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ASYMPTOTIC STATIONARITY OF QUEUES IN SERIES AND
THE HEAVY TRAFFIC APPROXIMATION
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A tandem queue with m single server stations and unlimited interstage
storage is considered. Such a tandem queue is described by a generic
sequence of nonnegative random vectors in R™*1. The first m coordinates
of the kth element of the generic sequence represent the service times of
the kth unit in m single server queues, respectively, and the (m + Dth
coordinate represents the interarrival time between the kth and (¢ + 1)th
units to the tandem queue. The sequences of vectors w, =
(w, (1), w,,(2), ..., w,(m)) and W), = (W,(1), W,(2), ..., W,(m)), where w,(i)
represents the waiting time of the kth unit in the ith queue and W,(i)
represents the sojourn time of the kth unit in the first { queues, are
studied. It is shown that if the generic sequence is asymptotically station-
ary in some sense and it satisfies some natural conditions then w =
{i,, k> 1} and W = {Wk, k > 1} are asymptotically stationary in the same
sense. Moreover, their stationary representations are given and the heavy
traffic approximation of that stationary representation is given.

1. Introduction. This paper deals with a system of queues in series: that
is to say, a number of queues through which a unit passes in turn, spending a
waiting time including service in any particular one, and proceeding to the
next succeeding queue immediately the service time is completed. Such sys-
tems were considered by Loynes [6, 7], Harrison [3] and others. Our first main
result (Theorem 1) deals with the asymptotic behaviour of the vector of
waiting times of a unit in each queue and of the time which a unit spends in
the tandem queue (Theorem 2). Our second main result (Theorem 3 and
Corollary 3) deals with the heavy traffic approximation of the mentioned
characteristics.

The system we consider can be described by the sequence

{(vk(l)’vk(z)""’vk(m)’uk(l))’ k> 1}

of nonnegative random vectors in R™*!, where v,(i), 1<i<m, k>1,
represents the service time of the kth unit in the ith queue and u,(1), 2 > 1,
represents the interarrival time between the kth and (2 + 1)th units to the
tandem queue. Henceforth this sequence is denoted by (v, u(1)) and it is called
the generic sequence and the vector (v,(1),v,(2), ..., v,(m)) is denoted by v,.
For each i, 1 <i < m, let us denote

(v,u(1),w(1),a(2),...,w(i),u(i + 1))
=4t { (Vg u (1), 0, (1), u(2),...,we (i), u,(i + 1)), k > 1},
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where w,(i), k > 1, 1 <i < m, represents the waiting time of the %kth unit in
the ith queue and u,(i), # > 1, 1 <i < m, represents the interarrival time
between the kth and (k2 + 1)th units to the ith queue [it is also the interde-
parture time between the kth and (£ + Dth units from the (i — 1)th queueing
system]. This sequence for i = m is called the exit process of the tandem
queue.

Besides that let us denote by W,(i), 1 <i < m, £ > 1, the total time which
the kth unit spends in the first i queues (let the sojourn time of the kth unit
in the first { queues be the time which elapses between the arrival of the kth
unit at the tandem queue and its departure from the ith queue).

One of the main results of the paper (Theorem 1) gives conditions on the
generic sequence under which the exit process of the tandem queue is asymp-
totically stationary in some sense. Moreover, the form of the stationary
representation of the exit process is given. As a consequence of Theorem 1 we
obtain the existence of a limit distribution of the sojourn time of the kth unit,
its form and the type of that convergence (Theorem 2). Theorems 1 and 2
assume that the generic sequence is ergodic and it is either strongly asymptoti-
cally stationary or strongly asymptotically stationary in mean or asymptoti-
cally stationary in variation or asymptotically stationary in variation in mean.
These conditions are weaker than the conditions assumed by Harrison in [3].
In [3] it is assumed that the sequences v(1),v(2),...,v(m),u(1) are indepen-
dent and each of them is a sequence of independent and identically distributed
random variables. Thus the model of [3] does not include the case v(1) =
v(2) = -+ =v(m) or the case when these sequences are jointly dependent
with u(1) in some way. For a discussion of application areas where such
dependencies arise naturally, the reader is referred to Boxma [2] and Kelly [4].

The second result (Theorem 3 and Corollary 3) gives the heavy traffic
approximation of the steady-state distribution of the vector of sojourn times
and the vector of waiting times of a unit in the m stations. Similarly as in [3]
this approximation is based on a Brownian approximation of some vector-val-
ued process which is a function of a stationary representation of the generic
sequence. Of course our multidimensional Brownian motion may be such that
its coordinates are dependent. This result contains Harrison’s result as a
special case. Some fragments of the proof of Theorem 3 are based on Lemmas
1-3 from [11].

