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EXTREME VALUES AND HIGH BOUNDARY CROSSINGS OF
LOCALLY STATIONARY GAUSSIAN PROCESSES

By J. HUSLER

University of Bern

We consider the large values of a locally stationary Gaussian process
which satisfies Berman’s condition on the long range dependence. The
paper presents some limit results on the exceedances of the process above a
certain general smooth high boundary. This allows deriving the limiting
distribution of the maximum up to time T, for example, in the case of a
standardized process with a constant boundary or in the case of a nonstan-
dardized process with a smooth trend.

1. Introduction. Let {X(¢), ¢ > 0} be a real Gaussian process with mean
0, variance 1 and continuous sample functions. In the following we deal with
the maximum of X up to time T: M, = max{X(¢), 0 <t < T} and its asymp-
totic distribution as T' — «. Usually M, — » as T — o, which implies intro-
ducing some normalization. Since the Gaussian process is standardized, we
allow the normalization to depend on ¢ also; for, any Gaussian process with
trend and nonconstant variance function can be transformed into a standard-
ized one, where the standardization implies the moving boundary. This general
boundary we denote by {u(¢), t < T}, being a continuous real function for
every T with up o = min{u,(2), t <T} > o as T — o,

In the stationary case, the limiting distribution of M, is known to be of
Gumbel type [Pickands (1969), Berman (1971), Qualls and Watanabe (1972),
Lindgren, Maré and Rootzén (1975) and Leadbetter, Lindgren and Rootzén
(1983)], assuming that the correlation function satisfies the condition

(1) r(r) =1-C|r|* + o(|7]*) as7—0,
with 0 < @ < 2, and Berman’s condition
(2) supr(¢)logr > 0 as 7 — .

t>7

The important quantity in this derivation is the local behaviour of M, for
small A. We have for fixed & > 0,

(3) P{M, > u} ~C"*H ¢p(u)u®**"'h asu — o,

where ¢(u) denotes the density of a unit normal law and H, is a positive
constant depending only on « [cf. Leadbetter, Lindgren and Rootzén (1983)].
We denote

W(u) = dlu)u¥",
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For the convergence of the distribution of M, one has to find u, = apx + by
such that

CY*H Ty(up) > 7=1(x) <o asT — o,

This, in the stationary case, is the same as
n
(4) Y P{M(L;) > ug} >,
j=1

with I, = ((j — Dh, jhl, j <n =[T/h] and M(I;) = M(I;, X) = sup{X(2),
tell}.

01J1r aim in this paper is to extend these results to the case with a moving
boundary and certain nonstationary Gaussian processes. The case of a moving
barrier for Gaussian processes is discussed, e.g., in Berman (1974) and Cuzick
(1981). Berman deals with the limiting probability of M, above a boundary
which tends to « but with a fixed 7. Cuzick treats stationary Gaussian
processes and very high boundaries where T may be fixed or may tend to .
Our case differs by using rather smooth boundaries with respect to nonstation-
ary Gaussian processes; therefore, our results are similar to the statements in
the stationary case with a fixed level. We restrict the class of nonstationary
processes by dealing with locally stationary Gaussian processes, which were
introduced by Berman (1974).

The Gaussian process is called locally stationary if there exist a continuous
function C(¢), ¢ > 0, with 0 < min{C(2), ¢ > 0} < sup{C(¢), t > 0} < » and a
continuous monotone function K(s) with K(0) = 0, K(s) > 0 (s > 0) such
that

E(X(t+s) — X(¢))®

(5) gl_I)I}) 2K () = C(t) wuniformlyin¢ > 0.

Following Berman (1974), we assume that K(s) is regularly varying with
index @, 0 < a < 2, as s = 0. For simplicity, we assume that

(6) K(s) =s*+o0(s*) ass— 0.

[Note that a possible constant C with the term s® can be moved to the
function C(¢).] This implies that r(¢, ¢ + s) = 1 — C(#)|s|* + o(]s|*), uniformly
in ¢, and that for small 4 and I, = [¢,¢ + ],

P{M(I,) >u} ~CY*(t)H y(u)h

(see Section 2). Instead of (4) we have now to consider sums of the form

Y P(M(1) > up ;} ~ ¥ CY(jh)Hy(ur )k,
j=1 !

