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THE NET CHARGE PROCESS FOR INTERACTING,
SIGNED DIFFUSIONS!

By ROBERT J. ADLER

Technion-Israel Institute of Technology

We consider a system of N (— =) interacting one-dimensional diffu-
sions, in which each diffusion is assigned a random charge (+ 1), and study
the behavior of the net charge distribution through space and time.

The diffusion equations are a slight variation of those considered in the
initial studies of ‘‘the propagation of chaos,” but the interaction involves
the signs of the diffusions and triplet rather than pairwise interactions.
This has the effect of leading to a non-Gaussian fluctuation theory, which
turns out to be close to the P(:®*:) models of Euclidean quantum field

theory.
The main tools of the proofs involve the Stroock—Varadhan martingale

theory and a general theory of U-statistics.

1. Introduction. Our aim in this paper is twofold. On the one hand we
wish to consider an interacting particle system in which the particles are of
two types—positive and negative—and in which the interaction mechanism is
of a fairly natural form. On the other hand, we wish to develop a system in
which the “fluctuation theory” (defined below) is non-Gaussian, and yet still
relatively easy to manage.

The motivation for our first aim is obvious—there are many physically
interesting situations in which particles are of two kinds, and so it is natural
to want to model them. The motivation of the second aim is not so clear, but
comes from Euclidean quantum field theory (EQFT). The study of EQFT is
essentially the study of Gaussian and related random fields, and it is really
only the non-Gaussian ones that are physically interesting. (Physicists use the
adjective “trivial” to describe Gaussian EQFT.) It is not generally an easy
matter to construct non-Gaussian EQFTSs, and certainly not with the tools
readily available to probabilists. Thus we wanted to develop a model which was
on the one hand probabilistically simple, and close in nature to models that
probabilists are used to working with, as well as leading in a reasonably
natural way to non-Gaussian random fields.

As a result of these aims, the model that we are about to introduce has a
slightly artificial nature, although it is reasonably easy to understand the
phenomenon that it describes. [Roughly speaking, it describes a movement of
positive and negative particles in which clusters of positive particles tend to
drift in one direction, clusters of negative particles tend to drift in the other,
but since the clusters have trouble passing one another a mixture of positive
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and negative particles arises that, in simulations, looks like many of the
standard models of interacting particle systems; cf. Liggett (1985).] For the
moment, however, we ask the reader to bear with us and accept it as it stands.
At the end of the paper it will be clear why we wrote down the model the way
we did, and we shall discuss how changes to it would affect its N - »
behavior.

We commence with N > 1 independent random signs o', ..., ¥, such that
P{oci = +1} =P{(ri =-1} = %;
N standard, real-valued, Brownian motions W1 ...,W?", independent among

themselves and of the o; a real B > 0 and a nice function b(x,y, z) on R3,
which together yield the N interacting diffusions X 1..., XN given by the
solution of the N stochastic differential equations

(1.1) dX}=dW;}+oBpN~3/? Yy o-jcrkb(X},X{,th)dt, 1<i<N.

ik, k+i, j*k

(We shall specify the initial distribution of the X ¢ later.) Strictly speaking, the
X} form a true diffusion system only when the ¢! are nonrandom. We shall
return to this point as well later. The parameter 8 should be thought of as an
“interaction strength.”

In order to study the temporal development of this system, we shall
concentrate on two measure-valued stochastic processes. The first, uy(t, A)
counts the total number of particles in the set A C R at time ¢ > 0, while
u%(t, A), which is actually a signed measure, measures the “net charge’” in A
at time ¢. Formally,

N
un(t, 4) = T 14(X0),

N
ps(t, A) = Y ot 1,(X]).
i=1
In fact, because of the signed nature of u%, it is more convenient to study
function-indexed versions of these two processes, defined by

N
pn(t, ) = fR f(x)uy(t, dx) = Z_:lf(X:'),

(1.2)

(1.3) N

usi(t, £) = [ f(@wsi(t,dx) = E o*f(Xi),
i=1
where f belongs to some “nice” family of functions to be specified later. In
particular, we shall generally take f € ., the space of Schwartz functions, so
that both w, and u% are .'-valued processes, i.e., distribution-valued diffu- -
sions.

_Our main interest is in the process u%, and we shall study both its temporal
dévelopment and its distribution for fixed ¢ Unfortunately, u% is not a
Markov process, but, fortunately, the pair (uy, u%) is. Thus we shall study
this pair as a ./’ X ~'-valued diffusion. In particular, we shall show that the
N — o structure of the pair ( N™'uy, N~*/?u%) is comparatively simple, and
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shall characterize its generator via a Stroock—Varadhan type martingale analy-
sis. This is done in Section 4 of the paper, after we set up the martingale
problem for the finite N situation in Section 2 and determine the structure of
the finite-dimensional distributions of the limit process in Section 3.

Indeed, our most interesting result lies in characterizing the distribution of
uy(t, - ), for fixed ¢, as a .#’-valued random variable; i.e., as a random field.
When the interaction parameter g is 0, then it is a straightforward conse-
quence of the standard central limit theorem that the N — « distribution of
N~%,9.(, ) is that of a Gaussian random field. When B > 0, however, it
turns out that this is no longer the case, and the corresponding distribution
can be written in terms of its Radon-Nikodym derivative with respect to the
B = 0 Gaussian field. In fact, the limiting distribution is somewhat akin to a
P(:®%:) quantum field theory, i.e., to a nontrivial EQFT. All of this is discussed
in some detail in Section 5.

Before commencing in earnest it is probably worthwhile to explain where
the model (1.1) actually came from. There is a large literature [e.g., McKean
(1966, 1967), Tanaka (1982), Dawson (1983), Tanaka and Hitsuda (1981) and
Sznitman (1982, 1984, 1986)] concerning the propagation of chaos and fluctu-
ation theory for models of identical processes that, in general, look something
like
(14) dX/=dW; +g(X/)dt + BN"* ¥ b(X},X/)dt, 1<i<N.

i*j
The fluctuation theory for such processes, i.e., the N — o« distribution of

N~Y%{uy(2, ) — E[py(2, )]},

is almost invariably Gaussian [the model of Dawson (1983) is a notable
exception to this rule; however his non-Gaussian fluctuation theory is more a
result of a delicate initial distribution than the interaction mechanism], and
there is very little one can do to (1.4) to get a non-Gaussian fluctuation theory.
For example, changing the interaction term to a triple sum as in (1.1) has
some effect on the limiting distribution, but not enough to make it non-Gauss-
ian. Introducing random signs, as in (1.1), also has a limited effect. Introducing
both of these changes at once, however, provides just the right amount of
impetus to yield something different. (In the process, of course, one should
note that we have also shifted our attention from the particle density process
uy to the net charge process u%.) Precisely why this is what is required will
become clear in Section 5, where we shall also discuss what other changes
would arise from different perturbations of (1.4) and (1.1). [Previous results,
similar in spirit to some of ours, but for deterministic ODEs, appeared in
Geman and Hwang (1982).]