2. Preliminaries. The main notion of the paper is taken from [1], [5] and
[9]. Here we recall some of that notation and we reformulate some results from
[8] and [9] in a form useful for our further considerations.

Let D[0, «) denote the set of real-valued right-continuous functions on [0, )
which have left limits everywhere, endowed with Lindvall’s metric d defined
in [5]. This space is a Polish metric space and the topology generated by d is
equivalent to the Stone topology on D[0,x). Let D™[0,) and d™, m > 1,
denote the m-fold product of D[0,x) and of d, respectively.

Let X = {X,, £ > 1} be a sequence of random elements of a Polish metric
space S and X, =4 {X, .., & > 1}. If the sequence of distributions -~ (X,),
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n > 1, either weakly converges or strongly converges or converges in variation
to a probability measure u on S, then X is said to be either weakly asymptoti-
cally stationary or strongly asymptotically stationary or asymptotically station-
ary in variation, respectively. If the sequence of distributions n 'Y 7_, Z(X,),
n > 1, either weakly converges or strongly converges or converges in variation
then X is said to be either weakly asymptotically stationary in -mean or
strongly asymptotically stationary in mean or asymptotically stationary in
variation in mean, respectively. These are the six types of asymptotic station-
arity studied in [9]. A sequence X° = {X?, k£ > 1} of random elements of S
having distribution wu is called a stationary representation of X. By X* =
{X;*, — < k < o} is denoted a two-sided stationary extension of X°.

Let us consider a single server queueing system which operates in a
first-in—first-out manner. Such a system can be described by the generic
sequence (v,u) = {(v;, u,), k > 1}, where v,, k > 1, represents the service
time of the kth unit and u,, £ > 1, represents the interarrival time between
the kth and (k2 + Dth units. Let us denote by w,, & > 1, the waiting time of
the kth unit and w,(2), £ > 1, the interdeparture time between the kth and
(k + 1)th units. Obviously,

Wy, =max(0,w, +v, —u,), k=1,
for all initial conditions w; > 0, and
Up(2) = Up + Vppy T Wey1 — U —wy, k21

Let Y={Y,, £ > 1} be a sequence of random vectors defined on the
same probability space as the generic sequence. The sequence (Y,v,u) =
{(Yy, vg,u,), k> 1} is called the enter process of the single server queue and
Y, v,u,w,u(2)) = {(Yy, vy, u,, Wy, u,(2)), k> 1} is called the exit process of
this system. This notation is introduced for the convenience of our considera-
tions in Section 3.

Studying the proof method of Theorems 1-3 in [9], we notice that if (Y, v, u)
is asymptotically stationary in one of six senses defined in [9] and (v, u) and
(v% u”) satisfy conditions which are needed for the appropriate type of asymp-
totic stationarity of (v,u, w), then (Y, v,u, w) is asymptotically stationary in
the same sense as (Y, v, w).

Now let us notice that the process u(2) is a function, say f, of (v,u,w),
namely

u2) =f(v,iu,w) =u+Tv+Tw-v-—-w,
where T is the shift transformation in R. Moreover,
Tu(2) = Tf(v,u,w) = f(Tv,Tu,Tw).

Since the operation of addition in R” and the operation T are continuous in
R~, by the above facts and by Propositions 1-3 in [9] we obtain the following.
L REmMaArRk 1. If (Y,v,u,w) is asymptotically stationary in one of the six
senses defined in [9], then (Y, v, u, w, u(2)) is asymptotically stationary in the
same sense.
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Compiling the above considerations with Theorems 2 and 3 in [9] and
Corollary 2 in [8], we get the following fact.

LEMMA 1. Let the enter process (Y,v,u) be either strongly asymptotically
stationary or strongly asymptotically stationary in mean or asymptotically
stationary in variation or asymptotically stationary in variation in mean and
let its stationary representation be ergodic and Ev) < Eul. Then the exit
process (Y, v,u, w,u(2)) is asymptotically stationary in the same sense as the
enter process (Y,v,u). Furthermore, the exit process and its stationary
representation are ergodic and Eu$(2) = Eu$. Moreover, the stationary repre-
sentation of the exit process (Y,v,u,w,u(2)) is the same as the stationary
representation of (Y%, v° u® w,u(2)) and the two-sided stationary extension of

(YO’ VO’ u07 WO’ u0(2))
has the following form:

wi.,= sup S, , for —o <k <o,
—o<n<k

uf(2) =uf +vF, twik - vF—wi for —o <k <o

where

k
S,n= X (vF—ur) forn<k,

Jj=n+1
Spr=0 for —o <k < o,

and (Y*,v*,u*) = ((Y,*, v¥, u}), —o < k < =} is a two-sided stationary exten-
sion of (Y%, v u®).

