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POISSON APPROXIMATION USING THE STEIN-CHEN METHOD
AND COUPLING: NUMBER OF EXCEEDANCES OF
GAUSSIAN RANDOM VARIABLES

By LARS HOLST AND SVANTE JANSON

Royal Institute of Technology, Stockholm, and Uppsala University

Consider a family of (dependent) Gaussian random variables and count
the number of them that exceed some given levels. An explicit upper bound
is given for the total variation distance between the distribution of this
number of exceedances and a Poisson distribution having the same mean.
The bound involves only means and covariances of the indicators that the
variables exceed the levels. The general result is illustrated by some
examples from the extreme value theory of Gaussian sequences. The bound
is derived as a special case of a result obtained by the Stein-Chen method
for sums of dependent Bernoulli random variables. This general result
requires the existence of a certain coupling, which in the Gaussian case
follows by a correlation inequality.

1. Introduction. By a method due to Stein and Chen many new results
have in recent years been obtained on Poisson approximation of random
variables representing the number of occurrences of dependent events, see
Arratia, Goldstein and Gordon (1989), Barbour and Holst (1989), Barbour,
Holst and Janson (1988a, b), Chen (1975), Smith (1988), Stein (1986) and the

references therein.

The main purpose of this paper is to use this method to study the distribu--

tion of the number of exceedances of (high) levels in a Gaussian vector. An
upper bound on the variation distance between that distribution and a Poisson
distribution with the same mean is obtained. This bound is useful both for
numerical and theoretical purposes, for example, to study convergence rates
for extremes in Gaussian sequences.

In order to accomplish this we will first derive a general upper bound for
variation distances using the Stein—Chen method. We also need the existence
of certain monotone couplings for multivariate normal distributions. This will
be proved using a result on association between normal random variables.

The organization of the paper is as follows: In Section 2 the general results
concerning the upper bound and couplings are derived. The number of ex-
ceedances in the Gaussian case is studied in Section 3.

2. Variation distance and coupling. In the following I' stands for a
finite index set; we set I, =T — {a}. Let I,, a €T, be Bernoulli random
variables with

P(I,=1)=1-P(I,=0) =p,

—_——
Received October 1988.
AMS 1980 subject classifications. Primary 60F05; secondary 60G10, 60G15.
Key words and phrases. Convergence rates, coupling, extreme values, Gaussian distributions,
Poisson approximation, Stein-Chen method.

713

[Z8 (€
vy
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%;/‘

’3%3

The Annals of Probability. BIXOIY

www.jstor.org



714 L. HOLST AND S. JANSON

and set
W=>Y1I1, A=EW=Y p,.

acel acl
We say that X is Po(A) if the random variable X has a Poisson distribution
with mean A. The total variation distance between X and W is defined as

d(W,X) =sup|P(WeA) -P(XecA)|.
A

TueorEM 2.1. Let, for each a €T, the random variables I, I 55 Jpas
B € I, be defined on the same probability space with
j(Jfa’a; B € Fa) =°/(Iﬁ; B € FaIIa = 1)'
Then
(@ for V, =X gcrdpa

1—-e?

Y pEW -V,

acl
(b) If there exists a partition T, = 7 UT, UL with Jg, > 1, for p €T}
and Jg, <1, for B €T, then

d(W,Po(1)) <

d(W,Po()))
1—e* )
<— Y pZ+ XX |[Cov(l,, I,)|+ XY (ELIs + p,pg)|-
acel a+p a+pB
ﬂeF;UFa_ Be[‘c?

REMARK. The case I, = I' = @ is considered in Barbour and Holst (1989).
The general version is due to Barbour, Holst and Janson (1988b). To prove the
theorem, the Stein-Chen method can be used. We include a proof for com-
pleteness.