For the reader interested primarily in fluctuation theory, it is worth noting
that Section 3 is essentially independent of everything in Sections 2 and 4, and
so can be read quite independently of the remainder of the paper.

“Finally, I should note that the impetus to introduce randomly signed
particles in order to obtain a non-Gaussian fluctuation theory came from two
(related) sources. Previous experience with somewhat simpler models [Adler
(1989)] showed that this was likely to work, but, most of all, my wife the
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physicist was adamant in her long-term claim that ‘“nothing interesting can
ever happen if all your particles are identical’’!

2. The structure of the finite N case. We start with some formalities,
recalling, and somewhat refining, the setup of the previous section. For i > 1
let {Q, 7%, (%o <t <1 (W) <, <1, P} be a probability space with a standard
Brownian motion W*, an %;-measurable random variable X; with law
u and a % -measurable random Rademacher sign o’ [P(o'= +1) =
P(oi = —1) = ;] independent of X and W".

Let Q. denote the infinite product space, endowed with product probability
P, and the product filtration. For each N > 1 let Py denote the distribution of
W WN xb XN, ot ...,0V) under P, where X},..., XN start at
X3,..., X} and satisfy the following set of stochastic differential equations:

(2.1) dXi=dW;+BN"¥2%i Y  olokb(X} X/ XF)dt, 1<i<N.
G, ki, j<k

Here b: R® > R is a real-valued, uniformly bounded, and uniformly Lipshitz

function, so that there exists a finite K > 0 such that for all x,x’,y,y, 2,

2’ eR,

(22) lb(x,y,z) - b(x,,y,7z,)| = K{Ix _xll + |y _yll + |Z _zll}‘

It is easy to see that for a fixed sequence {¢!, ..., o "} of random signs (2.1)
determines a well-defined diffusion on RY. For g8 = 0 this is immediate, for
then we have N i.i.d. Brownian motions with initial measure u, and for g > 0
existence and uniqueness follows from (2.1), (2.2) and a version, for fixed signs,
of the Cameron—Martin-Girsanov formula given below.

There are a variety of ways to treat the randomness of the o, perhaps the
easiest being to introduce a sequence of constant processes o/, ¢t > 0, given by
- o/=0i=0',1<i<N. Then for each N > 1 we obtain a true 2N-dimen-
sional diffusion (X},..., XN, 0},...,0N), whose existence is no harder to
establish.

In order to get some intuitive feeling for the diffusions described by (2.1),
consider the special case b = 1, and let y, denote the normalized random sum
defined by

=N! Y alok.
Jri k#i, jAk
(It is not hard to show that as N — », y, converges in distribution to a
well-defined random variable, and so this is a reasonable variable to temporar-
ily hold fixed.) With this notation, an approximate version of (2.1), for large N,
is given by
dX} =dW} + BN~ 20y dt, 1<i<N.

In this format, the behavior of the X' is transparent. If y, > 0, then the

X? corresponding to positive o’ behave as independent Brownian motions

with positive drift, while those corresponding to negative o® propagate with a
negative drift. If y < 0 then the situation is reversed.
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There are essentially two different approaches to studying the diffusion
(2.1). The first relies on determining explicit formulas for the finite-dimen-
sional distributions of the X°, and the second involves a Markov theory
approach via the infinitesimal generator of the 2 N-dimensional diffusion. We
shall require both approaches in what follows, and start the first by finding an
explicit representation for the exponent in the Cameron—Martin—Girsanov
formula relating the dependent case (8 > 0) to the much easier indepéndence
case (8 = 0).

For each ¢ € [0, 1], set

N
TR =BNT2Y ¥ olodo ['b(XE, X{, XE) dW;
0

i=1j+i,k+i, j*k

N
(2.3) -B3N"3Y Yy Yy alaiato®

i=1{j#i, ki, j+k} {j'+i, k' #i, j'#k")
t . . . . ,
xfob(Xs‘,Xsf, XF)o(X:, X7, X¥) ds.

Then for all B > 0 the distribution of (X},..., XN, X%,..., XY, 0',...,0")
is given by the probability measure

(2.4) QR (2, ) = Py(-) X e8®,
This now gives us a way of calculating finite-dimensional distributions for
the X°.

In order to facilitate the alternative approach, note that the infinitesimal
generator of the 2N-dimensional diffusion (X},..., XN, o},...,0N) is o7,
where

Inf(x,0) = Lyf(xy,...,%5,00,...,0y)

N
=1 2 o 2
(25) 2 igl d f(x’ )/axt

N
+BN~32Y ¢! Y alotb(x;, x5, x,) 0f (x, 0) /9x;.
i=1  j#i, jrk, kA
The domain of D(27y) of 7y contains CZ(R2V), the space of twice-
differentiable functions with compact support on R2%.
Having set up the X/ of (2.1) formally, let us now turn to the measure-
valued processes of central concern to us, as well as their distribution-valued
versions. Define, for ¢ > 0 and A € R,

N N
(2'6) :“'}t’(t’ A) = Z l(ai=+1)1(XfeA)’ :“'}:’(t’ A) = Z l(a‘=—1)1(X}eA)’
i=1 =1

N
(2.7) pn(t, A) = ¥ Lixica=ny(t, A) + ny(t, A),
i=1 -

B N
(2.8) py(t, A) = 3 o'lixic 4y = ui (¢, A) — ny(t, A).
i=1
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The processes uj and wy measure, respectively, the number of positive
and negative particles in A at time ¢, while uy and u% record the total
number of particles and the ‘““net charge” in A at time ¢. Their distribution-
valued versions are given in the obvious way. For example,

N
uii(t,9) = [ d(x)ugi(t,dx) = ¥ o'¢(X),

i=1
where ¢ € .7, the Schwartz space of infinitely differentiable functions decay-
ing at o« faster than any polynomial. Thus each of the above four measures can
also be thought of as a .’-valued process, where .’ is the space of tempered
distributions. We shall generally need to treat our processes in this form, but it
will be more convenient to use a notation based on considering them as
measures rather than distributions.

We now claim that the two pairs (up,u%) and (uy,uy) are actually
' X #'-valued Markov processes. (It is not true, by the way, that any one of
these four processes is, by itself, Markovian. Any pair, however, is.)