Proor. The appropriate type of asymptotic stationarity of (Y, v, u, w, u(2))
follows from Remark 1 and Theorems 2 and 3 in [9]. The ergodicity
of the sequences (Y, v,u, w,u(2)) and (Y v° u’ w’ u’2)) and the equality
Eu’(2) = EuY follow from Corollary 2 in [8].

Now (Y*, v¥, u*, w*, u*(2)) is stationary and {(Y,*, v}, u¥, wi, u$(2), k > 1}
is distributed as (Y v u®, w® u%2)), (v%, u’ w?) is given in Theorem 1 in
[9], and so we have the assertion. O

3. Asymptotic stationarity. It is assumed throughout the paper that
the generic sequence is asymptotically stationary in some sense, and for some
parameters of its stationary representation the following notation is used:

a=Eul1), b, =E0i) forl<i<m,

a= min (a —b;) and ci=(a—bi)/a‘forlsi5m.
l<i<m

Furthermore, let us denote
Z(i) =4 (v,u(1l),w(1),u(2),...,w(i),u(i + 1)), l1<i<m.
The sequence Z(i), for 1 <i < m, is called the exit process of the tandem
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queue which consists of the first { queueing systems and it is called the enter
process of the tandem queue which consists of the first i + 1 queueing
systems.

THEOREM 1. Let the generic sequence (v, u(1)) be ergodic and let it be either
strongly asymptotically stationary or strongly asymptotically stationary in
mean or asymptotically stationary in variation or asymptotically stationary in
variation in mean. Furthermore, let its stationary representation be such that
a > 0. Then the exit process of the tandem queue is asymptotically stationary
in the same sense as the generic sequence. Furthermore, the exit process and
its stationary representation are ergodic and Eu%(i) = Eu%(1) for 1 <i < m.
Moreover, the two-sided stationary extension of the stationary representation of
the exit process has the following form:

(31) wl;k+1(l) = B sup kSn,k(i)’
i—1

(32)  wp(i) =up(1) + X (vFa()) + wia(F) —vi(J) —wi()))
Jj=1

forallk, —o» <k <o and 1 <i<m, where

k
Sea(®) = L (F(1) —ui(D)
Jj=n+
i—1

+ Zl(v:+1(j) +wia(J) —vEa(i) - wlzk+1(.]))
j=

for all n <k and S, ,(i)=0 for all k, —0 <k <w», 1<i<m, while
¥, u*(D) = {(FQ), vE2),. .., vE(m), uk (1), —o < k < ©} is a two-sided sta-
tionary extension of (v®,u®(1)).

Proor. The proof is obtained by applying Lemma 1 m times. At the first
step we use Lemma 1, taking as the enter process the generic sequence
(v,u(1)) and as the exit process the sequence Z(1). As a result we obtain that
the exit process Z(1) is asymptotically stationary in the same sense as the
enter process. Furthermore, the exit process and its stationary representation
are ergodic and Eu9(2) = Eu9(1). Moreover, the stationary representation of
the exit process Z(1) is the same as the stationary representation of the
process (v u®1), w(1), u(2)). The two-sided stationary extension of
(v%u® w?1),u’?2)) has the following form:

o, (1) = sup S, (1), —w <k <,

—o<n<k

uf(2) = wi(1) +vfa(1) +wig(D) - (D) —wi(1),  —e<k<e,
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where

S, x(1) = f (v¥(1) — u*(1)) forn <k,

j=n+1
S, (1) =0 for —o <k < o,

while (v*, u*(1)) is a two-sided stationary extension of (v°, u®(1)). The form of
Z*(1) given here agrees with the form of Z*(i) given in the theorem for i = 1.

At the second step we use Lemma 1, taking as the enter process the
sequence Z(1) and as the exit process the sequence Z(2). Of course, by the first
step, the enter process Z(1) satisfies the conditions of Lemma 1. Thus the exit
process Z(2) is asymptotically stationary in the same sense as the enter process
Z(1). Furthermore, the exit process Z(2) and its stationary representation
Z°(2) are ergodic and Eu%(3) = Eu%(2). Moreover, the stationary representa-
tion of the exit process is the same as the stationary representation of the
process (v%,u(1), w(1), u®(2), w(2), u(3)).

