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ON THE AVERAGE NUMBER OF LEVEL CROSSINGS OF A
RANDOM TRIGONOMETRIC POLYNOMIAL

By KamBI1z FARAHMAND

University of Cape Town

There are many known asymptotic estimates of the number of zeros of
the polynomial 7'(0) = g, cos 0 + goc0820 + -+ +g,cosnf for n — o,
where g; (1 =1,2,...,n) is a sequence of independent normally dis-
tributed random variables with mathematical expectation 0 and variance 1.
The present paper provides an estimate of the expected number of times
that such a polynomial assumes the real value K. It is shown that the
results for K = 0 are valid when K = o(yn).

1. Introduction. Let

n
(11) T(0) = T,(6,0) = ¥ g:(w)eos if,
i-1
where g,(w), g5(w),..., g,(w) is a sequence of independent random variables

defined on a probability space ((, .97, P), each normally distributed with
mathematical expectation 0 and variance 1. Let N, x(a, B) = N(a, B) be the
number of real roots of the equation T'() = K in the interval a < 6 < 8,
where multiple roots are counted once only. We know from the work of
Dunnage [2] that in the case of K = 0, in the interval 0 < § < 27 all save a
certain exceptional set of functions 7'(8) have (2n)/ V3 + O{n''/%3(log n)3/1%)
zeros, when n is large. The measure of his exceptional set does not exceed
(log n)~!. In the case of E[g;] # 0, [4] and [8] show that the number of real
roots remains the same. This indicates a different behaviour of the trigonomet-
ric equation T(9) = 0 from the algebraic equation @(x) = L7, g,x* = 0 for
which [5] proved that having coefficients with nonzero means instead of zero,
reduces the number of real roots by half. These works on the random
polynomial have been reviewed in the recent book of Bharucha-Reid and
Sambandham [1], which constitutes the most complete reference.

In this paper, for the case of the coefficients of (1.1) being independent,
standard normal random variables, we prove the following theorem:

THEOREM. For any sequence of constants K, such that (K2/n) tends to
zero as n tends to infinity, the mathematical expectation of the number of real
roots of the equation T(8) = K satisfies

EN(0,27) ~ (2/V3)n.
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In [3] it is shown that for the algebraic polynomial @(x) the expected
number of K-level crossings satisfies
EN(-1,1) ~ (1/m)log(n/K?),
EN(—o, — 1) ~ EN(1,®) ~ (27) ‘logn.

Comparing this with our theorem shows another difference in the behaviour of
the trigonometric polynomial from the algebraic one. That is, the number of
crossings of the algebraic polynomial with the level K decreases as K in-
creases, while for the trigonometric case this remains fixed, with probability 1,
as long as (K2/n) > 0 as n — x,

2. Extension of the Kac-Rice formula. From [6, page 52] (see also
[1, page 95]) we see that the mathematical expectation of the number of real
roots of the equation T(8) = K in the interval («, 8) satisfies

(2.1) EN(a,p) = [*do[” (K, ) dy,

where ®(x, y) is the density of the joint distribution of T'(6) and its derivative
T'(9). Let

n n
= Y cos?(if), B?= Y i%sin?(if),
i=1 i-1

C=- i i sin(i0)cos(i9)
i=1
and
A? = A?B? - C?2.
Then the joint density of (T, T") is
(2.2) ®(x,y) = (2mA) exp{—(B%? — 2Cxy + A%y?) /(242)}.
Now let ¢ = Ay/AvV2 . From (2.2) we have

" WI®(K,y) dy = (4/mA%)exp(~ B*K?/24%)

(2.3) 3
X j |t|exp(CKt\/'2' JAA — t2) dt.