In fact, the Markovian nature of these pairs of processes is immediate from
the Markovian nature of the X! and o processes. We shall, however, formal-
ize this by setting up (uy, u% ) and {(u}, uy) as solutions of two martingale
problems [cf. Stroock and Varadhan (1979) and Ethier and Kurtz (1986) for
details of this approach]. Recall, however, that the basic idea of the martingale
formulation of Markov processes is as follows:

Let E be a locally compact, separable, metric space, #(E) the Borel
o-algebra of E, B(E) the space of real, bounded functions on E and #(E) the
space of Borel probability measures on %(E) with the topology of weak
convergence. The set of continuous functions X: [0,%) — E with the topology
of uniform convergence on bounded intervals is denoted by Cg[0, «).

Given a linear operator . defined on a linear subspace D = D(.#) ¢ B(E),
a solution of the Cg[0,) martingale problem for (£, D) is a stochastic
process {X,, ¢t > 0} with sample paths in Cg[0, ) such that, for every f € D,
f(X,) — [{Lf(X,)ds is a martingale with respect to o{X,: 0 < s < t}. The
martingale problem is said to be well posed if, for each u € FP(E), there exists
a solution of the Cg[0, ) martingale problem for (_#, D) under which X, has
distribution u, and each such solution induces the same measure on Cg[0, ).
In this case the family of solutions (indexed by u) satisfies the Markov
property, and . is the infinitesimal generator of the process.

To apply this to our case, we take E = .’ X ' and consider the dense
linear subspace D, of B(.#' X ') defined by functions of the form

(29) Ff:¢,w(777y) = f(n(¢),1’(‘/f)),

where n,v € /', ¢, € # and f € CZ(R?), the space of real-valued functions
on R2? with bounded, continuous, second derivatives. For n, m € {0,1, 2} and
f e CAR?), write f, ,(x,y) =3"""f(x,y)/0x™ dy™.

To set up the appropriate operator for the martingale problem, we shall
require something like a triple integral that ignores diagonal lines and planes.
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Although we shall use integral notation for this, we must set it up in terms of
distributions.

For 7, my,m3 € #'(R) and a € A(R?), set a(x,y,z) = alx,y, z) if all of
x,y, z are distinct, and a = 0 otherwise. Then define the product 7, ® n, ®
13 € S'(R?) as (n; ® 1, ® nz)la) = n(a®), where a®(x) = n,(a®(x, - )) and
a®(x, y) == n4(a(x,y, - ). We shall write all this in integral notation as fol-
lows: )

(2.10) n() = ($,n) = /R é(x)n(dx),

(211)  (m ®my ® m3)(a) = Pa(x,y, 2)ni(dx)na(dy)ne(dz),

where we use the symbol ¢ precisely only via its definition through the triple
® product. However, it can be thought of intuitively as a triple integral that
does not charge the diagonal {x = y = z} or the planes {x = y}, {x = 2}, {y = 2},
or as a regular triple integral minus three double integrals and one one-dimen-
sional integral. (The latter gives one a better way of handling the dual process
mentioned in Section 5.)

Finally, for N> 1, n,v € ./, ¢, € ./ and f € CZ(R?), define the opera-
tor £y on D, as follows, writing ¢ = ((¢, 1), (¢, v)) € R? to save on space:

InFr g0 (0,v) = 5F10(E)D",0) + $For(E)CY",v) + 3Foa(€)(¥)% 1)
+ 3 Fa0(E)()2, 0y + Fr(E)(PW', v)

(2.12) + BN-3/2f10(§)¢b(x,y, 2)¢'(x)v(dx)v(dy)v(dz)

+ BN-2,,(£)Bb(x, 5, 2)'(x) n(dx)v(dy)v(dz).
We can now set up and prove our first result.

THEOREM 2.1. Let b: R® - R be as described at the beginning of this
section, and assume, furthermore, that b € #(R®). Then the martingale
problem associated with (£, D,) is well posed, with solution given by the
distribution of the .’ X ./'-valued process (i, Ly )-

ReEMARK. The additional restriction that b € .~(R?) is, in essence, unnec-
essary here, since both u, and u% take values in the subspace of .~ X .
made up of point measures. Furthermore, the care we have taken above in
defining the triple integral ¢ is really superfluous, the integral being no more
than a sum. Nevertheless, in preparation for the next section, in which we
send N — o, we introduce these restrictions at this point.

Proor. The fact that the distribution of (u,, u% ) solves the martingale
problem for (£, D,) follows from straightforward computation using It8’s
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lemma and the following relationship between _#) and 7, the generator of
(XY, .., XN ol ..oV
Note that for each Fy., , € D, there exists some F*: R?N — R satisfying

N N
Ff;¢,./;(IJLN»I~L(JrV) =f Z d’(Xtt)» Z Ull/’(th)
(2.13) i=1 i=1
=F*(X}!,....,XN,o%...,a").
Consider the effect of the operator &7y on F*. Note

OF*(X,0) .
_35(7'_ = f10(<¢,MN>,<¢,M(ITV>)¢'(X‘)

.14 . ‘
(2 ) +f01(<¢”“LN>’<¢”/*L(IIV>)OJ¢'I(X1)

= flo(gN)d’,(Xi) + f01(§N)‘7i‘/"(Xi),
on writing &y = (b, un ), (¥, u%)) to conserve space. Furthermore,
62F*(X,a) L \2 . . .
_a(_xi)—z_ = f20(§N)(¢,(Xt)) + 2f1u(én) o' (X' (XY)o!

(2.15) . .
+ foe(Ex) (W' (X9))" + fro(én) d"(XP)

+ for(én) o'y (X).

Substitute (2.14) and (2.15) into (2.5), perform the summation over i
[1, N1 and rewrite the result in the format of (2.12) to obtain

(2.16) SyF*(X,0) EJNF[”:¢,¢(/J’N’/J"ITV)~
The fact that (u,, u% ) solves the martingale problem for (_#y, D,)—i.e., that

(21T) By (i (), 15:() = [ AuFr g0 (un(8), 1% (s)) ds

is a martingale—now follows from (2.16) and the martingale characterization
of the system (2.1). ‘

The uniqueness of the solution for B8 = 0 is standard, since the only true
difficulty in the structure of £y lies in the ‘“multiple integral” terms. The
uniqueness in the general case then follows either from a Cameron-
Martin-Girsanov argument [cf. Dawson (1978)] substantially simplified by the
discrete nature of the processes upy and u%, or, alternatively, directly from
the uniqueness of the martingale problem for (%7, CZ(R?Y)). This completes
the proof of the theorem. O

In much the same manner, the pair (uj, uy) can be associated with a
related martingale problem. Again, take F}. ,, € D,, and, with the same
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notation as in (2.12), define the operator %y on D, by
InFrg,0(00) = 3F10(E)CH", 1) + §For(E)CU",v)
+5Fa0(E)($)%m) + 3Foa()(¥)?, v)
+ BN~2f,4(£)Pb(x, v, 2)¢'(x)n(dx)
X (n = v)(dy)(n — v)(dz)
+ BN~2/2fo,(£)b(x, 3, 2)u'(x)v(dx)

X(n = v)(dy)(n = v)(dz).

