The Annals of Probability
1990, Vol. 18, No. 2, 669-697

BAHADUR-KIEFER-TYPE PROCESSES

By PauL DEHEUVELS AND Davib M. Mason'!

Université Paris VI and University of Delaware

We establish strong and weak laws for Bahadur-Kiefer-type processes
of the form e, + i,, where i, denotes the inverse of e,. In particular, we
provide a proof for the strong version of Theorem 1A of Kiefer (1970),
together with similar results for renewal and partial sum processes.

1. Introduction and statement of results. Let U,,U,,... be a se-
quence of independent uniform (0,1) random variables. For each integer
n>1,let G(s)=n"'#{U, <s: 1<i<n} denote the right-continuous uni-
form empirical distribution function based on the first n of these random
variables and let

a,(s) =n"?(G(s) —s) for0<s<1
be the uniform empirical process. Also for each integer n > 1, let
H,(s) =inf{t: G, (t) s} for0<s<1,H,(0)=H,(0+),
denote the inverse or quantile function of G, and let
B.(s) =n'?(H,(s) —s) for0<s<1

be the uniform quantile process.
For any real-valued function f defined on [0, 1], let || /|| = supy ., |f(s)].
Bahadur (1966) introduced the process

R, (s) =a,(s) +B,(s) for0<s<1
and showed that, for each fixed 0 < s < 1,
a,R,(s) =0(1) as.asn — o,
where
a, = n/*(log n) " **(loglog n) /%,

The process R, is often called the Bahadur—Kiefer process. Kiefer (1967)
established the exact order of R ,(s) by proving that, for each fixed 0 <s < 1,

limsup + n'/%(loglog n) "**R,(s) = 25/4373/4(s(1 - 5))"/* aus.

n— o

and later demonstrated that the rate obtained by Bahadur was exact for the
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670 P. DEHEUVELS AND D. M. MASON

supremum norm of R, ie.,

(1.1) limsupa,||R,||=2"1* as;
n—o

cf. Kiefer (1970). Kiefer (1970) also proved that

(1.2) bR,/ e, >p 1 asn — o,

where

b, = n*/*(logn) " '/2.

He stated that the limit in (1.2) remains true when convergence in probabil-
ity is replaced by convergence with probability 1, but did not publish a proof of
this strong version of (1.2).

Shorack (1982) has given a short proof for (1.1) using the Finkelstein (1971)
functional law of the iterated logarithm and a partial proof for the strong
version of (1.2), based in part on the Komlés, Major and Tusnady (KMT)
(1975) Kiefer process strong approximation to the uniform empirical process,
i.e., he has shown that

(1.3) limsupbd, ||R,|/l|la,ll'/? <1 as.
n—oo
A similar Bahadur—Kiefer-type process arises in connection with the partial
sum process and its associated renewal process. In order to describe this
process, we introduce the following notation.
Let X,, X,,... be a sequence of independent random variables with a
common distribution function F(x) = P(X; < x) such that

@ E(X) =p >0
(i) 0 < Var(X)) = 02 <
(i) E(X7{) < co.
For each integer n > 1,set S, = X; + --- +X,, with S; = 0. For ¢ > 0, let
N(t) = min{n > 0: S, ,; > ¢} denote the corresponding renewal process. By
Theorem 2 of KMT (1976), on a rich enough probability space there exist a

Wiener process W and a sequence X;, X,,..., iid. F, such that as n — o,
(1.4) n~* sup |o7(S,, —tu) — W(t)| > 0 as,
0<t<n

where [x] denotes the integer part of x.
Introduce the standardized partial sum process

5,(s8) =n207u(8,(s) —s) =n" 20" (S,, —nus) for0<s<o
and the standardized renewal process '
ro(s) = n'2a7u(Ny(s) —s) = n Y% Y uN(nus) —nus) for0 <s < o,
where

S,(s) =n"'u'S,, and N,(s) =n"'N(nus) forn=1,2,....
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Also, let
W,(s) =n"12W(ns) for0 <s <,
Recently, using the ideas of Shorack (1982), Horvath (1984) showed that on
the probability space of (1.4),
(1.5) limsupa,|r, + W,|| = 2142412 as.

n—oow
For future reference, we rewrite (1.4) as

(1.6) lim n'/*||s, — W || =0 a.s.

n—o

Notice that N,(s) = —n~! + inf{t > 0: S,(#) > s} is a kind of inverse of
S,(s). Led by the fact that B, is the inverse process of «, and that the
Bahadur-Kiefer process R, is the sum of these two processes, we define the
Bahadur-Kiefer-type process

T,(s) =s,(s) +r,(s) for0<s <o,
By combining (1.5) and (1.6), we obtain the analogue of (1.1) for T,:
(1.7) limsupa,||T,| = 2'%c%u"Y2 as.

One of the purposes of this paper is to provide a proof of the almost sure
version of Kiefer’s (1970) Theorem 1A stated in (1.2) and to obtain by the
same method the analogous result for the Bahadur—Kiefer-type process T,,. It
will become clear that the methods of proof for Theorems 1A and 1B can be
modified easily to obtain similar results for other Bahadur-Kiefer-type pro-
cesses formed by the sum of a process e, on [0, 1] (such as «,, or s,) and its
appropriate inverse i, (such as B, or r,), whenever strong approximation
results like (1.4) and (1.5) hold for the process and its inverse.

Some related results concerning the limiting behaviors of processes and
their inverses are given in Vervaat (1972).

Our first theorem is the almost sure version of Kiefer’s (1970) Theorem 1A
(note that [|a,|| = [|8,).

THEOREM 1A. We have
(1.8) bR, I/IBIY2 > 1 a.s.asn - .
Our second theorem gives the analogue of Theorem 1A for the Bahadur-
Kiefer-type process T),.
THEOREM 1B. Under assumptions (i), (i) and (iii),
(1.9) BT /Il ? > V%" Y? a.s.asn > .
“ The proofs of Theorems 1A and 1B are given in the next section.

Corollaries 1A and 1B below are immediate consequences of Theorems 1A
and 1B, when combined with the following well-known results in which B
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denotes a Brownian bridge and W a standard Wiener process:

(1.10) 1Bl =4 Bl
[Doob (1949) and see, e.g., Billingsley (1968), page 105];

(1.11) lim inf (loglog n) 2|8, || = 27327 a.s.
[Mogul’skii (1979) and see, e.g., Csérgé and Révész (1981), page 159];
(1.12) lim sup (loglog n) "B,/ = 272 a.s.

n—o

[Chung (1949) and see, e.g., Csorgd and Révész (1981), page 157];
(1.13) Irall =4 W]
[see, e.g., Vervaat (1972), pages 245 and 251];

(1.14) lim inf (loglog n)"?||r, || = 27327 a.s.
[(1.5) and Chung (1948) and see, e.g., Csorgé and Révész (1981), page 122];
(1.15) lim sup (loglog n) "%, || = 22 a.s.

n—o

[see, e.g., Vervaat (1972), page 251].

CoroLLARY 1A. We have

(1.16) bullR, || =4 |1 BIIY? [ Kiefer (1970)];
(1.17) liminfa ,(loglog n)"?|R,| = 2734712 a.s,;
(1.18) limsupa,|R,||=2""* a.s.[Kiefer (1970)].