The two-sided stationary extension of (v% u°(1), w°(1), u®2), w°(2), u°(3))
has the following form:

wi,(2) = sup S, ,(2), —o <k < o,
—wo<n<k
uk(3) = ug(2) +via(2) + wiy(2) —vE(2) —wi(2), -—o<k<o,
where

S, x(2) = zk: (v;“(Z) - u;"(2)) for n <k,

Jj=n+1
Sk,k(Z) =0 fOI‘ —00<k<®.

Hence for n < &,

k
S 1(2) = X (07(2) —ut (1) + v (1) + wik (1) — vE, (1) — wi, (1),

j=n+1

Thus the form of Z*(2) given here agrees with the form of Z*(i) given in the
theorem for i = 2.

Continuing the above procedure m — 1 times, we arrive to the mth step in
which as the enter process we take the sequence Z(m — 1) and as the exit
process we take the sequence Z(m). Of course, by the (m — 1)th step, the
enter process Z(m — 1) satisfies the conditions of Lemma 1. Thus, applying
Lemma 1, we obtain that the exit process Z(m) is asymptotically stationary in
the same sense as the enter process Z(m — 1). Furthermore, the exit process
and jts stationary representation are ergodic and Eu%(m) = Eu%(1). Moreover,
the stationary representation of the exit process Z(m) is the same as the
stationary representation of the sequence (v, u®(1), w°(1),u%?2),...,u’m),
w(m),u(m + 1)). But the two-sided stationary extension of Z°(m) has the
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following form:

wi,(m) = sup kSn,k(m)’ —o <k <o,
—o<n<
up(m +1) =ui(m) +vf(m) + wi,(m)

—v¥(m) —wi(m), —o <k <o,

where

S, 1(m) = Zk: (vj"‘(m) — u;“(m)) for n <k,

j=n+1
Sy x(m) =0, —0 <k < o,
while (v*, u*(1), w*(1),u*(2),...,w*(m — 1),u*(m)) is a two-sided stationary
extension of Z°(m — 1).
Now solving the system of recurrent equations
wi(i+1) =uf(i) +vf (1) +wi (i) —vF(@) —wi(i), 1l<i<m,

we obtain

Wi+ 1) = ut() ¢ X @)+ wia() - t() - wE ().

Hence for n < &,

k
Sa() = T (5()) — (1)
i—1
+ E (U;Lk+1(j) +wi o (J) —vEa(j) - wI:,k+1(J))
j=1

and S, ,(i) =0 for all k&, —© <k <, 1 <i < m. Furthermore, we see that

the form of Z*(m) given here agrees with the form of Z*(i) given in the
theorem for i = m. This finishes the proof. O

CorOLLARY 1. Under the conditions of Theorem 1 the following relations
hold:
wi,1(8) = max(0, wi(i) + vE(i) —uj(i)),

(3.3) .
—o<k<wl<i<m,

E(vg (i) —up (i)
i . i-1 )
< C(i){ Y E(up(j) —up(1)*+4 .21’3(”12"(1) -b,)",
. P

Jj=1

(53 4)

where C(i) depends only on i.
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Proor. The relation (3.3) follows immediately from (3.1). To prove (3.4),
let us notice that by (3.3) we have

(wit (i) = wiE(i))" = (max(~wi (i), vE(D) = ui (D)) < (vF() — uf(i))
Hence and from the relation (3.2) we get
i-1
Ewﬂw—uﬂnfs@f—nﬂE@ﬂw—uﬂnf+42fuw0)4@f
j=

i—1
+ Y E(vi(j) —ut (i)’
j=1

for 1 <i < m. Now solving this scheme of recurrent relations we get (3.4),
where C(i) depends only on i. O

THEOREM 2. Under the conditions of Theorem 1 the sequence
0 =df(v,u(1)>W(1)>u(2), see ,W(m)>u(m + 1))

is asymptotically stationary in the same sense as the generic sequence (v, u(1)).
Moreover, the two-sided stationary extension of the stationary representation
6° has the following form:

i Ty+1
Wia(2) = sup YL (ur() —ux)
—©<n<ny< cc <n<n, =k j=1 \s=n,+1

(3.5)
+v?2:+1+1(j) ’

wi(i) = wi(1) + Wit (i - 1) — Wik(i - 1),
for —0o <k <o 1<i<m,where (v*,u*(1)) is a two-sided stationary exten-
sion of (v°,u’(1)).

ProoF. Let us notice that

W,(i) = f: (wp(j) +v,(j)) fork>1,1<i<m.
j=1

Hence 6 is a function, say f, of the exit process Z(m). Moreover,
(36) T3m0 =f(T3mZ(m))’

where T, is the shift transformation in (R3™)”. Hence the first assertion,
i.e., the asymptotic stationarity of 8, follows from Propositions 2 and 3 in [9]
and from Theorem 1.