Then we have the following theorem.

(2.18)

THEOREM 2.2. Under the conditions of Theorem 2.1 the martingale prob-
lem associated with (Zy, D,) is well posed, with solution given by the /' X
"-valued process (L3, Ly Y-

Proor. The proof requires only minor changes to that of the preceding
theorem. Instead of (2.14), for example, we obtain

AF*(X, o) . ) .
219y axr ~ f1l& sk (0 mi) (oD (XY

+ f01(<¢’ I~"]t’>7 <¢, /-l';l>)1(—1)(0-i)¢,( Xi)’

with the indicator functions 1, ,, appearing also in the analog of (2.15). There
we also obtain the product 1., ,,1,_;, (= 0), which, on following the same steps
as in the proof of Theorem 2.1, leads to the slightly simpler form of the
generator &y, i.e., to (2.18). This proves the theorem. O

In the following two sections we shall study what happens to the processes
Un, M, by and p% as N — «. Ideally, we would like to study this initially
from the point of view of the associated martingale problems, but technical
difficulties, which we shall discuss in some detail in Section 5, make a direct
approach via this path somewhat difficult. Thus we commence with a more
direct approach toward a weak convergence theory.

3. Fluctuation theory for p%. Our aim in this section is to show that
the ./’ X #'-valued process {uy, u% ) has, after appropriate normalization, a
weak limit as N — o, and to obtain an explicit form for the corresponding
univariate distributions of the limit process. With this end in mind, we shall
from now on restrict our attention to the time interval ¢ € [0, 1].

Our first project will be to handle these univariate distributions. The full
weak convergence result, in the function space C([0,1], /' X ") (which
naturally requires tightness arguments) we leave until the end of this section.
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It turns out that the appropriate normalization is ( N~ uy, N~%u% ), and
that N~'u, tends to a constant, measure-valued process as N — . Thus
primary interest settles on determining the univariate distribution of the
normalized net charge process, i.e., of N~1/2u%/(¢). Since this is qualitatively
the same for all ¢ > 0, we shall soon concentrate on the case ¢ = 1. Following
standard usage, we call this problem ‘‘establishing the fluctuation theory” for
M- '

We require the limiting distribution of the random field (N~ 'u (¢, &),
N-YV2u5.(t, ¥)), ¢, € . In view of the Cameron-Martin—-Girsanov formula
(2.4) and the linearity of u, and u% as operators on .7, it is clearly sufficient
to calculate the limiting characteristic function

Jim | exp{i - [N~lup(t, ¢) + N~22ug(t,4)]} dQE(2)

(3.1)

N N
= lim exp{J,e(t) +i-|[NYY o(X/)+ N2 Y oly(X))
N-oow/Q j=1 j=1

} ap,

where JE(t) is the rather complicated expression (2.3) appearing in the
exponent of the change of measure formula (2.4).

We shall not attempt to evaluate (3.1) explicitly, but rather shall obtain a
representation for it that will give us something recognizable. Furthermore,
we shall now concentrate on the case ¢ = 1, and shall discuss later how to
adapt this to general .

Unfortunately, we now have to make a substantial investment in notation,
before we can even state the main result of this section. Some consolation,
however, comes from the fact that the investment made in setting up appropri-
ate notation pays dividends by generating relatively simple proofs.

To make our lives a little easier, we take the spaces Q¢ above to be
- {~1,+1} X R x C[0,1], so that we can take (o’, X{, W/ ,<[o,1;) canonical
on (1, and thus it makes sense to write X; as X,(w’). Note that J£(1) is then
an element of Z2(Q, P)®*.

For an element of Z2(Q, P)®*, k > 1, denote its symmetrized form in
ZZ(Q, P)°* (symmetric tensor products) as symm F. For example, if

F(o!, 02, 03) = olo%? jo B(X,(01), X,(0?), X,(0?)) dW,(?)

[so that F € _£2(Q, P)®3], then

alo?03

o [ (X, (01, X,(67), X,(0)) dW, (")

+B(X,(01), X,(07), X, (%)) dW, (")
+B(X,(07), X,(0)), X, (%)) dW,(@?)
+B(X,(07), X,(0%), X,(0))) dW,(@?)
+B(X,(0%), X, (), X,(07)) dW,(°)
+5(X,(0%), X, (), X (1)) dW,(a?).

symm F(o!, 0?, 0®) =
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Now define a collection of functions Fy, ..., F;, as follows:
F:Q*>R, F,e£Q,P)°%
(82) Fy(o!,w? o)
- symm{o'o%® ["b(X,(6"), X,(07), X,(0)) aw (o).

F, Q* >R, F,e £Q,P)%",
(3.3) Fy(w!, 0?, 03, 0*)
- symm{o0%%* [ a(X,(0), X,(7), X,(0), X,(0)) ds}),
where
(34)  a(u,v,x,y) = fﬂmb(Xs(w),u,v)b(Xs(w),x,y)dPl(w).

Fu: Q3 >R, Fye.Z3Q,P)°?
(3.5)
Fy( 0!, 0?, 0®) = syrnm{0'10203f1b2(Xs(w1), X,(0?), X,(0®)) ds}.
0

F: Q* > R, F4€=/02(Q,P)oz,

3.6 -
(3.6) F (0!, 0?) = symm{olcrz/:bs(Xs(wl), X,(0?)) ds},
where
b.(x,y) = | b(X, ('), X, (w?),
- (5,9) = [ B(X, (o), X (0?), %)
X b( X, ('), X,(0?),y) dP(o") dP(o?).
F,:02 >R, Fye3Q,P)°%,
3.8
(3.8) Fy( 0!, w?) = symm{olazj;lés(Xs(wl), X,(0?)) ds},
where

o(%,) .
@9 fn b(X,(0), %, X,(0?))b(X,("),, X,(0?)) dP(a') dP(w7).