CoroLLARY 1B. Under assumptions (1), (ii) and (iii), we have
(1.19) bullToll =g o 2u™ 2| W2,

(1.20)  liminfa,(loglog n)"?|T, || = 2734012~ 1/271/2 g g

(1.21)  limsupa,||T,|| = 202412 a.s.[Horvdth (1984)].

n—ow

ReEMARK 1. If we do not assume (iii) in Theorem 1B and Corollary 1B, then

[see Breiman (1967) and Csérgs and Révész (1981), page 108], one has
E(X}) = o = limsupn'/?||s, — W,||=» a.s.

for any sequence W, of Wiener processes defined on the same probability space
as s,. .

A ‘tlose look at our proofs in the sequel shows that they are essentially
invalid if, for some & > 0, E(X* ¢) = » (see Remark 6). At present, the
extension of Theorem 1B to this case is an open problem.
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REMARK 2. An easy extension of the methods used to prove Theorems 1A
and 1B shows that the following results hold for the processes R, and T,.

Let g be any positive and continuous function on [0, 1] [in particular, g(s)
and g(1 — s) have limits as s |0, which are finite and strictly positive]. We
have

(1.22) b.IR,./q"/11B,/qlI'? > 1 as.asn — o
and, under the conditions in Theorem 1B,
(1.23)  B,IIT./¢V?I/lIr,/allY? > eV~ V? as.asn - .

The second purpose of our paper is to characterize the functions g for
which (1.22) and (1.23) hold in probability. The motivation for this comes from
the study of the so-called || - /q|-metrics [see, e.g., Shorack and Wellner (1986),
Chapter 11], which are used to investigate the convergence in distribution of
weighted empirical processes in relation with tests of goodness of fit. First, we
introduce the following classes of functions.

Let Q denote the class of bounded left-continuous functions with right-hand
limits on (0, 1) that are positive and bounded away from zero on (5,1 — 8) for
all 0 < & < 1/2, nondecreasing in a right neighborhood of 0 and nonincreasing
in a left neighborhood of 1. Denote likewise by Q, the class of bounded
left-continuous functions with right-hand limits that are positive and bounded
away from zero on (§,1] for all 0 <6 <1 and nondecreasing in a right
neighborhood of zero.

For any positive function ¢ on (0,1) and £ > 0, set

co?
I(q,¢) = /()1/2t_1exp(— qt(t))dt

and

N C)) ) dt.
t

J(q,¢e) = /;l/zt_l exp(

Any g € Q such that the integrals I(q, ¢) and J(q, ¢) are finite [respectively
any q € Q, such that I(q,e) is finite], for all ¢ > 0, will be called a
Chibisov-0O’ Reilly (COR) [respectively (COR,)] function and any g € Q such
that the integrals I(q, ¢) and J(q, ¢) are finite [respectively any ¢ € Q, such
that I(q,¢) is finite], for all ¢ > 0 sufficiently large, will be called an
Erdés—Feller—-Kolmogorov—Petrovskii (EFKP) [respectively (EFKP,)] function.
The above formulations of these classes of functions are due to Csorgé, Csorgd,
Horvath and Mason (CsCsHM) (1986) [see also Chibisov (1964), O’Reilly
(1974), Erdos (1942), Petrovskii (1935), Feller (1943) and Ité6 and McKean
(1965), Section 1.8].

Let

R.(t) = R,(t),
B(t)=B,(t) forl/(n+1)<t<n/(n+1)
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and
R, (t) =B,(t) =0 elsewhere;
likewise, let
T.(¢) = T, (),
F(t)y =r,(¢) forl/n<t<1
and
T (t) =F(t) =0 elsewhere.

Our third and fourth theorems give weighted versions of Theorems 1A and
1B, together with a characterization of when convergence in probability holds.
Let log*u = max(1,log ©) for « > 0 and log™0 = 1.

THEOREM 2A. Let ¢ € Q. Then n'/*|| R, /{2q log*(n*/2 /q)}/?| = 0 (1) if
and only if q is an EFKP function, in which case we have

(1.24) n/4|R,/{2q log*(n'/2/q)}"" " = 1B, /I >p 0 asn > w.
Moreover, q € Q is not EFKP if and only if

n1/4||1§n/{2q 10g+(n1/2/q)}1/2|| —p® asn — o,

THEOREM 2B. Let q € Q,. Then, under assumptzons (1), (i) and (i),
nt4T /(2q log+(n1/2/q)}1/2|| = OP(l) if and only if q is an EFKP, functzon
in which case we have

(1.25) /4T, /{2q log* (n*/%/q)} "% = o/2u 1727, /q| V2 —>p 0 asn — .
Moreover, g € Q is not EFKP,, if and only if

n1/4||Tn/{2q log+(n1/2/q)}l/2|| —p® asn — ®,

REMARK 3. An immediate consequence of Theorems 2A and 2B is that, for
any q € Q, n'/*| R, /{2q log*(n*/? /q)}/?|| converges in distribution to a non-
degenerate random variable if and only if g is an EFKP function, in which
case we have

~ 1/2
(1.26) /4| R,/ (2q log* (n'/2/q)} "l >4 1 B/qII'/2,

where B is a Brownian bridge. The same statement holds for T, with the
Brownian bridge B replaced by a standard Wiener process W multiplied by the
coefficient o~ ! and g € Q, being then EFKP,,.

A simple example of an EFKP function ¢ € Q is given by

1 1/2
a(s) = (s(1 - s))”z(loglog( o ))) .
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For this choice of ¢, (1.26) yields the following weighted version of the usual
Bahadur representation (1.1) for sample quantiles. We have, uniformly over all
se(l/(n+1),n/(n+ 1las n = o,

H,(s) = s+ (s = G,(s))

(1.27)

1 v
+n_3/4(10g n)l/Z(S(l — 3))1/4(]og10g(m)) Op(1).

An application of Theorems 2A and 2B gives

COROLLARY 2A. Let g € Q be a COR function. Then
(1.28) b IR,/a" I = 1B,/ql"/* —p 0 asn — o.

COROLLARY 2B. Let q € Q, be a COR,, function. Then, under assumptions
(1), (i) and (iid),

(1.29) blIT, /a2 — oY%~ Y2|F, /qI'/? 5p 0 asn — .

REMARK 4. Let £ = max(f,0)and f¢ = max(—f,0). The assertions of
Theorem 2A and Corollary 2A (respectively, Theorem 2B and Corollary 2B)
remain true with R, (respectively T,) replaced by R(* (respectively T(*)).
The proofs of these versions are nearly the same as the present ones.

The proofs of our theorems are given in the next section together with
Propositions 1, 2, 3 and 4, which are likely to be of independent interest.

2. Proofs of the theorems. In order to prove Theorems 1A and 1B, we
require Proposition 1.

Let (Q, A, P) be a probability space on which sits a sequence {W,,, n > 1} of
standard Wiener processes defined on [0, »). For any y > 1, a > 1, n > 0 and
n, > 3, denote by F(y,a,n,n;) the subclass of all sequences of real-valued
functions defined on [0,®) such that, for any sequence {f,,n > 1}e
Fy,a,n,ny):

(F1) For all n > n,,
y~'n'/2/(log? n) < | full, < yn'/?log” n,

Where ”fn”n = SupOSSSnlfn(s)l'
(F2) For all n = n, we have

M,(f,) = maX{singnfn(S), siclsllf;(—fn(S))} 2 a Y fullns

for some closed interval I, c [0, n] of length nn exp(—(loglog n)?).
(F3) Foralln >n,, 0 <s + f,(s)for0 <s <n.
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Let also F denote the subclass of all sequences {f,, n > 1} such that for any
a>1 there exist y>1, n >0 and n; >3, for which {f,, n>1} €
F(77 a, 17’ n1)7 i'e"

F= n(u U U [F(v,a,n,nl)),
a>1\V\y>17n>0n,;>3

where we may assume y > 1, @ > 1, n > 0 to be rational numbers and ny=3
to be integer.