Proor. For a given set A and X Po(A) define the function f, by £4(0) = 0
and
AMa(d + 1) —Jjfa(J) =1(j € A) - P(X € A).
Barbour and Eagleson (1983) proved that f, is bounded with

—-A

AfA=$uP|fA(j+1)_fA(j)|S 2
Jj=0

Hence we have
IP(WeA) -P(XeA)|=EQAfAW+1) = Wi(W))]
=| X Pu(E(fa(W + 1)) = E(fo(W)]I, = 1))
< X PoJE(fa(W + 1) = fu(V, + 1))
< Y PE AW+ 1) = fu(V, + 1)

—A
Y pEIW -V,

A

SAfa) pEW -V, <

proving (a).
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Now for B €T},
0 < p Kz — dJg,| = p,E(Jg, — Ig) = pE(Ig|I, = 1) — p,pg
= E(I,15) — p,pg = Cov(I,, I,).
Similarly for g € I,
0 < pE|I; — Jg,| = —Cov(I,, I).
Thus
PEIW = V|

I+ Y (Ig=dg)+ X (Ig=dg,)+ X (Iz—dg,)

per} pBerlr, ger?

= p,E

Spa{[EIa+ Y Bl -dul+ ¥ EL-dj+ ¥ IE(IB+JBa)}

Ber} BeT; per?

=pZ+ ) Cov(I,, I;) + ). ,Cov(Ia,IB)|+ Y (papB+[EIaIB).

Ber, Berl, per?

Hence (b) follows from (a). O

The crucial step when applying Theorem 2.1 in a specific situation is to
construct an efficient coupling defining the partition of I', and the J’s; cf. the
examples in Barbour and Holst (1989) and Barbour, Holst and Janson
(1988a,b). However, it is not necessary to give an explicit construction; it
suffices to know the existence of a suitable one. For this the following result
will be used in Section 3.

THEOREM 2.2. Let the random vector (X,, X,,..., X,) be Gaussian with
Cov(X,, X;) >0 for 1 <i < p and Cov(X,, X;) <0 forp <i <n. Then, for
any random variable T, which is independent of the vector, there exists a
probability space with random variables Y,,...,Y,,Z,,...,Z, such that

2(Yy,...,Y) =2(X,,...,X,),
L(Zy,...,2,) =2L(X,...,X,| Xo>T),
Y, <Z, l1<ic<p, Y, >Z, p<is<n.
ProoF. As T and (X,,..., X,) are independent, it follows from Corollary 3

of Joag-Dev, Perlman and Pitt (1983) that for any bounded real function
increasing in all its arguments,

E(I(X, > T)f(Xl,...,Xp,—Xpﬂ,...,—)én))
=EE(I(Xo > T) (X1, ..., X,y =X, i1y —X,)IT)
> EE(I(X, > T)IT)Ef(Xy,..., —X,)

—EI(X,> T)Ef(X,,...,-X,).
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Hence for all such f,
E(F(Xpyeos Xy =Xpi1seoor —X,)1Xo > T) 2 Ef(Xy, ..., - X,).

According to Theorem 1 in Kamae, Krengel and O’Brien (1977) or results in
Section I1.2 of Liggett (1985) this 1mp11es the existence of a probablllty space

with random variables Y;,...,Y,,Z,,..., Z, with

j(Yl""’Y}')’_pr'f'l""’_Yn)=°/(X1""’Xp’_Xp+1""’_Xn)’

=./(Zl,...,Zp,—Zp“,...,—Zn)==./(X1,...,Xp,—Xp+1,...,—Xn|X(,>T)
Y.<Z, 1<i<p, -Y, < -7, p<i<n,

which proves the assertion. O
3. Exceedances in the Gaussian case.