D(p): Q- R, O(¢) €L7(QP), ¢E<S,
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With this notation, we can write J§(1) as a linear combination of the following
expressions, in which we use 7 as shorthand for {all indices different} and we
let ~(i, Jj,k,Jj, k) denote the symmetrized version of the five-dimensional
summand in the definition (2.3) of J£. Set

(3.11)  S{'=N"?2} F(o',0’,0"),
K74
Sy =N3Y(A(i,),k, J, k) = Fy(w’, 0, 07, ")}
(3.12) o
+ N—2 Z F2(wi7 wj’ wk’ wl)y
K74

(313) SéV=N—3EF3(wi’wj,wk)’
-4

SN=NSY Y T (A gy b k) - F(h, o)

(3 14) i=1j+#i
+ N_l Z F4(wi’ wj)y
i1#j

where the innermost sum is over {k #i #j, k' #i #j, k # k'}, and

N
SN=N3Y T T (A d by J, k) — Fy(oh, 07))
(315) i=1k+i
+ N_l Z F4(wi’ wj)y
i+j
where the innermost sum is now over {j #i # &, j' #i # k, j #j'}.
We thus have that

(3.16) JE(1) =BSY - BHSY + S& + S + SH).
Despite the long formulas that we have generated, the N — « limit of J§ is
now comparatively easy to ascertain, since each of the sums S7,...,SY is

now in a standard form to apply results from the general theory of U-statis-
tics. Details of this can be found in Serfling (1980) and Dynkin and
Mandelbaum (1983). Applications of the general theory, similar in spirit to
that which we are about to make, can be found in Adler and Epstein (1987)
and Adler (1989).

We are now near the end of the requisite notation, and are close to stating
our first, and key, result. Let (), &, P) be a probability space supporting a
zero mean Gaussian random field ®,(f), f € £Z(Q, P) with covariance

GBI B0} = [ F(X(0))g(Xy(@)) dP(w).

Note that the covariance function of ®, includes the initial distribution = of
X, vid P.

Denote by I: £X(Q, P) » £, P) the canonical isometry f — ®,(f), and
by I°* the canonical isomorphism from ZZ(Q, P)°* into the kth chaos of the



614 R.J. ADLER

Gaussian space #'= I(£ X, P)). [See, for example, Neveu (1968), Dynkin
and Mandelbaum (1983) or Mandelbaum and Taqqu (1984).]

Then the general theory of U-statistics referred to above immediately yields
the convergence in law of J{(1) + i - N~2L N 0/¢(X{) to

(8.18) Zy(¢) =i®,(¢) — BI°*(Fy + Fy) + BIC*(Fy) — BICU(Fy).

[Without going into details, this theory gives us that, under appropr-
iate conditions, N=*/2 times a symmetrized, centered, %-dimensional sum
N, T F(,,...,Y,) converges in distribution, as N — o, to a ran-
dom variable in the £th chaos of some Gaussian space. This fact gives us that
the first terms in SY, S and SY, as well as all of S¥, go to their mean of 0
as N — «, since the normalization is of too high an order. The remaining
terms of interest converge to the appropriate terms of (3.18).]

We can now state the main result of the paper.

THEOREM 3.1. Let the function b have the usual properties. Then, for
B > 0 sufficiently small, the random distributions N~ Y2u5,(1,¢), ¢ €
Z{(Q, P), converge in law, under the interaction probabilities QF(1), to a
random #'-valued distribution whose probability measure is absolutely con-
tinuous with respect to that of ®,, and the logarithm of whose Radon-
Nikodym derivative with respect to this measure is given by

(3.19) — BAIO%(F, + Fy) + BI®(F,) — BI°(F,).

Furthermore, under the same conditions, the random distributions
N un1, ¢), ¢ € £E(Q, P), converge in probability to the deterministic distri-
bution u (1, ¢), where

(3.20) plt, ) = (b, pft)) = fR fR g.(x,y)d(y)u(dx) dy,

(3.21) gd4,9) = [g(x,0)d(x) dx,  d<.S,
and g, is the transition density of a standard Brownian motion, given by
3.22 x,y) = e /2%,
ReEMaRkS. (a) We reemphasize that the conditions determining the initial
points X;, X2,..., of the Brownian motions appear in the above result,

implicitly, via the parameter © determining the covariance function of ®,.

(b) Note that since one of the limiting distributions in Theorem 3.1 is
degenerate, it involves no effort to actually consider the weak convergence
there as joint weak convergence of the pair (N~ 'uy(1, @), N~12u$(1, ).
This point of view is advantageous in the martingale problem formulation of
the following section.
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The proof of Theorem 3.1, as, indeed, the proofs of later results, relies on
the following lemma, which forms the central technical result of this paper. We
temporarily defer the proof.

LemMA 3.2. There is a universal constant M < » such that for every a > 3
and for all sufficiently small B < B(a)

(3.23) sngPN{exp[an,(l)]} <M.

Proor oF THEOREM 3.1. We commence with the convergence of
N~1Y243,(1,¢), for which we have already proven almost everything. If we
write @” to denote the limiting probability referred to in the statement of the
theorem, then the convergence in law of N~ '/%u%(1, ) under QF(1) to a
random distribution with law @* follows directly from (3.1), the weak conver-
gence result (3.18) and the comments surrounding it and the dominated
convergence provided by Lemma 3.2. ]

As far as the term N~ 'u (1, ¢) is concerned, note that the result is true for
B = 0 by the strong law of large numbers for independent random variables.
The proof for B > 0, and sufficiently small, is then a trivial consequence of the
Cameron-Martin-Girsanov formula and Lemma 3.2. O

We now turn to the proof of Lemma 3.2.

Proor oF LEMMA 3.2. We commence by noting that
adf =apSY — ap?{SY + SY + SN + S}
=a/2BSY — ap?SY + S+ SN + SN} + B(a - ‘/(1/_2)SIN.
| By Holder’s inequality we thus have

B fesolasf]) < {Er,{esol T | o fespl2(a — Var2)st]))

= E3{*{exp[vS{']},

where y = 28(a — y/a/2) > 0 (since @ > 3). Thus it suffices to show, for vy
small enough, that

(3.24) supEPN{exp[ySfV]} <M < o,
N

To show this, expand the exponential, interchange the order of summation and
integration, and consider, for n > 1,

(3.25) (n!) 'Epf[vSF]"} = %EPN{[ZMFI(MMM)]”}.
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We shall show that (3.25) tends to 0 fast enough as n, N — «, for y small
enough, to justify the above steps and, at the same time, to establish (3.24) and

the lemma. ,
Recall that the summation in (3.25) is given, in all its.glory, by

(326 T symm{otoiot ['B(W,("), W(w!), W(wh)) dW,(o)).

i, j,k distinct

It is immediate, therefore, from the independence and the symmetry of the o,
that (3.25) is identically 0 for all odd n. Thus consider now n = 2p, even.
Then standard bounds on stochastic integrals [e.g., Gihman and Skorohod
(1979), page 75] yield that

2p }

<p(2p = 1’ [ B {[(W,(), W), W,()[ ") ds

EPN{ f()lb(V"s(wi),V";(wj),V"s(w’“))dV"s(wi)