ProposITION 1. With the above notation, we have with probability 1 for all
{f,,n=1} €F,

(2.1) liminfZ (f,) = 1,
where

Z,(£,) = {Ilf.ll, log n} V% sup [W,(¢ + £,(£)) — W,(2)I.

0<t<n

Proor. We shall make use of the following two inequalities. For a standard
Wiener process W defined on [0,x), there exist constants A >0, B > 0,
uy> 0and T, > 0 such that for all u > u, and T > T,

(2.2) P( sup [W(x+1) - W(x)| < u) < exp( —ATue‘“z/z)
O0<x<T

and

(2.3) P( sup sup |W(x +s)— W(x) > u) < BTue %2

0<x<T O0<s<1

Both inequalities are implied by Lemma 2.3 in Révész (1982) and by the fact
that 1 — exp(—2) <z for all z > 0.
Define, foranya > 1,y > 1,8 > 0 and n > 3,

h (k) =y 'a*n'/2/log? n
for k = -2, - 1,0,..., k(n) = [log (y?log* n)] + 1 and
I.(m) = [m6n exp(—(loglog n)z), (m+ 1)én exp(—(loglog n)z)]

for m =0,1,...,m(n) = [6"!exp((loglog n)?)] + 1.
Set

A(a,v,8)
=  min min sup |W,(s + h, (k) — W(s)/{h,(k)logn}"?

—2<k<k(n) 0=m=m(n) sl (m)
and, with p > 0,
D.(a,v,p)

=  max sup sup  [W,(s +¢t) — W,(s)|/{h,(k)logn}"">.
—2<k<k(n) 0<s<2n 0<t<ph (k)
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LeEMMA 1. With probability 1, for all rational numbers a > 1, y > 1 and
6> 0,
(2.4) liminfA,(a,y,8) > 1.

Proor. Choose any 0 < ¢ < 1. We have
P(A(a,v,8) < (1-2)"%

k(n) m(n)
=P( U U { sup (s +ho(R)) = Wi(s)
k=-2m=0 \sel,(m)
(2.5)
< (1 - e)h,(k)log n)”z})

k(n) m(n)
<Yy X P( sup |[W(x + 1) — W(x)| < ((1 —¢)log n)1/2),
k=—-2m=0 0<x <Y, (k)

where Y, (k) = 6nh;'(k)exp(—(loglog n)?) > Y, = n'/?7¢/* for k= -2,
—1,...,k(n) and all large n, and where W(-) denotes a standard Wiener
process. Thus, by (2.2), the right-hand side of inequality (2.5) is, for all large =,
less than or equal to

8k(n)m(n)exp( —AY,(1 — )"*(log n)l/zn‘(l_s)ﬂ) < exp(—n¢/®).

Since this last expression is summable in n > 1, an application of the
Borel-Cantelli lemma in combination with @, y and & assumed to be rational
numbers completes the proof of Lemma 1. O

LemMa 2. With probability 1, for all rational numbers a > 1, y > 1 and
p>0,
- (2.6) limsupD,(a,y,p) < 2p"/2.

n— o

Proor. Notice that
P(D,(a,y,p) > 2p'/?)

k(n)
< ¥ P sup sup W, (s + 1) = W(s)| > 2{ph,(B)log n)?),

h=—2 0<s<2n 0<t<ph,(k)

which, since 2n/(ph (k) < n®* for all k= —2,—1,...,k(n) and all large
n, is less than or equal to

4k(n)P( sup sup |W(x +s) — W(x)| > 2(log n)1/2),

0<x<n340<s<1

which by inequality (2.3), again for large n, is less than or equal to
4k(n)Bn3/4(2(logn)1/2)exp( —2logn) <n~%°,

which is summable in n > 1. The Borel-Cantelli lemma along with a, y and p
assumed to be rational numbers finishes the proof of Lemma 2. O
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We are now prepared to complete the proof of Proposition 1. Choose any
{f,, n>1} € Ky,a,n,n,), where y > 1, a > 1, n > 0 are rational numbers
and n; > 3 is integer.

By (F1), we can find for all n > n, al <k =k, < k(n) such that

(2.7) a”th, (k) <\ fulln < ho(k)
and by (F2) and (2.7), for all n > n,,
(2.8) a”?h,(k) < M,(f,) <h,(k).

Set & = 1 /6, and recall that I,(m) has length 8n exp(—(loglog n)?) and I,
has length nn exp(—(loglog n)?). It follows that we may choose an 1 < m <
m(n) such that I (m)cI, and I,(m — 1) C I,. Next, observe that k (k(n))
= 0(n'/?log? n), so that we may select an n, > n, so large that, for all
n=ny,

(2.9) h,(k) < h,(k(n)) < 26n exp(— (loglog n)?).

Let Z,(f,) be as in Proposition 1. Since I, € [0, n], (2.7) implies obviously
that
(2.10)  Z,(f,) = {hu(R)logn} ~/* sup|W,(s + f,(s)) = W,(s)].
sel,

We shall now give a lower bound for the right-hand side of (2.10).

Case 1. If M, (f,) =inf,.; f,(s), then by (2.7) and (2.8), for all n > n,
and s €1,
a?h,(k) < M,(f,) < fu(s) < |Ifulln < Ra(k),
and hence |f,(s) — h (k)| < ph, (k) for s €I, and p = 1 — a” % Thus, by the
triangle inequality and using the fact that I,(m) c I,, we have
sup |[W,(s + f.(s)) = Wo(s)l = sup [W,(s + h,(k)) — W,(s)|
sel, sel (m)

— sup sup |W,(s +t) — W,(s).
0<s<2n 0<t<ph (k)

Case 2. If M, (f,) = inf, . ;(—f,(s)), then by (2.7) and (2.8), for all n > n,
and s 1,

_h’n(k) < —”fn”n an(S) < _Mn( fn) =< _a_zhn(k) = _hn(k - 2)’
and hence |f,(s) + h,(k — 2)| < ph (k) for s €I, and p = 1 — a~ 2 Moreover,
by (F3) and the above inequalities, for n > n, and s € I,

0<s+f,(s)<s—h,(k—2),
so that, for n > n,,

sup|W,(s + f,(s)) — W,(s)| = sup|W,(s — h,(k — 2)) = W,(s)]

sel, sel,

— sup sup |W,(s+¢t) — W,(s).
0<s<2n 0<t<ph, (k)
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Since we have chosen m such that I,(m — 1) U I (m) c I,, the fact that
h,(k —2) =a"2h,(k) < h,(k(n)) < 36n exp(—(loglog n)?) implies that

I(m—-1)c{s—h,(k—-2):sel)}.

Thus,
sup|W,(s + f,(s)) = Wy(s)l = sup [W,(s+h,(k—2)) - W(s)l
sel, sel,(m—1)

— sup sup |[W, (s +¢)— W,(s).

0<s<2n 0<t<ph, (k)

Hence, in either case, the right-hand side of (2.10) is greater than or equal to
a A (a,y,8) —D,(a,v,p).
Therefore, by applying Lemmas 1 and 2 (recall that p = 1 — a™2), we get with
probability 1, uniformly over all sequences {f,, n > 1} € F(y,a,n,n,),
liminf Z,(f,) = a ' — 2(1 - a2)"%.
n—o

The fact that y, @ and 7 are rational, and n, integer, jointly with the
remark that ¢! — 2(1 — a=2)!/2 can be chosen arbitrarily close to 1 for a
suitable choice of @ > 1 completes the proof of Proposition 1. O

REMARK 5. A close look at the proof of Proposition 1 shows that the
validity of (2.1) can be extended to cover a larger class of sequences {f,,, n > 1}.
For instance, we may replace log? n in (F1) and (loglog n)? in (F2) by log® n
and (loglog n)¥, respectively, for any constant R > 1. We limit ourselves to
the statement above, which will be more than sufficient for our needs.

