inf(ATT () A);, = lizn infaJ (uy)a. ]

LEMMA 2.2. For any region D c R*, H(D) is a convex subset of P(D) and
J(+) is a convex (matrix-valued) function on H(D).

Proor. If u; € H(D) with respective densities p;, i = 1,2, and if @, 8 > 0
and a + B =1, set u =au, + Bu, (whose density is p = ap, + Bp,). The
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lemma follows then from the equality

((Vp)(Vp) ) (Vp1)(Vpy) )(x)+ﬁ((sz)p(sz) )(x)

1

(x) =a

(%),

—up (P VP2 — P2 VD) (P, VP — Py Vp1)T
bp.1Dg

which holds for any x for which p(x) > 0. O

TuroreM 2.2. If w € H(D,) and n € P(D,), then p*n € H(D, + D)
and

(2.11) J(pxn) <J(u).

Proor. First, if u, is the shifted measure u, (B) = u(B — x,), obviously
J(u,,) = J(u) (see also Lemma 2.1). So by extending Lemma 2.2 to all finite
convex combinations, inequality (2.11) is true for 7 of the form

m
(2.12) n=1Y a;8,.
i=1

Now, an arbitrary n can be approximated weakly by a sequence (7,) of
measures of the form (2.12) which thus satisfy J(u * n,) < J(u). Since obvi-
ously u *m, = u*n, (2.11) follows from Corollary 2.1. O

_ CoroLLARY 2.2. For every e H(R"), there exists a sequence (w,) in
H(R") with p, having positive C* densities for all k such that p, = u and
J(p,) = J(w) as kb - =,

Proor. Simply define w, = u*u, ,-1; [recall u, , ~ N(a, A)]. Obviously
u, = p and from Theorem 2.2, J(u,) <J(u) V k. These two facts and
Theorem 2.1 imply that trJ(u) < liminf,  tr(J(u,)), from which the
corollary follows. O

For completeness’ sake we shall include the following result on the Fisher
matrix of marginal laws.

LEmMA 2.3. Let X be a random vector in H(R") and consider the partition

X=(XD,X®) XD ecR: X®ecR"* with 1 <k <n. Then X® € HR*)
and

T(XD) < (J(X)i, )i jor-
“ProoF. See Bobrovsky, Mayer-Wolf and Zakai (1987), Proposition 1. O

Finally, we state the Cramér-Rao inequality (1.2).
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THEOREM 2.3. Let X be a random vector in H(R™). Then
(2.13) 3(X)=dJ(X)7!
with equality if and only if X is Gaussian.

REMARKS. (a) The theorem implicitly states that /(X) is nonsingular.
(b) Equivalent formulations of (2.13) are '

J(X)=23(X)", SX)VPJ(X)S(X)VP>1

and so on.
(c) The assumption X € H(R") allows us to verify that

j(x — EX)(Vp)T(x)dx = —1I

(by integration by parts) and the proof may be completed as in Rao (1973),
page 327. A detailed proof of a more general result appears in Bobrovsky,
Mayer-Wolf and Zakai (1987).

Motivated by (2.13), we define the Cramér—Rao ‘‘ functional”

(2.14) T(n) = S(w)2J(w)2(n)"* - I.

3. The Cramér-Rao functional and divergence from normality. A
natural question which arises from Theorem 2.3 is whether the matrix valued
Cramér-Rao functional I'(u) defined in (2.14) can serve as an effective mea-
sure of divergence of u from normality. In this section we shall provide a
positive answer in the sense that (loosely) I'(x) — 0 implies that u, tends to a
Gaussian probability measure.

LeEMMA 38.1. Let u € H(R) have density p,mean a and variance o 2. Then

" T 1( /2
(3.1) P — @qy,02ll: < V ST(w) + —[1 =la — agl + 2|0 — gy |-
2 0y T

Proor. First assume a = a, and o = o, and without loss of generality we
may assume they are, respectively, 0 and 1 since both the LHS of (3.1) and
I'(u) are invariant under an affine transformation of the underlying random
variables.