(3.27)

<p(2p - 1)"B>,

where B = sup, , ,b(x,y, 2)|2 < © by hypothesis. Now, however, simple
counting will suffice to bound the right-hand side of (3.25).
Each term in (3.25) contributing to the total is of the form

EPN{O-il . o-iknFl(wil’ wjl, wkl) . Fl(wi", wjn’ wkn)}'

The nonzero terms occur when the indices occur in pairs, quadruples, etc.
Thus, if we write Z(p) to denote all positive integer partitions of p (i.e., all
sets of positive integers {r;,...,r,}, 1 <k <p, such that r; + -+ +r, = p),
then it is easy to check, via (3.27), that (3.25) is bounded by

c- (y’B)" y N-3-Pq ... q,
(3.28) (ay,...,a,)€P(p)

X(2a; = )™ - (2a, - D™/ (2D)!,

where n = 2p and C is a generic constant which we allow to change from line
to line. But, for large p, there are O((4py3) 'exp[my/2p/3] terms in this
sum [e.g., Abramowitz and Stegun (1972), page 75] so that if we could show
that for large enough p each summand was less than, say, C - 47, we would
have that (3.25) is bounded by a term of order (4y2B)” exp[C - y/p ]. By making
v small enough (by taking 8 small enough) this is bounded by n? for some
n € (0, 1), so that (3.24), and thus the proof of the lemma, would follow.

To show that each term of (3.28) is, in fact, of the correct order, apply
Stirling’s formula to the factorial, so that noting that the constants C that
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appear below are N and p independent, we have
N3Py - (20, - 1)™ -+ (2e, — 1)™/(2p)!

<C-a " a,(2a; — 1)"1 o (2ay, — 1)“k/[(2p)2p+l/2e—2p]

k .
=C-(2p) " [ [aV/*(2a; - 1)e2/(2p)?]"
i=1

k
<C- (zp)-l/2 1:‘{ [4p1/ai—l]al

= C - 4Ppk—pr-1/2

< C-4°?,
for all 1 <% <p and p large enough for the Stirling approximation. This
completes the proof of Lemma 3.2. O

To complete the results of this section, and to prepare for the next, we now
show that Theorem 3.1 can be raised in status to weak convergence on a space
of distribution-valued processes. Unfortunately, however, specifying the finite-
dimensional distributions of the limit process is a somewhat awkward proposi-
tion.

THEOREM 3.3. Under the conditions of Theorem 3.1, as N — « the pair
(N Yy, N12u%,) converges, in the sense of weak convergence of measures
on C([0,1], /' X A", to @ pair (e, u%).

The deterministic process u(t, ¢) is given by (3.20). The univariate distri-
butions of ul(t, ) can be described via Radon-Nikodym derivatives, as were
those of ®,(¢) = uZ(1,¢) in Theorem 3.1, merely by replacing 1 by t through-
out the definitions of the F, and ®, of that result.

REMARKS. (a) Since the notation is becoming somewhat cumbersome, we
no longer note the explicit dependence of u, and uZ on the initial distribution
u, as we did for ®,. It should be remembered throughout, however, that this
dependence is there.

(b) The difficulty that we are unable to explicitly write down finite-dimen-
sional distributions for uZ will be partially overcome in the martingale formu-
lation of the following section.

Proor. As usual, we have two things to prove: convergence of finite-
dimensional distributions, and weak compactness. As regards the first, we
shall merely claim that here the proof is exactly as in the proof of the weak
cofivergence of Theorem 3.1, barring the irritation of much heavier notation.
Since, in the current result, we have no desire to characterize the distribution
of the limit process, there is no point in struggling through this.
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Thus, what remains is to show that (N~ 'u,, N™1/2u% ) is weakly compact
in C(0, 1], X #’). To show this, it suffices to establlsh the following two
conditions:

(A) sup sup E{N"'uy(¢,|x]) + N™V2uq(t, %)} <

N 0<t<1

(B) for each (¢, ) € /X ., the bivariate process (N uy(:, ¢),
N=12u%,(-,¢)) is weakly compact in the topology of weak convergence of
probability measures on C([0, 1]), R?).

We shall show how to prove (B). Condition (A) follows via a similar

argument.
The key to the proof lies in noting that we really need only prove tightness,
and this we attack by first noting that

(N tupn(t, d), N" V2% (8, ¢)) — (N un(s, ¢), N V2% (s, ¥))
= <N‘1 erb( X/)-N* §1¢(X;'),

(3-29) -1/2 ;N o l/I(X ) N-1/2 é_\/: o.l(/I(Xsl) >

<N 5 [ot0) - w00 v £ o) - el )

Tightness now follows from standard moment arguments, with a little help
from Lemma 3.2. As an example, we consider the second term in the last
bracket.

It suffices to show [easy extension of Ethier and Kurtz (1986), page 128]
that for each ¢ € ./ there exists a finite ¢ > 0 such that for that for every
a > 0 there exists a § > 0 for which

N
(3.30) supr,{infmax sup N Y2Y oy(X)) —w(X))] > a} <c-a,
n &) i s eelt_y,t) i=1

where {¢;} ranges over all partitions of the form 0 =¢,<¢;, < -+ <t, <1
With minlsisn(ti - ti—l) > 6 and n _>_ 1.

Note firstly that inspection of the proof of Lemma 3.2 immediately shows
that (3.23) can be strengthened to
(3.31) sup supEP {exp[adf(t)]} < M.

O<t<l1l

Let I, denote the event in question at (3.30). Then.it follows from Hoélder’s

inequality that

(3.32) QR(L) < PYAL) - {Bp [e?k0]) ",

For sufficiently small B, the second term in this product is bounded uniformly
in ¢+ €[0,1] by (3.31). As for the first, the fact that everything has been
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reduced to a calculation on independent Brownian motions makes the comple-
tion of (3.30) standard, and thus we leave it to the reader.

The remaining cases are treated similarly, combining the change of measure
via exp[J§ ] with simple calculations for Brownian motions. This completes the
proof of Theorem 3.3. O

4. The infinite limit diffusions. In this section we shall consider the
N — « behavior of normalized versions of the four distribution-valued pro-
cesses uy, Uy, uy and wy of Section 2, concentrating on their behavior as
processes in t, rather than on their laws for fixed ¢. We shall start with the
pair (uy, u%y), normalized, as in the previous section, to the pair
(N~ 'uyn, N"24%,5. Our approach in this section will be via martingale
problems, whose structure will give us insight into the temporal development
of the N — oo limit of ( N™'u, N~ 1/2u%,) that was lacking in the treatment of
Section 3.