To evaluate the integral on the right-hand side of (2.3), we let A = CKV2 /AA.
Then the integral becomes

(2.4) [ t{exp(At) + exp(—At)}exp(—£2) dt = J(A) + J(—A),
) j
whereu‘

J(A) = f:texp()\t — %) dt.
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Using integration by parts, we get
J(A) = 1+ (A/2)exp(A2/4) [ exp{— (¢ — A/2)2) dt
25) (M) = 5+ (A/2)exp(x/4) [ exp{~ (¢ — 1/2)’)
=1+ (A/2)exp(A2/4){(Vm /2 + erf(A/2)},
where
erf(x) = fxexp(—tz) dt.
0
Hence, (2.1), (2.3), (2.4) and (2.5) give
EN(a,B) = [°A/(wA?)exp{~B*K?/(28%)} d6

(26) + [*(V2 /) KCIA~® exp(~ K ?/24%)erf(KC| /AMVZ ) b

=I(a,B) + Iy(a,B), say.

3. Proof of the theorem. In order to estimate the number of real roots
we divide them into two groups: (I) those lying in the intervals (0, ¢),
(m — &,m + &) and (27 — ¢,27) and (II) those lying in the intervals (e, 7 — &)
and (7 + ¢,27 — ¢). For the roots (I) we need some modification to apply
Dunnage’s [2] approach, which is based on an application of Jensen’s theorem
[9, page 125] or [7, page 332]. For the roots (II) we use the Kac-Rice formula
(2.6). The & chosen should be small enough to make the zeros of type (D)
negligible while it should be large enough to allow the calculation of zeros of
type (II) to be possible. We will show that & = n~1/2 gatisfies both require-
ments.

For proof of the theorem we will need the following lemma.

LeEmMMA. For € < 0 < 7 — &, where € is any positive constant smaller than
T, we have

A2=n/2 +0(e"Y), B?=n3/6+ 0(n?/e),
C=0(n/e) and A*=n*/12 + O(n3/e¢).
Proor. Let
S(0) = sin(2n + 1)60/sin 6.
Then, since for 0 in this interval |S(6)| < 1/sin &, we obtain
(3.1) S(8) =0(e™1).
Also, we have ’
S'(8) = (2n + 1)cosec 0 cos(2n + 1)8 — S(6)cot 6

3.2
(3.2) =0(n/¢)



1406 K. FARAHMAND

and

(3.3) S"(6) = —(2n + 1)2S(8) — (2n + 1)cos 0 cos(2n + 1)6sin~2 6
— S'(6)cot 6 + cosec? 8S(0)=0(n/e + n/e?).

Now

n

1+2Y cosZiO) = sin  + sin 30 — sin 0 + sin 50 — sin 36
i-1

sin 0

+ -+ +sin(2n + 1)0 — sin(2n — 1)6
= sin(2n + 1)6 = sin(0) S(0).
Hence we can write
(3.4) Y cos2i6 = (1/2){S(9) — 1},
i=1
which together with (3.1) gives
A% =(1/2) Y {1 + cos2i8) = n/2 + (1/4){S(6) — 1}
(3.5) i=1
=n/2+ 0(e™ ).
Also, from (3.3) and since, from (3.4),
S"(6) = —8Y i%cos2if =8) i%(2sin%if — 1),
i=1 i=1
‘we have
(3.6) B2=(1/2) Y i2 + (1/16)S"(8) = n®/6 + O(n2/e).
i=1
From (3.2) and (3.5) we can obtain
3.7 c- 1% ay- Lsgy-of”
(3.1 - 25 -5S 0 -0[7).
Finally, from (3.5), (3.6) and (3.7) we can show

A% =n*/12 + O(n3/e),

which completes the proof of the lemma. O

To calculate the expected number. of real roots of T(6) = K in the intervals
(e, m — ¢) and (1 + &, 27 — &), it is sufficient to consider just the first interval,
since

n .
T(6+m)=) (—1)'g cosib,
i=1

and g; and —g; have the same distribution function. From (2.6) and the
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lemma we can obtain
(3.8) I(e,m—¢) = {n/V38 + O(e™)}exp{—(K?/n) + O(K?/n%)}]
and

(3.9) I(e,m —€) = O{(K/eVn Jexp(—K?/n)).