ProoF oF THEOREM 1A. On account of (1.3), we need only show that
(2.11) liminfd, ||R,|/|IB,"?> =1 a.s.

Without loss of generality we can assume that we are on the probability
space of Theorem 3 of KMT (1975) on which there sit a sequence of indepen-

dent uniform (0, 1) random variables U;, U,, ..., and a sequence of Brownian
bridges B, B,, ..., such that
(2.12) IB, —a,|=0(n""?logn) as.

Now, as in (1.6) of Shorack (1982) we have [see also (2.45) in the sequel]
(2.13) IR, — (a, — a,(H,))=n""? as.
and, recalling (1.11), X
(2.14) lizn_)igf(loglog n)21B, )l = 273%7 as.

Thus by (2.12), (2.13) and (2.1'4), to establish (2.11) it suffices to prove that
(2.15) liminfb | B,(H,) — B,|l/IB.I"?> =1 aus.
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We can write each B, as
B,(s) =n"Y% W (sn) —sW,(n)), 0<s<l,
where W, is a standard Wiener process on [0, ). Next, rewrite H, as
(2.16) H,(s)=n"Yf,(sn) +sn)>0 for0<s<1,

where f,(¢) = n'/?8,(t/n) for 0 <t < n.
By (2.14) we have

(2.17) lirlln_)iilfn‘lﬂ(loglog )2 Fll, = 2732 as.

and, by (1.12),

(2.18) lim supn~'2(loglog n) " | f.ll, = 272 a.s.
n—oo

Thus, {f,, n > 1} satisfies (F3), by (2.16), and satisfies (F1) for any y > 1
and all n, sufficiently large, by (2.17) and (2.18), with probability 1.

For (F2), we make use of Theorem 02 in Stute (1982) [see also Theorem 1 in
Mason (1984)] jointly with (1.1), to show that, for any sequence 0 < «, <n
such that

(@ k, T and «,/n |0as n — o,
(b) k,/log n = « and (log(n/k,))/loglogn — © as n — o,

we have almost surely as n — «

(2.19)  sup  sup |f,(¢+s) — fu(8) = (1 +0(1))(2«, log(n/k,))""*.

O<t<n-—«, 0<s<k,

It is straightforward that «, = nn exp(—(loglog n)?) satisfies (a) and (b)
(the Csorg6-Révész—Stute conditions). Therefore, by (2.17) and (2.19), we
have almost surely for n large,

sup |f,(u) = f,(v)] < n¥/? exp(— ;(loglog n)*) = o(|| £,II,.).
u,vel,
uniformly over all intervals I, c [0,n] of length «,. Hence (F,) holds and
{f,, n = 1} € F almost surely.
Now with the above notation,
b,l|B,(H,) — B,I/IB,II""? = sup |W,(¢+f.(t)) — W,(¢)

0<t<n
= Y OW ()1 /{1 fll, log n} /2,

Next observe that by (2.18) and the easily verified fact [use Borel-Cantelli
and the inequality P(n~2|W,(n)| < u) > 2u~%2m)~/2e~**/2 for u > 0] that
n~Y3W (n)| = O((log n)'/?) a.s., we have

; nY FIY2W.(n)(logn) Y2 = 0(n~Y4logn) > 0 as.

Hence, by Proposition 1 we conclude (2.15) and (2.11), which finishes the
proof of Theorem 1A. O
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Proor oF THEOREM 1B. We shall assume that we are on a probability space
such that (1.6) holds.
By the law of the iterated logarithm (1.15) for renewal processes we have

(2.20) lim sup (loglog n) ~?|r,|l = 2/2 a.s.

n—o

and, by (1.14),

(2.21) liminf (loglog n)/?||r,|| = 2737 a.s.
n—oo

Next, observe that for 0 < s < «,
$u(Nu(8)) + 1,(8) = n7 207 (Syepps) — n1s) < 0.

Since for all ¢ > 0, Sy, < ¢ < Sy¢)+1, We have with probability 1 for n large
(see Lemma 9 for details)

bulls,(N,) + mall/llr /2 < 0 7tn =2 (log n) "% max (X1 /I, )I'/?).
<i<2n

Since E(X}) < » implies that, as n — «,

n Y% max |X;| >0 as,
1<i<2n

we see by (2.21) that
(2.22) ballsa(N,) + rall/lrall/? = o(1)  as.

REMARK 6. A crucial step in the proof of Theorem 1B is to prove, in
addition to (2.22), that
(2.23) bulls, = Wall/llr,ll'/? = 0(1)  ass.,
which, by (2.21), can be reduced to

n'/%(log n) ~**(loglog n)"*||s, — W, = 0o(1) a.s.

An application of Theorem 2.6.6 and Lemma 2.6.1 in Cs6érgé and Révész
(1981) shows that this condition holds whenever

(iv) E(X{(log*|X,|)”*(log*log™|X,|)) < .

Moreover, (2.22) also holds under (iv) (see Lemma 9). Thus we see that we
may replace (iii) [i.e., E(X{) < ] by (iv) in the statement of Theorem 1B.
This, however, only gives a minor technical improvement to the statement of

this theorem.
By (2.22), it follows that in (1.9) we have

b,‘_gllTnII/ll’”n|I1/2 =b,lIs, + rll/IrallY? = bylls, — s (N)I/ITalIY? + 0(1)  as.
Now by (1.6) and (2.21) this last expression equals
bW, (N,,) = W,lI/limall'? + 0(1)  aus.
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Thus, to prove (1.9) it is enough to show that
(2.24) lim b, [|W,(N,) = W,|I/lIr,II"? = o'/ %u"1? as.
n—oo

The fact that
(2.25) liminfb, |W,(N,) — W |I/Ir,I"/2 = 0?12 as.
n—oo

follows from Proposition 1 by writing for 0 <s < 1,
N(s)=s+ou"'n"Y2r (s) =5+ n"f,(ns).

By (2.20) and (2.21), {f,,, n > 1} satisfies (F1). (F3) is straightforward, whereas
for (F2) we proceed as in the proof of Theorem 1A with the formal replace-
ments of Theorem 02 of Stute (1982) by Theorem 1.2.1 of Csérgé and Révész
[(1981), page 30] [see also Csorgd and Révész (1979)] and of (1.1) by (1.5). Thus
{f,, n = 1} € F and (2.25) follows from (2.1).

To verify that
(2.26)  limsupb,|W,(N,) = W,I/Ir)% < o™/%"? as,
we use the same argument as given in Shorack (1982) substituting the
application of (1.11) by that of (1.14), and (3.8) of Shorack (1982) by Theorem
1.2.1 in Csérgd and Révész [(1981), page 30]. For the sake of brevity, we omit
the routine details.

Statements (2.25) and (2.26) complete the proof of (2.24), (1.9) and Theorem
1B. O

For the proof of Theorems 2A and 2B we need the following two analytic
propositions. Let X denote any continuous real-valued function defined on
(—o, ) such that, forall0 <a <b <1,

X - X(v X(u+h) —X(u
(2.27) lim sup () ( Z|/2 = lim sup 1X( ) (1 2)| =
hl0|a<u<b (2h lOg(l/h)) hl0a<u<b (2h log(l/h)) /
u —U =

For any choice of 0 <a <b <1 let Cla, b] denote the set of real-valued

continuous functions f defined on [a, b].