THEOREM 3.1. Suppose X, a € T, are jointly normally distributed random
variables. Let t,, a €I, be real numbers and set

L1=:I(2;:>ta)’ pa=:P()Qy>ta%
wW=Y1I, A=EW=Y) p,.

acl’ acsl
Then
d(W,Po(1)) < Y pZ+ Yy |Cov( Iﬂ), .
acl’ a,Bel
a#+p

Proor. For any fixed a € T, the existence of a partition of I, with I'? = @
in Theorem 2.1 follows from Theorem 2.2. From this the assertion follows. O

CoROLLARY 3.2. Suppose X,,, a € I, are jointly normally distributed ran-
dom variables. Let t,, a € T, be positive numbers and set
L=I(X)>t), Ii=IX,>t), I;=I(X,<-t,),
p.=P(X|>t), W=XI, A=EW=Y p,.

acl acl’
Then

Y p2+ LY (|Cov(Is, I;)| +|Cov(I7, I7))|

ael a,BeT
a#B

d(W,Po())) <

+|Cov(I7, I7)| +|Cov(I; , I7)]) |-
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Proor. Set X* = —X_. Then
W= Y I(X,>¢t)+ Y, I(X*>t,).
acl ael

Theorem 3.1 applied to the variables {X_} U {X*} (with two copies of T as
index set) yields, if S denotes the double sum in the bound above,

1—e?
d(W,Po(A)) < (2 (EI})?

A ael
£ ¥ (B + T (Iov(Lf, 1) +[Cov( Iz, 1)) + S ).
ael ac€l

The assertion follows because Cov(I}, I;) = —EI}EI; and thus

(EL)? + (EI7)® + 2|Cov( I}, I7)| = (EI + EI;)* = p2. )

We may replace the fixed levels ¢, in Theorem 3.1 and Corollary 3.2 by
random levels T, that are independent of each other and of {X} (cf. Theorem
2.2). We leave the details to the reader.

REMARK. If A is large, then Po(A) may be approximated by N(A,A).
Hence the Poisson approximation result in Theorem 3.1 implies that W is
asymptotically normally distributed in situations where A — o« while
A"YE pZ + XX [Cov(1,, Ip)) — 0.

Let us take all ¢, equal to ¢. Then the event {W = 0} is the same as
{max X, < t}. Consequently Theorem 3.1 gives as a corollary an upper bound
for [P(max X, < ¢t) — e~ *| and, analogously, Corollary 3.2 gives an upper bound
for [P(max|X,| < t) — e *|. Estimates on the distribution of the kth largest
value are obtained similarly.

Theorem 3.1'is simply to apply numerically to specific examples as the
bound only involves the one- and two-dimensional normal distribution func-
tions. It is also easy to use Theorem 3.1 to obtain asymptotic results. We will
illustrate that using the following estimates for the covariances:

Let ® and ¢ be the standard normal distribution and density functions.

LEmMA 3.3. Let (X,Y) be N((g), (: I)) If 0 <r <1, then for any real a

and b,
1—oan|1- o] 22
( (a)) m))

<P(X>aandY > b)

=l s - ofi=e )

If —1 <r <0, the inequalities are reversed.

v =(1-%(a))
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Proor. By integration by parts we get

® b—rx
P(X > a and Y > b) =[ (p(x)(l —Q(ﬁ))dx

- r

b—ra
o b—rx r
A q)(x))qo( Vi- ) Vi-r2

Suppose 0 < r < 1. The lower bound then follows immediately. Next note that
(1 — ®(x))/(¢(x)) is decreasing. Thus

dx.

dx
<1—<I>(¢7L) b—rx dx
~ ¢(a) '/; (\/l—rz)\/l—r2
1-®(a)

x—rb dx
¢(a) '[a (\/1—r2)\/1—r2

#(b) a—rb
=(1- ‘I’(a))—)(l - q’(ﬁ)),

giving the upper bound. For the case —1 < r < 0 the same argument works
with the inequalities reversed. O

LeEmMa 3.4. Let {2z,} be a sequence such that A, = n(1 — ®(z,)) <K for

some constant K. Let (X,, X;) be N((g),(: ;)) and let I, = I(X, > z,),

I; = I(X; > z,). Then, for some constants C depending on K only and all
n=>2:

G IFo<r<1,
0 < Cov(I,, I5) < C(1 - r) " V2p—2r2r/A4n)(Jog ) T/,

G Ifo<r<1,
r log

2r log n

0 < Cov(I,,I;) <C
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Gi)If -1<r<0,

rilog n
0 > Cov(I,, I;) > —C| Inzg

GwIf -1<r<0,

1
02 Cov(I,,Is) = ~C—.