Now we show that T'(6) = K has a negligible expected number of real roots in
the intervals (0,¢), (7 — e, 7 + ¢) and (27 — ¢,27). By periodicity, the ex-
pected number of real roots in (0,¢) and (27 — £,27) is the same as the
expected number in (—¢, €), and so we shall confine our discussion to this last
interval; the interval (7 — &, w + ¢) can be treated in exactly the same way to
give the same result. To avoid repetition, we only point out the generalization
necessary for applying Jensen’s theorem to the random integral function of
the complex variable z,

T(z,w) — K= ) g/ (w)cosiz — K,
i=1

which is done for K = 0 by Dunnage [2, page 82]. We are seeking an upper
bound to the number of real roots in the segment of the real axis joining the
points +¢, and this certainly does not exceed the number in the circle |z| < e.
Let N(r) = N(r, w, K) denote the number of real roots of T(z,w) — K = 0 in
|z| < r. Assuming that T(0) # K, then by Jensen’s theorem [9, page 125] or
[7, page 332] we have

N(e)log2 < [“r~'N(r) dr

(3.10) . ,
< (277)‘1f0 log|[{T'(2¢¢*, w) — K}/{T(0) — K}]|de.

Now, since the distribution function of T(0, w) = X7 ,g,(w) is

G(x) = (27rn)-1/2fx exp(—t%/2n) dt,
we can see that, for any positive v,

Prob(—e < T(0) —K <e™”) = (2mn) "2 fKH_yexp(—tz/Zn) dt
Ko

(3.11) h
<y2/mne”".

Also, from [2, page 82]
(3.12) T(2¢e'’) < 2ne?"* max|g,|,

where the maximum is taken over 1 < i < n. The distribution function of |g;|
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is
o= (% -2/2
0, x < 0,

and so, for any positive » and all sufficiently large n,
Prob(max|g,| > ne*) < n Prob(|g,| > ne”)

(3.13) =ny2/7 fmuexp(—t2/2) dt

~ V2/m exp(—v — n%%/2).

Therefore, from (3.12) and (3.13), except for sample functions in an w-set of
measure not exceeding exp(—v — n2%? /2),

(3.14) T(2¢e'®) < 2n® exp(2ne + v).
Hence, from (3.11) and (3.14) and since

12n2 exp(2ne + v) — K| < 3n2exp(2ne + v) for K =o(Vn),
we obtain

[{T(2¢e”, ) — K}/{T(0,w) — K}| < e*|2n® exp(2ne + v) — K|

(3.15)
< 3n%exp(2ns + 2v),

except for sample functions in an w-set of measure not exceeding
2/Vne™ + exp(—v — n%?/2).

Therefore, from (3.10) and (3.15) we can show that, outside the exceptional
set,

(3.16) N(e) < (log3 + 2logn + 2ne + 2v) /log2.

Now we choose ¢ = n~ /2, Then from (3.16) and for all sufficiently large n, we
have
(3.17) Prob{N(e) > 3ne + 2v} < (2/Vn )e™" + exp(—v — n%? /2).

Let n' = [3Vn ] be the greatest integer less than or equal to 3vVn . Then from
(3.17) and for n large enough, we obtain

EN(e) = Y Prob{N(e) > i}

i>0 .
= Y Prob{N(e) >i} + Y. Prob{N(e) >n'+i)
(3.18) 0<i<n’ ) i>1
<n'(2/Vn) Y e /2 + Y exp(—i/2 — n%'/2)

i=1 i>1

= 0(Yn),
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since, by dominated convergence, the second sum will tend to zero. Finally,
from (2.6), (3.8), (3.9) and (3.18), we have

EN(0,7) =n/V3 + o(n),
which completes the proof of the theorem.
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