,To obtain the second assertion, i.e., the form of 8°, let us notice that by (3.6)
and Propositions 2 and 3 in [9] we obtain

6° = £(2°(m)).
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Now let us notice that wj*, (i) given in Theorem 1 can be rewritten as

k
wia(i) = sup { Y (0p() - u(D)

—wo<n<k \j=n
(3.7) D
+Wn*+1(i - 1) - Wk*+1(i - 1)}
Since
Wy (i) = W(i — 1) + wi(i) + vi(i), —o<k<o1<i<m,

thus by (3.7) we have

k
Wi (i) = sup { 5 (vj*(i)—u}“(l))Jrv;?‘H(i)+Wn*+1(i—1)}

—o<n<k \j=n+1

for —o <k <o and 1 <i <m. This scheme of recurrent equations with
respect to i, jointly with the initial condition W,*(1) = w(1) + v;*(1), imply
the form of W,* ,(i) given by (3.5). This finishes the proof. O

CoroLLARY 2. If (v,u(1)) satisfies conditions of Theorem 1 and v(1) =
v(2) = - =v(m)or v¥(1) = v¥*(2) = -+ = v*(m), then

k
Wik, (i) = sup Y (vF(1) —ux(1))

—o<n;<ny< c <n,<n; =k {j=n1+1
+uk (1) +of (1) + 0+t (1) + v;,"MH(l)}.

REMARK 2. The random variables W*(i), 1 < i < m, can be rewritten as

i —1t)44]
Wy*(i) = sup sup ) { Y (@) —ui(1)
t=0 0=t,,<t;< '+ <ty<t;=t j=1 k=-[t]+1

+U§[tj“]+1(j)} .

Notice that the vector of waiting times can be obtained from the vector
of sojourn times by a continuous mapping. Namely, let G be the mapping of
R™ into R™ defined at x = (x%, x2,...,x™) € R™ as,G(x) = (x%, x% — x1,...,
x™ —x™ b,

+REMARK 3. The following relation holds:
(wi(1),wf(2),...,wi(m)) = G(W*(1), W*(2),..., Wi*(m))
—(v{"(l),v{"(Z),,vf‘(m))
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4. The heavy traffic result. We consider now a sequence of systems
indexed by r > 1. It is assumed that each system is composed of m stations
and is generated by a generic sequence satisfying the conditions of Theorem 1.
We shall maintain all of the notation established earlier for the sundry random
variables of interest, except that a functional dependence on r will be added to
indicate a random variable associated with the rth system. Thus, for example,

(v(r),u(1,7r)) = {(vu(1,7),0.(2,7),...,v(m,r), u,(1,r)), k= 1},
(vo(r),u’(1,r)) = {(v2(1,7),v2(2,7),...,v0(m,r),ul(1, r), k =1},
(v¥(r),u*(1,7)) = {(vF(1,r),vi(2,7),...,vF(m,r),uf(1,1)),

—® < k < o}

denote the generic sequence, the stationary representation of (v(r),u(1,r))
and the two-sided stationary extension of the stationary representation
(vo(r),u’(1, r)), respectively, for the rth system. Furthermore,

Wi(r) =g (wp(1,7),w,(2,7),..., we(m, r))
and

Wk(r) =df(Wk(1’r)’Wk(2’r)""’Wk(m’r))
denote the vectors of waiting times and of sojourn times of the kth unit.
Under the assumptions made in Theorem 1 the sequences of distributions
L, (r) and L(W,(r)), k> 1, for each fixed r > 1, are convergent as
k — =, in the senses described in Theorem 1. These limiting distributions are
the same as the distributions of the random vectors @(r) =g
(w¥@, r), wF2, r), ..., wilm, r) and W(r) =4 (Wi*Q, r),W*2, r),
... ,W*(m, r)), respectively, defined in Theorems 1 and 2. For example, the
form of W(r) is the following:

B i —[tj+1]
Wi*(i,r) = sup sup ) Y (v(ir) —ui(l,r))
t20 0=f,, 1<¢t,< - <fp<t;=¢ j=1|k=—[¢,]+1
(4.1)
+vf[tj+1]+1(j’ r);-

(Throughout the paper square brackets are used exclusively to denote the
integer part and sums of the type © f=i where k < i are taken as 0.)