Denote
(3.2) g(x) =p'(x) +xp(x).
Note that
. 2 1/2
= | p'(x) = | p'(x)
el =/ |5 ** (ds) < (/_w o) M(dx))

(3.3)& e
= (J(p,) + Z/fwxp'(x) dx + 1) =T (p)"2
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Now solving the ODE (3.2), we may write
1 o
_ ,—x%/2 s2/2 _ _
p(x) =e [m + [ e 7g(x)(do0,4(s) — Iy, (s — %)) ds],
so that

||p_¢’o,1||13f e x/f

<)

e 21g(5)l1do,1(5) — Iy, (5 — x)lds da
= f_oowQS2/2|g(s)| ds[f_sme_xzﬂ(l - 4’0,1(3)) dx
+/we"‘2/2¢>(s) dx]

= 227 [ e /21g ()i, () (1 — bo,1(s)) ds.

Now the continuous function h(s) = e**/2p, (sX1 — ¢, (s)) tends to 0 at
+ o so that it is bounded. Actually it is not hard to prove that ||A ||, = h(0) = 1,
from which we conclude ||p — ¢, 4|l; < V7/2]Igll;, which together with (3.3)
proves the lemma in this particular case.

In the general case just note that

”p - (Pao,crg“l < ”p - (pa,cr2“1 + ”(pa,cr2 - (paO,O'g“l

and it is a straightforward exercise to verify that

1/( /2
”(pa,a'2 - (Pao,o'g”l < —0_—-( —7_7'_ |a - aOI + 2|0. - O-OI . O
0

REMARKS. (a) An inequality

(3.1) 1P = @ay oilly < C(T(1)% + la — agl + o — o))

can be obtained along the same lines as Lemma 3.1 for ¢ = ©» and by
interpolation for 1 < ¢ < « as well.

(b) A sharper inequality than (3.1) follows from the chain (take a, = 0,
0o=1) Ip — @o1ll} < 2/plog(p/p, 1) < log(l + I'(p)) [Csiszér (1967), Theo-
rem 4.1 and Stam (1959), Equation (2.3)]. However, this proof does not extend
to bounds on the uniform norm as in the previous remark.

THEOREM 3.1. Let Z., j > 1, be a sequence of random vectors in H(R"). If
(i) EZ; - a, cov(Z;) > A (positive definite) and (ii) ['(Z;) — 0, then Z; -,
Z ~ N(a, A).

Proor. The case n = 1 follows directly from Lemma 3.1. For the general
case choose @ € R™ with |a| = 1 and an orthonormal matrix A with a7 as its
first row. For any random vector X, it follows from Lemmas 2.1 and 2.3 that

(3.4) J(a"X) = J((AX),) < (J(AX))y; = a"I(X)a,
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so that denoting Zj = (cov(Z;))~'/*Z;, we have EaTZj - aTA"12%q, cov(aTZj)
=1 and, by (3.4),

I(a’Z;) <a®(Z;)a" - 1=a"(T(Z;) +I)a — 1 -0,

so that from the scalar case we conclude that for all a € R", a"Z, -, a"Z,
where Z ~ N(A~"%a, I). By the Cramér-Wold technique [Billingsley.(1968),
Theorem 7.7] it follows that Z;=ZorZ;=>Z~ N(a, A).

Note that only weak convergence was obtained because the Cramér-Wold
method does not extend to L' convergence. However, denoting A ;= cov(Z)),

trd(Z;) = tr{(1 + T(Z;))A;"} < tr(I + T(Z;))tr(A;Y)
< {n + sgp(tr I“(Zj))} suptr(A;') <,

so by Theorem 2.1, Z, = Z implies Z; >, Z. O

As an illustration, we shall conclude this section by relating its contents to
the classical central limit theorem where X, are ii.d. mean 0, variance 1
random variables in H(R) and S, = n~'/2(X?_, X,). Direct applications of the
results in Section 2 yield simple proofs to known convolution inequalities [cf.
Stam (1959), Equation (2.9)]; in particular (n + m)J(S, ,,,) < nJ(S,) +
mJ(8S,,), which shows by subadditivity that L = lim, _J(S,) exists. This
was enough for Brown (1982) to provide a new proof of the classical CLT.
Barron (1986) then showed that L = 1 if we assume that X; = U + 6Z [6 > 0
and Z ~ N(0, 1) independent of U], thus proving a total variation CLT in this
case. Moreover he obtained a CLT for ‘“convergence in entropy”’ which still
implies convergence in L' but is weaker than L = 1. The question whether
L = 1 in general remains open. [We note that L! convergence has already been
established in Prohorov (1952); for X, € H it also follows directly from our
Theorem 2.1.]