ProrosiTION 2. Forany 0 <a <b < 1andf < (la,b],

lim T'/* sup |X(s + T~Y%f(s)) — X(s)|/(log T)"*

(2.28) 17T esesb
= sup [f(s)"/%

a<s<b
ProrosiTiON 3. For any f € C[0,1] and q € Q, X

1/2

f(s)

(2.29) sup T4 (X(s + T-12f(s)) — X(s)|
' a(s)

= sup
Too 0<s<1 {2q(s)logr“L(Tl/2/q(s))}l/2 0<s<1

[Note that the limit in (2.29) is possibly infinite.]
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ProorF oF ProposITION 2. Choose any f € Cla, b]. We can assume that f is
not identically equal to zero, otherwise the limit in (2.28) holds trivially. Write
M = sup, _, .,|f(s)| and notice that

sup | X(s + T"Y%f(s)) — X(s)| < sup sup | X(u) — X(v)|.

a<s<b asu<b |y—v|<MT-1/2
Thus since
T'4(log T)~“*{2T~ /M log(Tl/z/M)}l/2 > M2 asT - »,
we have by (2.27) (set &~ = MT~'/?) that

(2.30) limsupT'* sup |X(s + T~2f(s)) — X(s)|/(log T)"* < M'/2,

T—o a<s<b

Next, by continuity of f, for any 0 <& <M, we can find an n > 0 and a
subinterval [¢,d] C[a + ,b — nlsuch that forall c <s <d,c <d,m —¢ <
f(s) <m + &, where m = +M is the value of f at a point where |f| assumes
its maximum in [a, b]. It is easy to see that for any such & > 0 and subinterval
[c, d], whenever MT~1/2 < n,

sup |X(s + T~V2f(s)) — X(s)l = sup |X(u+ T'*f(u)) - X(u)|
a<s<b c<u<d
> sup X(u+ T Y%m) — X(u)|
c<u<d
- sup  |X(u) - X(v)l.
a<u<b
lu—v|<eT ™12

By (2.27) as T — o,

T4(log T) *? sup |X(u + T~%m) — X(u)| > M2

c<u<d

and

TY4(logT) "? sup |X(u) — X(v) - &2
a<u<b
lu—v|<eT~1/2

Hence for all e > 0

liminfT* sup |X(s + T~/%f(s)) — X(5)|/(log T)"*
(231) Too a<s<b ( ( )) ( )l/( )

> M1/2 _ 61/2.

Statements (2.30) and (2.31) (note that £ > 0 can be chosen arbitrarily
small) complete the proof of Proposition 2. O
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Proor or ProposITION 3. Choose any f € C[0, 1] and ¢ € Q. We claim that

(2.32) liminfT* sup IX(s + T-1/2f(s)) — X(s)| . sup £(s) 1/2
' o o<s<1 {2q(s)log* (TY2/q(s))}""* ~ 0<s<1]|q(s)

Assertion (2.32) is an immediate consequence of the following lemma.

LeEMMA 3. Foranyfe Cl0,1], g € Q and 0 <7 < 3,

. X(s + T7'%f(s)) — X(s)|
(2.833) lim T'* sup p— 5 =
Toe n<s<l—-n {2q(s)log (T /q(s))} n<s<l-n

1/¢

f(s)
q(s)

ProoF. Note that our assumptions imply that sup, ., ;_,|f(s)/q(s)| < .
Moreover, g € Q is bounded away from zero and infinity on [, 1 — n]. There-
fore, as T — o, 2log* (T2 /q(s)) = (1 + o(1)log T, where the “o(1)” is uni-
form over s € [n,1 — n]. Hence it suffices to prove (2.33) with
2log* (T2 /q(s)) replaced by log T'.

For any ¢ > 0 and integer n > 1, choose n =8, <8, < "+ <6, <d,,; =
1-17,8,<vy;,<8,,,and §;, <y <6,,, fori=0,...,n, such that

(1+2)g(y;)> sup g(s) = inf q(s)

5,<s<8;,1  <S<8;41
>q(v)/(1+¢e) fori=0,...,n.
Note that this choice is possible by the left-continuous version of Lemma 1

in Billingsley [(1968), page 110].
By the continuity of f and X, we have evidently

TY4X(s + T~Y2f(s)) — X(s)|

(1+)" "% sup

8, <8<8;41 {q(')’i)lc’g T}1/2
TY4X (s + T~V%f(s)) — X(s)|
< sup 1/2
8,<s<8,,1 {q(s)log T'}
TV4X(s + T7'?f(s)) — X(s)|

<(1+¢)"? sup
( 5,<5<8,,, {q(')’i*)l()g T} e

An application of Proposition 2 shows that the left-hand side of the above
inequality tends to

1/2 1/2

_ s _ f(s

(1+¢)™"* sup AC) =(1+¢)"* sup (s)

8,<s<8,,1 q(v;) v 5,<85<8,,, q(v:)

while the right-hand side tends to
’ 1/2 1/2
f(s f(s
@eo s [LOT Cqae p [ L2
5,<5<8;,, Q('Yi ) 5,<s<8,,, q(')’i )
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Now using left continuity of g and continuity of f, it is easy to conclude
(2.33), completing the proof of Lemma 3. O

Let ¢, = limsup, (| f(s)/q(s)| and ¢, = lim sup, , olf(1 — s)/q(1 — s)|. No-
tice that if ¢, or ¢, is equal to infinity, (2.32) and (2.33) obviously imply (2.29).
Therefore, we need only consider the case for which ¢, and c, are finite.

LeEmMa 4. Whenever f € C[0, 1] and q € Q are such that both ¢, and c, are
finite, for all ¢ > 0 there exists a 0 <n < 1 such that

X(s + T7'%f(s)) — X(5)|

limsupT'/* sup 5
(2.34) T 0<s=n {2q(s)log*(T"?/q(s))}
<(1+e)(e; +8)?
and
X(s + T~ V2f(s)) — X(s
limsupT* sup X( f()) (13|2
(2.35) T—o 1-n<s<1 {2q(s)log+(T1/2/q(s))}

<(1+¢)(ey+e)

ProOF. Choose any ¢ > 0 and select a0 < 1 < 3 such that forall0 <s <7,
(2.36)  [f(s) < (e;+¢)g(s) and |f(1—s) <(cg+e)g(l=s).
Now for any 0 < s <7,
(2.37)  1X(s + T™V3f(s)) - X(s)| < sup [X(u+ T~V?f(s)) — X(u)|
O<uc<l
and
1X(1-s+ T2 (1 -5)) - X(1-s)
(2.38) < sup |X(u+ T7V%(1-5s)) - X(u)l.

O<uc<l

Next, by (2.27) we have, for all T sufficiently large and uniformly in
0 < s < 7, that the right-hand sides of inequalities (2.37) and (2.38) are less
than or equal to

1/2

: 7172
(2.39) (1+ e)l/zlf(s)|1/2T_1/4{2log(|f(3)l )}
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and
1/2

1/2 1/2m—-1/4 T1/2
(240)  (1+e)YAf(1 - s) 2TV {21°g([?(1f:?5T)} ’

respectively. Since x log*(1/x) > x log(1/x) is strictly increasing on [0, ),
expressions (2.39) and (2.40) are by (2.36), uniformly in 0 < s < 7, less than
1/2

(1+¢)"%(ey + 8)1/2(q(s))1/2T'1/4{2log+ ——T—l/z— }
(c; +€)g(s)

and
1/2

Tﬂ/2
(c2+e)q<1—s))} ’

(1+¢)"(cy +2)?(q(1 - s))l/zT_1/4{2log+

respectively.