The same convention as above is used in denoting the important constants
associated with the rth system. It is assumed throughout that

A, a(r)|0as r — o
A (a(r) = b,(r)/a(r) > c,as r > o, 1 <k <,
2 where c;, ¢y, . .., C,, are all positive and finite;
A, max sup{E(y(@i,r) —uF(1,r)? + var v{(i, r)} < o

l<i<sm r

Let us denote by £ = (¢ i, £2,..., ™ ™) the (m + 1)-dimensional Wiener
process, i.e., the (m + 1)-dimensional Gaussian process being a random
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element of D’f‘“[O, ») and such that ¢ i, 1 <i<m+ 1, are Wiener processes
with E&'(8)E/(s) = E¢/(t)EN(s) = o;,;min(s,t), 1 <i,j <m (o;; = 1). Thus
almost all sample paths of ¢ are continuous. For the process ¢ let us define the
process { = ({1, ¢%,...,{™ (™" D) as

H(t) = 0,6 (t) — 0y €™ (E) —cit, t=0,1<i<m,
where o;, 1 < i < m, are some positive and finite constants and c¢,;, 1 <i < m,

are defined in assumption A,
As in [3] let us define the random vector Y = (Y1, Y2, ..., Y™) by

12
Yi= sup > (é’j(tj) - gj(tj+1))’ 1<i<m,
0=t 1st;< +++ <tg<t;<w j=1
and the process x = (x', x% ..., x™) by

13
xXi(t) = sup Y (&) - (t,), t=20,1<is<m.
0=t 1<t;< -+ <t)=t j=1
Analogously as in [3] (see Lemma 3 in [3]), we can prove the following
convergences:
tTN(E) - —c ae.,ast >, 1<i<m,
(4.2) t™x'(t) » max {—c;} ae,ast—->ow,1<i<m.
l<j<m

Hence it follows that Y is almost surely finite.
Let us define the processes
S, = (S8, 82,..., S+,
Br = (B;l" Bf’ ey B,r‘n+1)’
S, = (S1,82,...,8m),

Yr = ('le")'rz"""yrm)
as follows:
0
Si(t) = a(r) Y (vj*(i,r) —b,(r)), t>0,1<i<m,

j=—lt/a®(M]+1

0
Sri ) =a(r) X (w3(1,r)—a(r), t=0,
Jj=—lt/eM]+1

Bi(t) = a(r)[t/a®(r)]b,(r), t>0,1<i<m,
Brri(t) = a(r)[t/a?(r)]a(r), t>0,
Si=8;-Srrt+pi—prtt, " l<is<m,
. i1 . .
yi(t) = 0=t,—+lstsilslp“' stI;tJ§1{m(§rj(tj) - ‘§rj(tj+1))

+vi[tj+1/a2(r)]+1(j’ ")} )

t>0,1<i<m.
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In view of the above and (4.1) we obtain
(4.3) Wx(i,r) = supy:(t), 1<i<m.
t>0

Now let us define the mapping g: D™[0,®) > D™[0,%) as g =
(g, g2%...,8™), where g‘ on x = (x1,x2%,...,x™) € D™[0,») (x* € D[0, ®)) is
defined as ,

;
g'(x)(t) = sup L (x(t;) —2/(t;,1)),  t=0.
S 0=t 1<t,< - <t;=t j=1

Each of g' is a measurable mapping of D™0, ) into D[0, ). Moreover, each
g! is continuous at x = (x!, x2, ..., x™)if x7, 1 <j < m, are continuous func-
tions on [0,%). Denote by C’, 1 <i<m + 1, the set of all those x =
(x%, %2, ...,x") € D[0,») for which all x* are continuous functions on [0, «).
The mapping g was considered and used by Harrison in [3]. Here we prove
that each of the mappings g’ has the following property:

for0 <s <t <o,
i

(4.4) g'(x)(t) <g'(x)(s) + sup T (x/(;) = x7(841)).-

s=t,,1<t;< - <t;=t j=1

To prove (4.4), let us notice that by the definition of the supremum it
follows that there exists a sequence t,=(0=¢,,, ,<¢ ,< "' <t,,<
t1,, = t),n = 1, such that

l

sup > (xj(tj) - xj(tj+1)) = ,}l.ir:e él (xj(tj,n) - xj(tj+1,n))'

0=t 1<t,< - <t;=t j=1

But

él(xj(tj’n) - xj(tj+1,n))
(4.5) = {lgl (xj(tj,n) - xj(tj+1,n)) + (xi"(ti",n) - xi"(s))}

i
+{(xl,.(s) _xl"(ti,,+1,n)) + Z (x/(tj’n) —x/(tj+1’n))},
Jj=i,+1
where t; ,;, <s <t; ,. Now let us notice that the first expression in the
right-hand side of (4.5) does not exceed