To develop the martingale problem associated with (N~ w,, N™%u%),
note that, in the notation of Section 2,

Fr 4 (N un(t), N72%u5,(2))
= Ff. n-1g, vz (mn(2), u5(2)),  N=1.

Applying Theorem 2.1 and recalling that the definition of the martingale
problem relies on establishing a relationship of the form of (2.17), we immedi-
ately obtain that (N~ 'u,, N"1/2u% ) solves the martingale problem for
(2%, Dy), where £ is defined by

LRFp. 4,5(0,7) = 3F10(E)(B"sm) + 3For( €)W, v) + 3Foa(E)<(¥)*, 1)
+ N3 Fan(O((#)"m) + Fu(E)<ow', v))

(4.1)

(4.2) +N-1g f10(§)gsb(x»y, z)¢'(x)v(dx)v(dy)v(dz)

+ Bl £)Pb(x,y, 2)¢'(x) n(dx)v(dy)v(dz),
where, as before, £ = ((¢,n), (Y,v)) € R

The limiting form of this generator, which we shall denote by .#, is defined
as follows:

ij:¢,¢(n,V) = %fw(f)(ﬁb",n)
(4.3) +Fa {5,y + B, 5,20 (x) n(de)v(dy)v(d2)

+ 2 foa() ()% m).

We can now state and prove the following result.
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THEOREM 4.1. Under the conditions of Theorem 3.1, the martingale prob-
lem associated with (£, D,) has a solution as a .’ X *'-valued stochastic
process. We denote the solution by {(p., u%). Furthermore, as N — o,
(N~ Yy, N7Y2u%,) converges, in the sense of weak convergence of measures
on C([0,1], /" X A, t0 {fey M.

Proor. The fact that (N 'wuy, N™1/2u% ) has a weak limit in C([0, 1],
' X ') is already known from Theorem 3.3. Call the limit process (., L%).
We need only show that this limit process solves the martingale problem for
(-Z, Dy); that is, we must show that for all F;. , , € D,,

t
(4.4) Fp (), n2(2)) — f()fFf;¢,¢(uw(8),ui(8)) ds
is a martingale. To show this, it is sufficient to show that for every & > 0,
0<t;<ty< <t <t<rt<land F,F,,...,F, €D,

0 = B[ [F((0r1,21)) = PG00, 520
(4.5) )
[ Pt) 029 a5 TRtz 00))

The weak convergence result of Theorem 3.3, the restrictions inherent on F
and the F, as elements of D, and the structure of the operator _#, show that
the right-hand side of (4.5) is equal to

(49 Jim Eog] [FCun (), 5:1)) ~ FCua03))

. k
[P (5),390)) ) TR0, 00)) |

The structure of the operator £}, given by (4.2), shows that we can replace
Z by £y in (4.6) without changing the limit.

If we now use the fact that (N~ lu,, N™1/2u%,) satisfies the martingale
problem for (£}, D,), we have that the expression within the limit of (4.6)
(with _#); replacing .#’) is identically O for all N > 1. This establishes (4.5)
and so the theorem. O

An interesting consequence of the above two results is what they have to
say about the ‘propagation of chaos’ properties of the X; processes. Note
firstly that the process u., is not only deterministic, but its distribution in no
way depends in the interaction strength parameter B. An immediate conse-
quence of this [cf. Sznitman (1982) and Tanaka (1982)] is a propagation of
chaos result for the processes X!, X2, ..., but only if one ignores the random
signs attached to the individual processes. To make this comment somewhat
more precise, write Ef to denote expectation with respect to the interacting
system {X1,..., XV, 0,..., 0"} of (2.1), while, as usual, E denotes expecta-
tion with respect to the P defined at the beginning of Section 3 on the basic
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spaces Qf. Furthermore, let @, ..., ®* k < N, be bounded, real-valued func-
tions on C([0, 1]). Then, for each % > 1,

k k
(4.7) Ef,{i]';[ld)"(X")} - i=]_[1E{d>i(W)} as N > «.

A similar result, which incorporates the random signs, is not true. That'is, if
¥l .., ¥* k < N, are bounded, real-valued functions on C([0,1] X {—1, +1},
then we generally have that

k k
(4.8) Eﬁ{iE[l\Pi(Xi,a-i)} - i=]_[1E{‘I'i(W,o-)} as N - o,

Given the structure of the processes u% and g, this result, while negative, is
not surprising. It is also strongly connected to the fluctuation theory for u% of
the preceding section.

Before concluding this section and turning to a general discussion, let us
take a moment to consider the problem of attempting to conduct an asymptotic
analysis for the pair (uj,uy) similar to that we have just completed for
{un, K% Y- Arguing as at the beginning of this section, we note that

(4.9) Froy o (N0 (8), N5 () = Fryo1g, nry (1 (0, 5 (1)), N = 1.
Then, via Theorem 2.2 and (2.17), it follows that ( N~ 'uz, N~ 'uy) solves the
martingale problem for (¥, D,), where £ is defined by
I Fp.4,4(n,v)
= 3f10(E)P"s ) + 3for(E)CY",v)

| +IN Y Foo(E) (@)% 1) + 3Foa€)((8)%,v))

(4.10)
+ BNV 0(£)Pb(x, 5, 2)¢'(x)n(dx) (n — v)(dy)(n — v)(dz)

+ BNY2fo,(£)Pb(x, 5, 2)¥'(x)v(dx)(n = »)(dy)(n = v)(dz2).

It is obvious that sending N — « to obtain a limiting diffusion will not work
here. Two things, however, are worth noting, before we discard this problem
completely.

The first is that if the normalization in the interaction term of the original
diffusion equation (2.1) for (X?,..., XV) were changed from N~3/2 to N2,
then the problematic terms in the above definition of. 43 would disappear,
leaving only an operator whose limiting form would be

(4.11) GFp 4 (0, v) = 5F10(£)(P",m) + 2fo(E)Y",v).

This is a particularly easy generator to identify, since both components of this
process correspond to deterministic processes of the kind given by (3.20). Thus
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a full propagation of chaos result does hold in this situation. The price that one
has to pay for this weakening of the interaction mechanism is, however,
substantial. In particular, it is easy to see from the calculations of the
preceding section that the fluctuation theory is then Gaussian, and the entire
aim of our project has been to produce a non-Gaussian fluctuation theory.

The second point is that if the values of (5, v) are restricted to the diagonal
in " X /' then, even under the original normalization, we find that

(412) I\IIigleI\’/ka:¢,(//(n7n) =fFf:4>,¢("7,"7)-

The limit process is then clearly a pair of identical, deterministic distributions,
which, starting together, develop together. The slightest deviation from equiv-
alence, however, leads to immediate explosion. It is instructive to carry this
argument backwards, to see what it tells us about the finite (but large)
N-particle problem for (ujz,uy), and, in particular, about the individual
processes (X!, ..., XV themselves.