Since we assume that g is bounded on [0, 1], it follows that these last
expressions are, uniformly in 0 < s < n for all large enough T, less than
1/2

Tﬂ/2
(1+¢&)(eq + e)l/zT‘1/4{2log+(q(s) )}

and
1/2

Tﬂ/2
q(l-S))} ’

Assume that ¢; and ¢, are finite. By Lemmas 3 and 4, for every ¢ > 0 we
have for all n € (0, 1/2) sufficiently small,

: TY4X(s + T~V*f(s)) — X(s)|
limsup sup 1/2
T—-o 0<s<l1 {2q(3)log+(Tl/2/q(s))}

(1+¢)(ey +2)"*(q(1 - s))l/zT'l/“{2log+

respectively. This completes the proof of Lemma 4. O

f(s)[*
q(s)
f(s)

1/2
q(s) }'

Since the right-hand side of this last inequality tends to
supg,11f(s)/q(s)|'/* as €10, on account of (2.32), we have established
(2:29). This finishes the proof of Proposition 3. O

<max{(1+¢)(c; +¢)"% (1 +e)(cy, +¢)/% sup
n<s<l-n

0<s<1

< max{(l +e)(ey +e)7% (1 +e)(ey +6)?, sup

A key result for the proof of Theorems 2A and 2B is captured in the
following statement, which is a direct consequence of Proposition 3.
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PRrOPOSITION 4. Let W be a standard Wiener process extended on (— o, ).
Then with probability 1 for all f € C[0,1] and all q € Q,

W(s + T Y?f(s)) — W(s
(2.41) lim T''/* sup W Fs) (1/)2| = sup
T o<s<1 {2¢(s)log*(T'2/q(s))} 0<s<1

1/2

f(s)
q(s)

Proor. The proof follows from Proposition 3, jointly with the fact [see,
e.g., Csorgé and Révész (1981), pages 26-28] that X = W is continuous and
satisfies (2.27) with probability 1. O

Note for further use that in (2.41) we may choose in particular f(s) =
—W(s) or f(s) = —B(s) := —W(s) + sW(1). Also recall the following impor-
tant properties of EFKP and COR functions [cf. CsCsHM (1986), Theorems
3.3, 3.4,4.2.1,4.2.2 and 4.2.3].

g € Q is an EFKP function if and only if for any Brownian bridge B there
exist B, < © and B; < » such that, with probability 1,

Bo = ﬁnlinﬂB(SN/q(S) and B, = ﬁnlﬁuﬂB(l-—SN/q(l—-SN
s s

Moreover, ¢ € Q is a COR function if and only if B, = B, = 0.

In addition, ¢ € Q@ is EFKP if and only if the random variable
SUPg < s <1]@,(8)]/q(s) converges in distribution to a nondegenerate random
variable which is then equal in distribution to sup, . , . ,|B(s)|/q(s). Moreover,
on the probability space of (2.12), sup, ., <|a,(s) — B,(s)|/q(s) = Op(1) [re-
spectively, 0p(1)] as n - « if and only if q € Q is EFKP (respectively COR).
Also [see CsCsHM (1986), page 72] these results remain valid with 3, replac-
ing a,,.

We shall repeatedly make use of the fact that if ¢ € Q is an EFKP function,
then

(2.42) q(s)/s¥? > and q(1l—s)/s¥? > o ass|O.

Proor orF THEOREM 2A. Throughout the proof of Theorem 2A we shall
assume that we are on the probability space of (2.12). Moreover, by enlarging
the probability space if necessary, we can and do assume that each Brownian
bridge B, is of the form

B,(s) =W,(s) —sW,(1), 0<s<l,

where now W, is a standard Wiener process extended to (— o, ).
First, we record the following property that this probability space possesses.

1

LEMMA 5. On the probability space of (2.12) for all 0 <v; < 3,

(2.43) sup n*la,(s) — B,(s)/(s(1—s))""*7" = 0p(1)

0<s<l1
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and, forall 0 < v, < 1,

(2.44) sup n*21B,(s) + B,(s)I/(s(1 — )72 = 0,(1).
) 1/(n+1)<s<n/(n+1)

Proor. Assertion (2.43), with B,(s) replaced by
En( s) = Bn(s)l(l/n <s<(n-1)/n)>

and assertion (2.44) are proven in Mason and van Zwet (1987). An application
of Inequality 4 of Shorack and Wellner [(1986), page 873] gives for all A > 0,
1/n

P( sup n"1B,(s)|sV/? "1 > )\) < n2"1)t_2c,,lf u gy,
O<s<1l/n 0

for some 0 < C, < . Since the same inequality holds with B(1 — s) replacing
B(s), this completes the proof of the lemma. O

The proof of Theorem 2A will be effected in the following steps, in which we
realize successive approximations of the process R,(s). First, we assume that
g € Q is EFKP. Notice that, for i = 1,..., n, with probability 1,

R.(s) = a,(s) = a,(s + n7V/%B,(s)) + n'/?((i/n) —s)
for(i—-1)/n<s<i/n.

It follows from (2.42) and (2.45) after routine manipulations that

IR,(s) — (a,(s) —a,(s +n728,(s)))

(2.45)

lim n'/* sup 73
(2.46) n—e 1/(n+D=s<n/(n+1) {g(s)log™(n*?/q(s))}
=0 a.s.

By (2.46) we see that in the statement of (1.24) we may replace R ,(s) by
a,(s) —a,(s + n=128,(s)) = a,(s) — a,(H,(s)). As a first step, we will show
that we may also replace «, successively by B, and W,, then B8, by —B,,, in
order to reduce (1.24) for an EFKP function g € Q to the statement

|W,(s) — W,(s — n"'/2B,(s))

1/4

" sup 1/2 172
1/(n+Dss<n/+D  {2g(s)log*(n'/2/q(s))}
(2.47) o
B,(s)
- sup =o0p(1).
1/(n+D<s<n/(n+1) q(s)

In a second step, we investigate the validity of (2.47) using Proposition 4
and the remark that almost sure convergence implies convergence in probabil-
ity.” ,
The following sequence of lemmas is directed to achieving the first step of
our proof.
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LEMMA 6. Whenever q € Q is EFKP, on the probability space of (2.12)

1/4 I(an(s) - an(Hn(s)) - (Wn(s) - Wn(s)))l
" sup +(,1/2 1/2
(2.48) 1/(n+D<s<n/(n+1) {q(s)log (n/ /q(s))}
= o0p(1).

Proor. Choose in (2.43) any 1 < v, < 1. For an arbitrary but fixed 1 < p
< o, we have, uniformly in 1/p <A <p and 0 <s < % with As < 1,

_ ng) /4
nl/4 la,(As) — B,(As) _ (ns) — 0,(1).
{g(s)log* (n'/?/q(s))} {g(s)s™12log*(n'2/q(s))}

Routine computations jointly with an application of (2.42) show that the
expression above is 0p(1) uniformly over 1/(n + 1) <s < 1/2.

Next we use the fact [cf. Wellner (1978)] that
(2.49) hm liminfP(1/p <A =H,(s)/s<p:1/(n+1) <s<1)=1.