1

sup )y (xj(tj) - xj(tj+1))

s=t; g <t;< - <t;=t j=1

and the second expression in the right-hand side of (4.5) does not exceed

1

sup L (27(2) = 2/(t40))-

0=t 1<t;< - <tj=s j=1

Hence and from (4.5) we obtain (4.4).
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Analogously to property (4.4) we can prove the following property of the
processes v, :

for0 <s <t <o,
i

(46) MO =¥(s)+ sup L {a(r)(87(t) - 8(t;.1))

s=t,,1<t,< - <ty =t j=1
+Uf[tj+1/a2(r)]+1(.]» ")}

Furthermore, let us notice that
i

lyi(2) — &' (S, )(B)a"(r)l < ¥ max  vF.q(J,r)
j=1 —[t/a®(r)]l<k<0
(4.7)

< % { sup (Si(s) - Si(s))a"(r) + b,(r)).
j=1'0=<s<t

Now let us define the mapping h: D™[0,%) > R™ as h(x) = (h(x)),
h(x?),..., h(x™)), where x’e€ D[0,), x = (x!x2...,x™) and h(x’) =
sup,., x(#). It is obvious that % is measurable and in view of (4.3) the
following relations hold:

Wl*(i’r)=h(')’ri)’ l<i<m,

(4.8) 5 3
W(r) = h(y,).

THEOREM 3. Let the assumptions A, A, and Ag hold and let there exist
positive and finite constants o;, 1 <i <m + 1, such that

B gr _’D(0'151,0'252’-~~’0'm+1§m+1) asr — «,
where & = (€L, £2,..., ™)) is an (m + 1)-dimensional Wiener process. Then
a(r)W(r) —»p hg(¢) asr—w,
where { = ({4 ¢2,...,(™) and
Li(t) = a,8(t) — o, ™) —ct, t=0,1<i<m.

Theorem 3 and Remark 3 give the following corollary.
COROLLARY 3. If the conditions of Theorem 3 are satisfied then
a(r)w(r) »p(YLY2-YLY3—Y2 . Y™ =YY" !) asr— o,
where Y = (YL, Y%, ...,Y™) = hg().
Proor oF THEOREM 3. Let 7 be the mapping of D™*10, ) into D™[0, »)

defined as m(x%, x2,...,x™*) = (x! —x™*, ..., x™ — x™"1). The mapping =
is measurable and continuous on C™*!, Furthermore, S, = 7S, + 78,. Hence
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using the assumptions A;, A, and B and next Theorem 5.1 from [1] we obtain
(4.9) S, —spmE—cre=¢ asr— o,

where ¢ = (¢, ¢y, ...,C,,), e(¢) =t, t > 0. Since g is continuous on C™ thus
(4.9) and Theorem 5.1 from [1] give

(4.10) g(S,) »p g(0) asr—o .

Now using condition B and Theorem 5.1 from [1] leads to

sup 1Si(s)—Si(s—) +a(r)b(r)l »,0 asr—>w,t>0,1<i<m.

O0<s<t

Hence and from the inequality (4.7) we have

sup |a(r)vi(s) —&'(S,)(s) >, 0 asr—o,t>0,1<i<m,

O<s<t

which in turn gives
d(gi(S,),a(r)yi) »,0 asr—-w,1<i<m,

where we recall that d is the metric in D[0, ») defined by Lindvall in [5]. The
last convergence in turn gives

d™(g(8,), a(r)v,) —-,0 asr -
where we recall that d™ is the m-fold product metric of d. Hence

(4.11) a(r)y, »p 8({) asr - .
. Let

i

0.(s,t) =4 sup Y {a_l(r)(grj(tj) - S{(tj+1))

s=t, 1 <t,< - <t;j=t j=1
+Uf[tj+1/a2(r)]+1(j, ")}
Then 6,(s, t) can be rewritten as

[£)41/2%()]

osn= s T T (G - er,n)

s=tiy1<4< 0 4=t j=1 | k=—[t;/a® ("] +1

(4.12)

+ ok e T) ) -

o

Since (v*(r),u*(1, r)) is stationary for each r thus by (4.12) we have
{0,(s,t),t >s} ={6,(0,¢ —5),t>s}, l<i<m.
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Hence and from (4.6) we get

P{sup (4i(t + 5) = %(s)) > )

t>0

(4.13) < P{ sup#,(s,t) > x} = P{ sup6,(0,t) > x>

t>0 t>0

= P{supyri(t) > x} < P{W3*(i,r) > x}

t>0

for 1 <i < m. Now let us notice that assumption Ag, Corollary 1 and next
Lemma 1 from [10] give the tightness of the sequences

{a(r)w{k(i’r)7r2 1}, l1<i<m.