An O(e) difference between N~ 'uf; and N~ 'ujy translates to an O(Ne) =
O(N) difference between uy and uy, and it easy to see by inspection of the
diffusion mechanism (2.1) that this can easily raise the drift coefficient to
O(/N) for some particles, thus leading to an explosion-type phenomenon for
these particles. It is this phenomenon that corresponds to the above failure of
(N~ j;, N"luy) to converge to anything nondegenerate without changing
the interaction coefficient.

5. Discussion. In this, final, section, we shall make a number of remarks
concerning the general properties of the processes we have studied, and, in
particular, consider what the effects of small changes in the model would be on
our results.

(a) Conditions on the function b. Throughout the paper we placed a
sequence of reasonably restrictive conditions on the interaction function b
appearing in the drift coefficient of the diffusion system (2.1). There is no
doubt that many of these could be relaxed in different parts of the argument.

For example, the analysis of the temporal development of the processes u%
and ug of Sections 2 and 4 undoubtedly holds under weaker boundedness
conditions on b. In Section 3, boundedness was required at (3.27), in the proof
of the crucial Lemma 3.2. Nevertheless, it is clear from the argument there
that an appropriate bound on the moments of d(W,(w!), W(w?), W,(0?)) is
really all that is required.

In both cases, however, one can only weaken the conditions on b to a
certain point, after which qualitatively quite different results arise. For
example,it is natural to try to replace b with a,delta function of the form
b(x,y,2)“="8(x —y)8(y — 2), so that the interaction mechanism is of a
purely local nature; i.e., only particles actually touching one another interact.
* The consequences of introducing a purely local interaction of this kind have
been studied in models of unsigned particles, and lead not only to a much more
involved analysis of the processes w,, but even the study of the diffusion
system (2.1) itself becomes qualitatively more difficult [cf. Sznitman and
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Varadhan (1986) and Sznitman (1986)]. Nevertheless, the introduction of an
interaction of a more local nature is of interest, particularly in relation to
obtaining fluctuation theories that correspond to true EQFTs.

(b) Euclidean quantum field theories. The fluctuation theory of Section 3
—i.e., the limit law of N~'/2u%—was described via its Radon-Nikodym deriva-
tive with respect to a Gaussian random field. Since this derivative involves
exponentials of random variables in chaoses up to and including the fourth, we
earlier described the corresponding distribution as being akin to a P(:®3:)
EQFT.

It is important to note that ‘“akin to’’ is not the same as ““is.” For a random
field to be a true EQFT it must be Markovian in some reasonable sense, and
this is not generally true of the random field described in Theorem 3.1. If the
interaction function b is of compact support, and the diameter of its support
given by some L, then we conjecture that the random field of Theorem 3.1 is
“L-Markov” in the sense of Pitt (1975). For a more useful Markov structure,
however, it is necessary that b be “local,” in some sense. For example, were b
a delta function of the form described above, then the corresponding fluctua-
tion theory for u% probably would be a true EQFT. However, in view of the
difficulties already noted in (a), we have no proof of this.

(c) Phase transition in B. There are a number of interesting phenomena
surrounding the interaction strength g.

Firstly, given the qualitatively different behavior of the fluctuation theory of
uy for B =0 and B > 0, there is clearly a phase transition in the model at
B = 0. It is worthwhile to note that this phenomenon is absent in the usual
models of the type of (1.4), for which the fluctuation theory is invariably
- Gaussian, regardless of the size of 8.

A more interesting question is what happens to the fluctuation theory as g8
increases further. All of our main results were proven only for “B small
enough,” this condition arising in the proof of Lemma 3.2. It is not clear to us,
however, whether the need to restrict B8 is due to an insufficiently tight proof,
or to an inherent restriction of the model. Since we have been unable to see
how tightening the bounds leading to the proof of Lemma 3.2 could make a
qualitative difference to our results, and since the final fluctuation theory is
“akin” to that of a P(:®%:) EQFT, we are inclined to conjecture the existence
of a further phase transition; i.e., the existence of a 8, > 0 so that Theorem
3.1 fails to hold for B > B, in which case a different normalization may be
required for u% in order to obtain a nontrivial limit.

(d) Higher-dimensional results. It is reasonably easy to see that very little
qualitative will change if the diffusions defined at (2.1) take values in RY,
d >"1, rather than in R. (This is not to say that such a generalization may not
require a reasonable amount of hard work.) On the one hand, this is an
encouraging indication of the robustness of the methodology and model. On
the other, however, it indicates that the fluctuation theory is not quite as
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“akin” to a P(:®%:) EQFT as one might hope, for such EQFTs behave very
differently in different dimensions.

(e) Higher-order interactions. As noted in Section 1, it is possible to
generalize our model to include higher-order interactions. For example, a
fourth-order interaction might look something like

BN20' Y olotatb (X}, X[/, X}, X]).
{distinct indices}

In such a case, under the appropriate conditions on b,, the corresponding
fluctuation theory would have a similar structure to that described in Theorem
3.1, but now the leading term in the exponent of the Radon-Nikodym deriva-
tive would come from the sixth, rather than the fourth, chaos of the corre-
sponding Gaussian field.

This phenomenon—a fluctuation theory that changes qualitatively as the
interaction order is changed—is not observed in the standard models in which
the particles are all of the same kind. [For similar results in this direction, for
related but different models, see Adler (1989).]

(f) Uniqueness and duality. A rather irritating loose end that remains in
our results is that we have not shown that the solution (u.,u2) to the
martingale problem for (.#, D), which forms the basis of Theorem 4.1, is
unique.

One way that one could go about this would be to show that the dual
problem [cf. Ethier and Kurtz (1986) for definitions and details] has a solution
(not necessarily unique). While it is not in principle difficult to write down the
generator for the dual problem, the result is somewhat complicated and does
not represent a problem whose solution is obvious, or, as far as we can tell, at
all known.

Nevertheless, in principle one can demonstrate the existence of the solution
to the dual problem to (2, D) by obtaining it as the weak limit of the solutions
for the dual problems to (£, D). However, given the amount of work
involved in this task, for what seems like minimal reward, we have not carried
out this program.

Finally, we note that there would be independent technical interest in
establishing the uniqueness of the solution to the martingale problem for
(Z, D), for then the weak convergence result of Theorem 3.3 could be proven
a little more neatly using martingale techniques. Nevertheless, these would
still not yield the precise information on univariate distributions given by
Theorem 3.1, which is, we feel, the most significant result of this paper.
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difficulties with martingale problems. The impetus for all of this work came
from a series of papers by Don Dawson, in particular, Dawson (1983).
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