1o n—oo

This, _]omtly with a similar argument for 1/2 < s < n/(n + 1), implies that
a,(H,(s)) — (B,(s) - B,(H,(s
(2.50) n'/ sup (H,(s)) = (B,(s) = B,(H,(s)))

1/(n+<s<n/(n+1) {q(8)10g+(n1/2/CI(3))}1/2

= OP(]‘) .
In view of (2.50), the conclusion in (2.48) follows by writing B,(s) = W (s)
— sW (1) and by noting, by (2.42) and (1.10), that

|H,(s) — s| [W,(1)|

1/4

n sup Y 7

1/(n+Dss<n/n+D {g(s)log*(n'%/q(s))}

B.(s)l(ns(1 —s)) "
= |W,(1)] sup 1,2 1/2
1/(n+D<s<n/(n+1) {q(s)(s(l —5)) ?log* (n2/q(s ))}
< 2M2|W,(1)] 1B, sup {a(s)(s(1 —s)) 7"
1/(n+1)<s<n/(n+1)
-1/2
xlog*(n'/2/q(s))} =o0p(1)

as desired. O

LeEMMA 7. Let ¢ € Q be EFKP. Choose any 0 < v < 3 and K > 0, and set
¥,(s) = n"""V2%(s(1 — s)'/27", We have

1/4 |W(s+x)—W(s+y)|

. n sup - sup 1/2 1/2
(2.51) 1/(n+Dss<n/(n+1) jx—yl<Ku(s) {g(s)log*(n'2/q(s))}
—1l<x,y<1

=o0p(1).
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Proor. Recall [cf. Taylor (1974), page 199] that if W is a standard Wiener
process extended to (—o, ), the Lévy modulus of continuity theorem implies
that, for any —o <a <b < » and for any fixed ¢ > 0, there exists with
probability 1 an A, = h, , , such that |u —v| <h, and a < u,v < b imply

W(u) — W(v)|

2.52 <1 .
(2.52) 2l —vllog* (L/lu o) 2 = °

Hence, for all n large enough,
[W(s +x) —W(s+y)

1/4

n sup sup 7
1/(n+Dss<n/(n+1) lx—y|<Ku(s) {2(s)log* (n'/2/q(s))}
—l<x,y<1
ats) 7
<KY%(1 +¢) sup (ns(1—s)) ™" ——
1/(n+D<s<n/(n+1) (s(1-59))

log*(n'2/q(s))

By splitting the interval [1/(n + 1),n/(n + Dlinto[1/(n + 1), 8],[5,1 — 6]
and [1 — §,n/(n + 1)], where 8 > 0 can be chosen arbitrarily small and using
(2.42), routine arguments show that the expression above, maximized on each
of these intervals, can be made arbitrarily small as n becomes large. This in
turn suffices for (2.51) since W, =, W. O

x ( log* (n/2*/(K(s(1 = 5))"/*™")) )1/2

In the sequel, we will repeatedly make use of this argument, which will be
referred to as the splitting technique.

LEMMA 8. Whenever q € Q is EFKP, on the probability space of (2.12)

1/4 |Wn(3 + n_1/2ﬁn(s)) - Wn(s - n_l/an(s))l
n sup
(2.53) 1/(n+1)<s<n/(n+1) {2Q(8)10g+(n1/2/q(s))}1/2
=op(1).

Proor. Let x,(s) = n~128,(s) and y,(s) = —n~'/2B,(s), and let ,(s) be
as in Lemma 7. Taking v, = v € (0, ;) in (2.44), we see that

Il{im liminfP(jx,(s) — y,(s) < K¢(s) and —1 < x,(s),y,(s) <1
Too n—oo

foralll/(n+1) <s<n/(n+1))=1.
This, together with (2.51), suffices for (2.53). O
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Lemmas 6 and 8 jointly imply that, whenever ¢ € Q is EFKP,

1/4

[(@,(s) — a,(H,(5))) — (W,(s) = W,(s — n~/?B,(5)))]
sup

1/(n+1)<s<n/(n+1) {ZQ(3)10g+(n1/2/q(3))}1/2
(2.54)
=op(1). .

Note that W, =; W and B, =; B, where B(s) = W(s) — sW(1) and W is a
standard Wiener process extended to (—o, ). By (2.41) and the comment
following Proposition 4, we obtain, for any EFKP function ¢ € Q, that almost
surely,

n

1/2

B(s)
q(s)

Using the fact that almost sure convergence implies convergence in proba-
bility, we see that this, in turn, implies that for any EFKP function g € Q,

— —pn /2
i/t sup () = Wls = B(o))

= sup
n—o 0<s<1 {2q(s)log+(n1/2/q(s))}1/2 0<s<1

[W,(s) — Wn(s — n‘1/2Bn(s))| 1/2

/4 sup — sup
0<s<1 {2q(s)log+(nl/z/q(s))}l/2 0<s<1

=o0p(1).

A similar argument based on Lemma 3 shows that, under the same assump-
tions, we have, for any fixed 0 < 7 < 1,

Bn(s)
q(s)

n

(2.55)

(2.56) n'/*  su (Wal2) — Wnls n'l/an(ljz))I - su Bu(s) v
n<s<l-n {2q(s)log™(n'2/q(s))}" n<s<l-n| 9(s)
= 0p(1).
Next, obviously we have that whenever ¢ € Q is EFKP with probability 1,
(2.57) sup B(s) . sup B(s) 7 =0(1) asnl|0.
o<s<1|q(s) n<s<l—-n q(s)

By taking 0 < < 3 arbitrarily small in (2.56) and (2.57), on account of
(2.54) and (2.55), it follows easily that for any EFKP function ¢ € Q,

|, () — a,(H,(s))l

sup T2
1/(n+Dss<n/(n+D {2q(s)log* (n*/2/q(s))}

' B,(s)|"*

q(s)

1/4

n

(2.58)

- sup =0p(1).

1/(n+1<s<n/(n+1)
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By all this, we see that in order to complete the proof of the first half of
Theorem 2A it suffices to show that

B,(s)
q(s)

Take v, =v € (0,1) in (2.44) to obtain, uniformly in 1/(n + 1) < sn/
(n+1),

1B.(s) + B,(s)| <n_y( anU)*'BnUN)

B.(s)
q(s)

=o0p(1).

(2.59) sup

1/(n+1)<s<n/(n+1)

1/(n+1)<s<n/(n+1)

sup n -
q(s) 1/(n+1<t<n/(n+1) (¢(1 - t))1/2

(s(1 —s))”)

x(s(1 —s))_u( 2(5)
L (s(1 =)'
= O0p(1)(ns(1 —s5)) (T)

A simple analysis of this last term by the splitting technique used in the
proof of Lemma 7, in combination with (2.44), shows that (2.59) holds.

This completes the proof of (1.24), assuming that ¢ € Q is EFKP.

Recall that ¢ € @ is EFKP if and only if, independently of n > 1,
Supg <, <11Bn(s)/q(s)| < © a.s., which, in view of (1.24) and (2.57)-(2.59),
implies that if ¢ is EFKP, then

~

R,
{2q log*(n'/2/q)}""*

In order to finish the proof of Theorem 2A, we need only show that (2.60)
holds if and only if ¢ € Q is EFKP, namely by showing that if ¢ € Q is not
EFKP, then

(2.60) nl/4 =0p(1) asn > »,

~

R,
{2¢ log* (n'/2/q)}""*

Assume, from now on, that ¢ € @ is not EFKP. For any 0 < 7 < 3, let q,
be defined by g,(s) = g(s) for n <s <1 -7, q,(s) = g(n) for 0 <s < n and
q,(s) =q(1l —mn) for 1 —n <s < 1. It is straightforward that g, € Q and is
EFKP. Therefore, by (2.54) and (2.56), we have as n — o,

(2.61) n/4

—)POO as n — oo,

LU R, B IE,.(s)| -
{2¢ log* (n%/q)} ' ' n<ssl-n {2qn(s)log+(n1/2/qn(s))}
Bu) [
= sup + 0p(1).
n<s<l—-ng q(S‘) P
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The conclusion follows from the fact that, ¢ € Q not being EFKP,
B,(s) B(s) B(s)
q(s) q(s) q(s)

Thus, we have (2.61).
The proof of Theorem 2A is now complete. O

sup = a.s.asnl0.

n<s<l—-n

=q¢ SUp
n<s<l-nq

- sup

0<s<1

Proor oF CoroLLARY 2A. Note that if ¢ € Q is COR, then for any Brown-
ian bridge B,

lifr(}B(s)/q(s) = lifr&B(l -5)/q(l—s)=0 as.