Proor. (i) We may assume that n > 7K and thus z, > 1. Lemma 3.3
yields
" 1-r
B 1+rom

1—-r -t 1-r
1+ -1
<(1+r)z, <P(zn)( 1+rzn) qo( 1+rzn)

0 < Cov(I,, I) <E(1,I;) < (1 —®(z,))(1 +r)

3/2 _1y2[ (25)
=1+n**1-r"Y (_zn

1+(1-r)/(1+r)
) z;2r/(1+r)(2,n_)_r/(1+")
1 1 A-r)y/(1+r)
<C@-r)""* =(log n)_r/(Hr)(-—)
n n
In the last inequality we use the fact that the next to last term is a decreasing
function of z,; hence we may assume that 1 — ®(z,) = K/n and thus

z, ~ y2log n and (¢(2,))/z, ~ K/n.
(ii) We may assume that z, > 0. Then, by Lemma 3.3,

. Cov(I,,Ip) < (1 — P(z,))|(1 +r)|P(z,) - d)( ] ;: )) -f‘-l"(]. - @(zn)))
| 1-r 1-r
e T

+r(1 - <I>(zn))2

1-r r
<2re(z,)e T % + C;ﬁ

#(z,)
¥4

r
(2‘”) —r/({+r) + C_z_
n n

1+ —-r)/(1+r)
= 2rz'21/(1+r)( )

< Cr(log n)l/(1+r)n—_2+2r/(1+r)

< C—r(logn)e® len,
n
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(iii) We may assume that z, > 1. Then Lemma 3.3 yields
R s @
. 1+rn (2)

-r(l - <I>(z,;)))

0 < —Cov(I,,I;) < (1 - ®(2,))|(1 +r)

< L(1 + r)( 1—+: - 1)zn<p(zn) + |r|(LG))

n

2
) (22+ 1) <Clrin"2logn.

n

K‘2
i Cov(I, I;)> —EILEI,> ——] . O

(IV) OV( a’ B) a-"B (n )

ReEMARK. Of the estimates above, (ii) and (iii) are sharp (within a constant),
when |r[log n is bounded and A,, is bounded from below, while (i) and (iv) are
sharp when both |r[log n and A, are bounded from below, provided r < r;, < 1.
This can be proved using the left inequality in Lemma 3.3 and calculations
similar to those used above.

As an example, let us consider a stationary Gaussian process. The following
result contains results on the distribution of extremes of the process; cf. Lead-
better, Lindgren and Rootzén (1983), Chapter 4, where similar results on the
distributional convergence of extremes are proved by different methods.

THEOREM 3.5. Let {¢,} be a standardized stationary normal sequence with
covariances {r,} satisfying r, < A/logk, k > 2, for some constant A.
Let p = max(0,r,,ry,...). Let A, and z, be real numbers such that A, =

n(l — &(z,)) and define W, = Zk (&, > z,). Suppose that A, < B < «, for
some constant B. Then

logn »
d(Wn,PO()tn)) = O(n—(l—p)/(1+p)(10gn)-p/(1+p)+ % Z Irkl) asn — o,
k=1

Note that 0 < p < 1, since r, = 1 for some % > 1 would imply r,,, = 1,
m > 1, which contradicts r, < A/log k.

Proor. Using Theorem 3.1 we get, with I, = I(¢, > z,),

1—e (A2 n1
d(Wn’PO()‘n)) = ————(_n +2n Z |COV(IO7Ik)|)‘
An n k=1
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If p=0,ie., r, <0 for every £ > 0, the result follows by Lemma 3.4(iii). Let
us now assume that p > 0. Choose § > 0 with 386 < p/(1 + p). We divide the
sum X |Cov(I,, I,)| into four parts.