This and the relations
Wi, r) = ¥ (wi(j,r) +vi(4,r), 1<i<m,
j=1

and next the assumption A, give the tightness of the sequences
{a(r)W*(i,r), r > 1}, 1<i<m.
Hence and from (4.13) we get the tightness of the sequences
{a(r)Wx(i,r), r =1}, 1<i<m,

{a(r)sup(yf(t+k) - yi(k)), r=> 1,k21}, l<i<m.
t>0

~ These facts together with (4.11) and (4.2) give by Lemmas 2a and 3a in [10] the
- convergence h(a(r)y,) >, hg({) as r —> », which in view of (4.8) gives the
assertion. O

Immediately from Theorem 3 and Corollary 2 we get the following corollary.

COROLLARY 4. Let for each r>1, v¥(1,r) = v*2,r) = -+ = v*(m,r),
a(r)]0, (a(r) —b(r))/a(r) » ¢, 0 <c <®, asr — », and

sup(E(Ui"(l,r) —u¥(1,7r))” + var v{"(l,r)) < o,

Then a(r)W(r) —, Y and a(r)w(r) -, (Y1,0,...,0), where
Y=(YLY,...,YY) and Y!= sup(o,&'(¢) ~ 0p¢%(t) —c-t).

t>0

REMARK 4. Let the conditions of Corollary 4 be satisfied and let o2 =4
o? — 20y 4,090, + 0f > 0, where oy, min(s,t) = E£'($)¢%(s) = E£2()¢E'(s).
Then (1/0)oé! — 0,¢6%) is the Wiener process and P{Y! > x} =
exp(—2xc/0?), x = 0.
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ProoF. Since (¢, £2) is a two-dimensional Wiener process thus Z =
0.6t — 0,¢? is a one-dimensional Gaussian process. Moreover, EZ(¢) = 0,
EZ()Z(s) = (o} — 20, 40,0, + 0)min(s, t). Hence (1/0)Z is the Wiener pro-
cess. Now let us notice that for x > 0 we have

P{Y'>x} = P{ sup (o,€1(¢) — 0p62(t) — ct) > x}
t>0

. P{ sup (¢1(¢) —ct/o) > x/a} = exp(—2xc/c?),

t>0

which finishes the proof. O

Now we give an example of a family of sequences {(vj*(1, r),vF(2,r),...,
vi(m,r),uf(,r)), k >0}, a(r)}0 as r — o, for which condition B of Theo-
rem 3 holds. For clarity let us denote

X, (r) =v*,(i,r), k>0,r>1,1<i<m,
Xeomer(r) =u¥,(1,r), k20,r=>1,
and
X(r) = {X,(r) =df(Xk,1(r)»Xk,2(r)""’Xk,m+1(r))’ k> 1}.

ExampLE. Denote by ,(r) and F*(r), k = 1, the o-fields generated by
{X,(r), 0 <i<k—1} and {X,(r), i > k — 1}, respectively. Assume that the
family of sequences {(vi(1, r),vF @, r),...,vF¥(m,r),u$(1,r)), k > 0}, where
a(r)} 0 as r - «, is such that

(a;) for each r > 1 the sequence X(r) is ¢-mixing with the same function
¢ ={d}, d, = 0,as k - o, ie., |[P(EyE;) — P(E,)| < ¢, for any E, € F(r),
P(E)>0and E, € **(r), i > 1;

(ag) L5_103/% <

(ag) for some & > 0 the following hold:

max supEvi(i,r) — b,(r)?"° <M < o,

l<ism r
supElus(1,r) —a(r)?*° <M < =,
By [1] (see Lemmas 1 and 3, pages 170 and 172) the following constants are
finite:
Ui,j(") =df E(Xo,i(") - EXo,i("))(Xo,j(") - EXo,j("))

b Y B(Xyi(r) - EXo () (Xs ,(r) - EXq (1)
k=1

el

+ ) E(Xo,j(”') - EXo,j("))(Xk,i(") — EX, ,(r)).
k=1

Proceeding analogously as in the proof of Lemma 5.2 in [10], page 48 (the
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condition assumed there, iv,, can be dropped), we can prove the following fact
(see also [1], page 177).

REMARK 5. The assumptions (a;)—(a;) imply condition B whenever
0, {r)>0o?>0,asr>»1<i,j<m+1
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