The Annals of Probability
1990, Vol. 18, No. 3, 1410-1415

ON DYKSTRA'’S ITERATIVE FITTING PROCEDURE

By WiLL1aM E. WINKLER

Energy Information Administration

This paper shows that Dykstra’s procedure for finding the I-projection -
onto the intersection of closed convex sets holds in general. It does this by
first showing that each of the I-projections onto individual convex sets
defined in Dykstra’s iterative procedure exists and that no condition such
as imposed by Dykstra is required to prove the convergence of the iterative
procedure to a unique I-projection.

1. Introduction. This paper shows that Dykstra’s (1985) iterative proce-
dure for finding the I-projection onto the intersection of closed convex sets
holds in general. Specifically, given the existence of an I-projection onto the
intersection of a finite number of closed convex sets, Dykstra iteratively
defines a sequence of I-projections onto each of ¢ closed convex sets. Given the
assumption that each of the successive I-projections exists and under an
additional restraint, Dykstra proves that the sequence of I projections con-
verges to the desired I-projection on the intersection.

In this paper, we prove that each of the iteratively defined I-projections
exists and, thus, Dykstra’s procedure is well defined. We show that Dykstra’s
additional restraint, which is sufficient to show that some subsequence of the
I-projections converges to an I-projection on the intersection, is not needed. As
our proof closely parallels Dykstra’s, we will repeat some of his preliminaries
and notation. Following the definition of Dykstra’s algorithm, we will begin
with generally new results.

Let p and g be probability measures defined on subsets of the finite set X,
which without loss of generality we take to be the first K positive integers. We
use p(k) to denote the mass that measure p assigns to point k.

The I-divergence of p with respect to ¢, also called the Kullback-Liebler
information number, is given by

k)In k k)), if ,
(1.1) I(pllg) = %P( )In(p(k)/q(k)), ifp<gq
® otherwise.

)

Following Csiszar [(1975), page 146] we observe the conventions In0 = —oo,
In(a/0) = +x and 0 - (+») = 0. The conventions are consistent with defini-
tion (1.1) and will be used in characterizing Dykstra’s algorithm.

We let P denote the set of all probability measures on X and use the
convention that products (or quotients) are to be interpreted as pointwise
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multiplication (or division). For example, s;, = r * p;;/s;; means the measure
1o putting mass r(k) - py(k)/s (k) at k.

We define the I-projection of the probability distribution r onto a set E of
probability distributions as being ¢ in E such that I(q||r) < « and

(1.2) I(qllr) = minI(pl|r).
pEE

Csiszar (1975) provided the following elegant characterization of I-projec-
tions.

THEOREM 1.1 (Csiszar). A probability q € E with I(qllr) < « is the I-pro-
Jjection of r onto the convex set E of probability distributions iff

(1.3) I(plir) = I(pllg) +I(qllr) forallp €E.

The next section contains a description of Dykstra’s procedure and the proof
that it converges without the restraint imposed by Dykstra. We note that our
proof is heavily dependent on the finiteness of X.

2. The procedure. The procedure we describe is precisely Dykstra’s. We
assume that there exists a ¢ in E such that I(gllr) < « and that we wish to
find the I-projection of r onto E, the intersection of closed, convex sets
E,,E,, ..., E, of probability distributions. We denote the I-projection of s
onto E; by w(s) and the I-projection of s onto E by m(s). That =(r) and
i (r) ex1st is an immediate consequence of Theorem 2.1 of Csiszér (1975). We

wish to show that, if we can project r onto each E; individually, then we can
define an iterative procedure in which a sequence of successive projections of
measures (not necessarily probability distributions) onto all the E;s converges
to the projection on E. For this we need

DYKSTRA’S ALGORITHM.
Initialization. Let s; , =r and p, ; = mw(s; ). Let s;;=p;, ; and p;; =
m(sy ) fori=2,...,¢
Induction. For n>2, let s, ;=p,; 1/(Pp_1,i/Sp-1,i)y 2<1=<8, 8,1=
Pu-1,e/(Pn_1,1/8n-1,1) and p, ; = T8y, 1)

Note that if s, ;(k) = 0, then p, ,(k) = 0. Take 0/0 = 1.

We observe that if ro is an arbltrary distribution and p is a probability,
then I(p||r,) is still well defined but may not be nonnegative. (1.3) still holds
with r, replacing r. We now prove that each of the successive projections
defined in Dykstra’s algorithm exists. Dykstra assumed that the successive
projections exist.

LEMMA 2.1. Let X be a finite state space, E = N%_, E; where E,, ... ,E, are
closed, convex sets of probability distributions on X and let r be a measure on



1412 W. E. WINKLER

X. Assume there exists q € E such that I(q|r) < «. Then the projections
m(s, ;) of s, ; onto E; defined by Dykstra’s algorithm exist for all n and j.

Proor. By hypothesis, the projection of r onto E and, consequently, each
E; must necessarily exist. Using (1.3) yields that ;(r) only assigns mass 0 to a
pomt k when r(k) = 0 or when p(%k) = 0 for all p €E,.

Reasoning inductively yields that each s, ; can only assign mass 0 to a
point % if r(k) =0 or if there exists j such that p(k) =0 for all p € E,.
Consequently, each E; contains p <s, ; for n =1,2... and by Cmszar
[(1975), page 154], I(plls, )< o0, By Cs1szar (1975, Theorem 2.1), ~n-(s )
exists for n =1,2,... and J =1,2,.

The proof of Lemma 2.1 immediately yields that if a projection in the
sequence determined by Dykstra’s algorithm assigns mass 0 to a point, then
each successive projection must also assign mass 0 to the same point.