It follows that there exists almost surely a 0 < A < 1 such that

B(s) B(1 -s) 1 B(s)

q(s) q(1-s) q(s)
and for any & > 0, there exists a 0 <n =7, < 3 such that P(A <1n,) <e&/2.

Next, by (2.54), (2.56) and the arguments used in the proof of Theorem 2A, we
have as n — o,

max| sup
0<s<A

< —< Ssup
)
0<s<A 16 0<s<1

R, (s B, (s 12
n'/*  sup B (o) Tz = sup (s) + 0p(1),
n<s<1-n {2q(s)log*(n'/%/q(s))} n<ssi-n| 9(8)
5 1/2
n'/* sup 1B ,(5)] Tz = Sup —Bn(s) + 0p(1)
o<s=n {2¢(s)log*(n*2/q(s))} 0<s<n| 9(s)
and
R, (s B, (s vz
nt/*  sup IR,(5)] Tz = Sup (s) + 0p(1).
e P e BT8R Y T

Recall that if ¢ € Q, then g is bounded above by a finite constant. Also,
(2.42) implies for large n that inf, ;. 1)< s <0 n+1) 9(8) = n71/% so that

1 < liminf inf (21log*(n'/2/q(s))/log n)
n—-o 1/(n+l)<s<n/(n+1)
< lim sup sup (2log* (n*2/q(s))/logn) < 2.

n—ox 1/(n+l)<s<n/(n+1)

In addition, we have uniformly over all n <s <1 -7,

lim (2log*(n'/2/q(s)))/log n = 1.
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It follows that, as n — o,

R, (s B,(s 12
a4 sup |—(_)_|1_/2 —  sup B,(s) +0p(1),
n<s<1-n (q(s)logn) n<s<l-nm q(s)
£ (s B (s) [
n'/* sup -*L)ll/z <2Y% sup (s) +0p(1) .
o<s<n (g(s)logn) 0<s=<mn q(s)
and
R, (s B, (s 1z
n'/*  sup % <2Y2  sup (s) + 0p(1).
1-n<s<1 (g(s)logn) 1-n<s<1| 9(s)

This combined with our choice of 7 = n, ensures that, for all large n with
probability greater than 1 — ¢,

- 1/2
W s BB
0<s<n (q(s)logn)? =~ 2 0c5<1| 9(s) ’
n*  sup |én(3)| < l sup B,(s) v .
1-n<s<l (q(s)logn)l/2 T 2 9<s<1] 9(8)
and
5 1/2
» IR ,.(s)| B.(s)|"”
n sup ——————;5 — Sup €.
n<s<1-n (q(s)logn) 0<s<1| 9(s)
It follows evidently by our arbitrary choice of ¢ > 0 that
R (s B, (s
n'/4 sup l—n(—)—l— = sup (5) +0p(1).
1/2 P
1/(n+1)<s<n/(n+1) (q(s)logn) 1/(n+1)<s<n/(n+1) q(S)

This, jointly with (2.59) completes the proof of (1.28). O

Proor or THEOREM 2B. The proof of Theorem 2B follows along the same
lines as that of Theorem 2A, with Lemmas 9 and 10 replacing, respectively,
(2.46) and Lemma 5. We omit the routine details and limit ourselves to the
proof of these two lemmas. A similar argument holds for Corollary 2B.

LemMA 9. Under the assumptions of Theorem 2B, whenever q € Q, is
EFKP,,

-0

(2.62) nl/4 sup ’Tn(s) - (Sn(S) - Sn(s + o-,u—ln—l/zrn(s)))’

1/n<s<1 {q(8)10g+(n1/2/Q(3))}1/2
a.s.asn — o,
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Proor. Observe that, for any ¢ >0, Sy, <t < Sy ;. Moreover, we
have

r(t) +s,(t + op " n"V2r,(8)) = o 'n"V2( Sy — nut) < 0.
Thus since Sy, ,s+1 > nput, we have for all s > 0and n > 1,
sup |r,(¢) + s,(t + opn~n"12r,(2))|

(2.63) O<t<s
<n %71 max  |X,|.
1<i<N(nus)+1

The law of large numbers implies that almost surely z ‘N(uz) > 1 as z > o,
from which it follows that

(2.64) sup( sup (ns) "(N(nps) + 1)) =K<x a.s.

n=1\s>1/n

Observe that E(X}) < « implies that ¥, P(n~4|X,| > &) < « for every
e>0andso n %X, - 0 a.s. as n — ». Therefore we have

(2.65) sup (m‘l/“ max |Xi|) =L <o as.

m>1 l<ism

A similar argument shows that condition (iv) in Remark 6 implies (2.22).
By (2.63), (2.64) and (2.65), we have for all n > 1 and s > 1/n,

nt4r.(s) + s,(s + ou~n"V2r,(s)) < LKV sV/4.
It follows that, for any EFKP, function g € Q,, we have almost surely as

n—)OO’

1/4

IT,(s) — (5,(s) — s,(n " 'N(npus))
n sup

1/n<s<1 {q(3)10g+(n1/2/q(s))}1/2

(2.66) e
q(s)log+(n”2/q(s))) }

=0 1/2

1/n<s<1 ( S
which by (2.42) is o(1). This completes the proof of Lemma 9. O

LEmMmA 10. Under assumptions (i), (i) and (iii) on the probability space of
(1.4), forall 0 <v; <1/4,
(2.67) sup n"1s, (s) — W,(s)|/sV/2™"1=0(1) a.s.asn — x,
0<s<1
and for all 0 < v, < %,
(2.68) sup n?r,(s) + W (s)|/s/27"2=0(1) a.s.asn — x,
1/n<s<1 *

where W (s) = n™Y2W(ns).

Proor. Notice that on the probability space of (1.4) as T — o,
o (S — Tu) = W(T) +o(T"*) as.
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o Y (uN(uT) — Tu) = —W(T) + O(TV*(log T)"*(loglog T)"/*) a.s.

Thus, in view of Theorem 1.3.3 in Csérgd and Révész [(1981), page 40], for
all0 <v, < i,

(2.69) suplo ™' (S, — Tw) — W(T)|"?*"1 <» as.
T=0

and, for all 0 < v, < ; and ¢ > 0,
(2.70) suplo Y (uN(uT) — Tu) + W(T)|T " V?*2 <o a.s.

T=>c
It is noteworthy that (2.70) is invalid for v, = § [by (1.5)] and for ¢ = 0
[since N(0) may differ from zero]. Assertions (2.67) and (2.68) now follow from
(2.69) and (2.70) by a change of variables. O

REMARK 7. It is clear that the proof of Theorem 2B may be adapted to
show that versions of Theorems 2B and Corollary 2B hold almost surely.
However, this requires much more than minor modifications of our present
proofs. Therefore we limit ourselves at present to in probability statements. To
obtain almost sure versions of Theorem 2A and Corollary 2A is a much harder
problem.
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