(i) Since r, < A/log k, only a finite number of % have r, > §. Each of these
give by Lemma 3.4(i) a contribution

)

(1+r) (1+p)
n2 )rk/ Tk n2 )p/ p

Cov(I,,I,) < Cn'z( < Cn'2(

log n log n
so their total contribution is O(n~2(n?%/log n)?/1*),

(i) Next consider the terms with 0 < r, < & and % < n®. There are at most
n® such terms, and by Lemma 3.4(i) each contributes

< Cn'2+25.

2 |\ 8/(1+8)
log n )

Cov(I,, I,) < Cn'z(

Hence their total contribution is at most

n2 p/(L+p)
C’n'2+33=o(n_2( ) )
log n

(iii) For the terms with r, >0 and k>n’, 0 <r, <A/logk <A/5logn.
Hence Lemma 3.4(i) yields 0 < Cov(I,, I,) < Cr,n"2log n for each such term
and their total contribution is O(n "2 log n ¥ }|r,).

(iv) The remaining terms are those with r, < 0 and Lemma 3.4(iii) shows
that their total contribution is O(n~2 log n L 7|r,).

Consequently,

2 n-1

A
— +2n Y, |Cov(I,,I,)| =0
i k=1

1
22\ logn
n- +
1

log n erkl)

and the result follows. O

REMARK 1. As a corollary we see that if r,logk - 0 as & — « and
A, & A <o, then W, =, Po()). In particular, P(max,_,&, <z,) > e * (a
result first proved by Berman). Note that r, log 2 = O(1) is not sufficient for
this limit result; Mittal and Ylvisaker have shown that if r,logk — y > 0,
then W, converges to a mixture of Poisson distributions, see Leadbetter,
Lindgren and Rootzén (1983), Section 6.5.

“ REMARK 2. The assumption that r, log 2 is bounded was used only to
conclude that {k < n: r, > M/log n} < n® for some M < «; hence it could be
replaced by, e.g., Z5e M/l < o for some M or L5|r,|? < « for some p < .
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It is also easy to obtain limit theorems with explicit rates of convergence for
the other conditions on r, discussed in Leadbetter, Lindgren and Rootzén
(1983), Section 4.5; we leave the details to the reader.

REMARK 3. In most applications, for example to ARMA processes where
r, decreases exponentially, X7|r,| < . In this case we obtain from the theo-
rem that d(W,,Po(A,)) = O(n~1=7/1*P)log n)?/+P) when p > 0 and
d(W,,Po(A,)) = O(log n/n) when p = 0. [The latter can easily be improved to
o(log n/n); when {¢,} is m-dependent and p = 0 we get O(1/n), using Lemma
3.4(iv).]

ReMARK 4. It follows from Corollary 3.5 that if |r,| < A/log k, the esti-
mate in Theorem 3.5 holds also for W, = L% _,I(|¢,] > z,,), with A, = 2n(1 —
®(z,)) and p = max|r,|.

It should be obvious that the methods of this paper also apply to nonstation-
ary sequences; this gives results similar to those in Leadbetter, Lindgren and
Rootzén (1983), Sections 6.1-6.3, however with error estimates. We may also
consider processes with other index sets. As an example we give a version of
Theorem 3.5 for stationary processes with multidimensional indices. The proof
is the same with n replaced by |B,,|.

THEOREM 3.6. Let {£ )}y <7 be a standardized stationary normal process
with covariances {ry} satisfying sup ri loglk| < . Let p = max{0, r,: k # 0}.
Let B, be subsets of Z% and let B, ={k — 1. k, 1€ B,}. Let A, and z, be
positive numbers such that A, = |B,|(1— ®(z,)) and define W,=
Lrepléx>2,) If {A,} is bounded, then as n — o,

log|B
d(W,,Po(),)) = O||B, "=/ *"(log| B, [) ~*/"** + —l‘%—l—' X Inl]-
nl  keB,
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