That the algorithm can be used to find a sequence of probabilities converg-
ing to the desired projection follows from Theorem 2.1. The proof extends
Dykstra’s proof. To prove his results, Dykstra had to assume [(1985), condition
(2.3), page 979] that the sequence of projections p, ; satisfies the following
condition:

There exists a convergent subsequence Prn,i P for some i such that

(D) lijnli3f§ (Pn, (k) = p(R))In(p,,, (k) /s, :(k)) =

Condition (D) is sufficient to show that the sequence of projections p, ;
converges to a projection. In the remainder of the paper, for brevity, we will
use summations of the form ¥, p to denote L, p(k).

THEOREM 2.1. Assume E = ﬂj~=1Ej, where the E ; are closed, convex sets
of probability distributions. Let r + 0 be a nonnegative vector such that there
exists a q € E for which I(q|r) < «. Let p, ; be the sequence of I-projections
onto E; defined by Dykstra’s algorithm. Then for every i, p, ; > pasn — »
and p = w(r).

Proor. For any n and i,
(2.1) I(p,,ills,,:) = )y Pn,iI(Py i/Dyio1) + Epn,i In(p,_1,;/Sn-1,:)-
k k
Iterating we obtain that, for all n» and i and for all j' < n,

n
I(pn,illsn,i) = Z an,iln(pm,i/pm,i—l)
(2.2) m=j'+1 k‘
’ + Zk: (P, _pj’,i)ln(pj’,i/sj’,i) + %P/,i ln(pj’,i/sj’,i)'

As the p, ; are bounded, we can choose a subsequence Pr,,is Jj=12, ..., such
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that Pn,i P for some p as j — «. By Dykstra [(1985), page 980] for each i,

I(p,, ,||8n ;) is bounded and monotonely increases to a limit as n — .
Using (2.2), we obtain that for any j’,

llm Z Epn ;ln(pm z/pm i— 1)

TR i1k

exists and is finite.
For all ;' <j",

lim Z Z P, ln(pm,i/pm,i—l)

n,—o

I m=j+1 k

j
(2.3) = X X, n(pni/Pmi-)
m=j'+1 k
J
+ lim Z anj,iln(pm,i/pm,i—l)'
2P m=j"+1 k

Letting j” — o along subsequence n J yields

(2.4) lim lim ) Y Pn,i In(py,i/Pm,i-1) =0

2PN, 2® m=n,+1 &

where n, is also used to denote subsequence 7 ;.
In (2.2), we let n — « dlong subsequence n;, j=1,2,..., to obtain, for
all j',

7
hm I(pn z”sn l) = hm Z an,iln’(pm,i/pm,i—l)
n,-® 2 m=j'+1 k
(2.5) + lim Z (Pn i pj’,i)ln(pj’,i/sj’,i)

n,—o®
+ ¥ by n(pyi/55,0)-
k

In (2.5) let j' — » along subsequence n;, j = 1,2,... . To avoid confusion we
again also label subsequence n; by n,. We then have that

J
hm I(pn z”sn l) = nhm nhm Z anj,i ln(pm,i/pm,i—l)
- e R e

(2.6) + lim ¥ (p = p,, )In(p,, :/50,.:)
nk—»oo k
+ lim s I(py,,illSn,,i)-

As the first limit on the rlght-hand side of (2.6) is zero, we obtain Dykstra’s
condition (D) and the theorem follows. O
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TABLE 1
Population array used as initial array in Dykstra’s GIFP

Variable 1 strata

Variable 2

strata 1 2 3 4 5 Total

1 0 4 7 0 1 12

2 10 8 0 0 16 34

3 2 0 0 47 85 134

4 6 4 3 78 157 248

5 0 38 26 67 451 582

18 54 36 192 710 1010

TABLE 2

Fitted array using classical IPF, cells (1, 3) and (3, 1) exceed population values

Variable 1 strata

Variable 2
strata 1 2 3 4 5 Total

1 0.0 3.027 7.942 0.0 0.031 11
2 7.340 6.149 0.0 0.0 0.511 14
3 2.060 0.0 0.0 5.132 3.808 11
4 1.600 1.117 1.256 2.206 1.821 8
5 0.0 3.707 3.802 0.662 1.829 10

11 14 13 8 8 54

TABLE 3

Fitted array using Dykstra’s GIFP with cells (1,3) and (3,1) restrained cell (3,1) less than
population value

Variable 1 strata

Variable 2
strata 1 2 3 4 5 Total

1 0.0 3.954 7.000 0.0 0.046 11
2 7.530 5.916 0.0 0.0 0.554 14
3 1.970 0.0 0.0 5.183 3.847 11
4 1.500 0.982 1.529 2.184 1.805 8
5 0.0 3.148 4.471 0.633 1.748 10

11 14 13 8 . 8 54
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3. Example. The following example illustrates a situation for which ordi-
nary iterative proportional fitting [see, e.g., Bishop, Fienberg and Holland
(1975)] cannot be properly used but for which Dykstra’s iterative fitting
procedure can. The data are similar to data arising in multipurpose sampling
[Winkler (1986)]. )

We have a two-way population matrix that is induced by two univariate
stratifications (Table 1). We wish to fit two univariate samples (the margins of
Table 2) to a two-way matrix. Using classical iterative proportional fitting with
population matrix (Table 1) as the initial matrix yields the matrix given by
Table 2. Cells (1, 3) and (3, 1) exceed available population values of 7 and 2,
respectively.

Using Dykstra’s generalized iterative fitting procedure with cells (1, 3) and
(3, 1) constrained to be less than 7 and 2, respectively, yields the matrix given
in Table 3. Cell (1, 3) equals its maximum of 7 and cell (3, 1) takes value 1.970,
which is less than its maximum of 2.
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