4. Non-Gaussian limit laws. A natural question which arises is whether
the techniques of Section 3 can be modified so as to yiéld limiting laws other
than Gaussian. In this section we shall show a way of doing this; we restrict
ourselves to the scalar case n = 1.

Let o(x) be a measurable function of a real variable satisfying

(4.1) 0<c;<0(x)<cy <o, VxeR,

and consider the positive measure A, on R defined by dA,/dA = o (A being
the Lebesgue measure). If D = (a, b), define just as in (2.1),

- du 12
(4.2) H (D) = {[.L € P(D)|p = o exists and (op) /“ € Wl’z(D,a)},

where W'%(D, o) is the weighted Sobolev space {f: f, f' € L% D, A,)}. In
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other words, u € H, (D) if its density p satisfies

(4.3) J () = ]D% x < .

[As before, for a random variable X, J,(X) stands for J,(nx).] Also H_ (D) =
{u e HU(D)|2(IJ«) < oo},

THEOREM 4.1. If u € H_(R) with density p, then

(4.4) T (W > ([ o(xuan)

Equality is achieved in (4.4) if and only if there exist constants a € R, B > 0
and C(a, B) > 0 such that

) C(a,B) 1 «(t—a)
(4.5) p(x) = (pEx 132 = a—(x)—exp(— EL —W dt)

ProoF. Inequality (4.4) is simply the Cauchy—Schwarz inequality (£, g)* <
I£1%1gl? in LR, n) when f(x)=(x —m) and g = (op)'/p. The fact that
I(£,8)] = |/ w0 (x)u(dx)| follows in the same way as for the particular case
o =1 (Theorem 2.3). Similarly, the functions ¢[7}: defined in (4.5) are the
only solutions to the equation (op)(x) = yp(xXx — a) arising from the condi-
tion for equality in the Cauchy-Schwarz inequality, which are probability
densities. O

We shall denote the probability measure whose density is (pl"] 2 by p,l"] 2 and

motivated by Theorem 4.1 define the nonnegative functlonal T ( ME
J,(W)3(p) — (J2 0(x)u(dx))®. Let F(x) = [}(1/0(8))dt with x5 =0 and for
any probability measure u, 3, (n) = [© (x — x)F(x)u(dx) [finite or +«; note
that the value of x, in the definition of F(x) is immaterial].

We also observe that zlok. =« and 3,(ul7}:) = B% so that the natural
parameters of the family of measures ach1ev1ng equahty in (4.4) are the mean
& and the “distorted variance” 3, (u). Note as well that J,(X) = J(F(X)).

THEOREM 4.2. Let o be a function which satisfies (4.1) and (u;) a sequence
of measures in H, (D) such that when j — x:
() ;> a €Rand 3,(u,) > B>>0.
(i) T,(u;) - 0.
Then p; —, plihe.
Proor. Denote a; = &; and B? = 3,(u,). Since
ety — ity < oy =l gelly + 11 g2 = el
and the second term in the RHS obviously tends to 0, it suffices to show that
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llm; — pdaﬁ B2”1 — 0. For that we proceed just as in Lemma 3.1: Denote

we 7 (/7 oy an) / (/= auyan),
gi(x) = (op;)'(x) + K;(x — a;)p;(x), pi(x) =du;/dAr(x).
Solving (4.6), we obtain

(py(x) = #70a(x))
(47) e~ K;Gi(x)
= —U—(x)—j_ 8;(1)e™ %O $l(0) — 1y, (¢~ x)| dt,
where G;(u) = fa“(v —a;)/(c(v))dv and qb["] A(u) = f“wgo["] 2(v) dv. From
4.7), stralghtforward computatlons (which are dlrect generahzatlons of those
in Lemma 3.1) show that

- , 1/2
1p; = @5 )gall < Cligll, < C'T, (1),

where the positive constants C and C' are independent of j (because inf; 8, >
0), thus completing the proof. O
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