Jj=

with u, ; depending on ur(¢) on I; for small ~ and T — «. If A tends to 0,
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the sum will be approximated by a Riemann integral, which should converge as
T — oo

(7) J(T) = H, [ CV*()p(ur(r)) dt > 7 <@ asi— o,
0

The approximation of the integral by upper and lower sums has to be
sufficiently accurate which restricts the behaviour of u,(¢). Obviously, the
Riemann integral (7) can be approximated for every T by using kA = h(T),
such that

A(T,h) =dJ(T) —J*(T)
= ¥ (CY(h)(uz (b)) — CY(h)(us (jh))h < A
j=1
for some fixed A > 0, with
uzr(jh) = inf(us(t),t € Ij) <sup(up(t),te Ij) =uz(jh)
and
C.(jh) = inf(C(t), te Ij) < sup(C(t), te Ij) =C_(jh).

As T — o, h(T) may tend fast to 0 for a given A. We have to restrict hA(T)
such that A(T') tends slowly enough to 0. We assume that there exists A(T)
such that as T — o,

(8) R(T ) (0% min/108 U, min) = o0
and
(9) A(T,h(T)) - 0.

Because of the nonstationarity we have to rewrite condition (2). We denote
8(1) = sup{r(t, s), |t — s| = 7}. Berman’s condition becomes now

(10) 8(7)logr - 0 as7— o, with r(¢,s) = 1iff t = s.

Under these assumptions we deal with the limiting behaviour of P{X(#) <
up(t), t < T} tending to exp(—7), which is equivalent to

P{X(¢) <up(t),t <T} —exp(—J(T)) >0 asT — .

The limiting distribution of the maximum M, depends then on the suitable
choice of the normalization () = up (¢) for 7 = 7(x). This idea is used in
Section 4 to find the asymptotic distribution of M, with respect to a locally
stationary Gaussian process, not only for the case with mean 0, but also for
the case of a nonstandardized process. It shows the influence of the function
C(¢) in the normalization for M, with respect to nonstationary processes. The
role of a in the normalization is the same as in the stationary case, discussed
by Pickands (1969).

2. The maximum on small intervals. Because of the local structure of
X with a varying constant C(¢), we have to select h = h(T) —» 0 in the



1144 J. HUSLER

limiting procedure. Therefore, we deal first with the question of the maximum
in small intervals of length A. If h is very small with respect to u, then
Pmax(X(¢), t €[s,s + h) > u} ~1 — ®(u) with ® being the unit normal
law. Note that we assume in (7) that A is not too small, which excludes this
limiting behaviour. As mentioned, for £ > 0 fixed, the approximation (3) holds
in the stationary case, as well as in the locally stationary case with an
adjustment of the constant [cf. Berman (1972)]. By checking the proof of the
stationary result in Leadbetter, Lindgren and Rootzén (1983), Section 12.2, we
find that the following statement is true in the stationary case, if A — 0.

THEOREM 2.1. Let X be a standardized stationary Gaussian process. If r(t)
satisfies (1) with 0 < a < 2 and h = h(u) — 0 satisfies hu?/* - » (u —> ),
then

lim P{M(h) > u}/h¢(u) = C/°H,,.

The proof follows the lines of several lemmas of the mentioned textbook,
which we do not repeat in this paper. More important is the extension of this
result for locally stationary Gaussian processes.

THEOREM 2.2. Let X be a standardized locally stationary Gaussian process,
satisfying (5) and (6) with 0 < a < 2. Ifh = h(u) satisfies hu®/* - o (u — ©),
then

lim P{sup(X(¢),s <t<s+h)>u}/hy(u) =C"*(s)H,
uniformly in s.

Proor. rt)=1/(1 + C,|¢|*) is a correlation function [cf. Lukacs (1970)]
with r(¢) = 1 — C|¢|* + o(|¢|*), as ¢ — 0. Let £ > 0 be small and C; such that
rt, ¢) <r(t — t'|) for every ¢,¢ € [s,s + ¢]. In the same way we get a lower
bound of r(¢,¢) by using a suitable constant C, instead of C,, where C, >
C, > 0. We denote by Y; and Y, the corresponding stationary standardized
Gaussian processes on [s, s + £]. By Slepian’s lemma [see Leadbetter, Lindgren
and Rootzén (1983)] we have for any h,u, with h < ¢ (hence for all u
sufficiently large),

P{max(Y,(¢t),s <t <s+h)>u} <P{max(X(¢),s<t<s+h)>u)

< P{max(Y,(¢),s <t <s+h)>u}.
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By using Theorem 2.1 we get
Cl/*H, < liminfP{max( X(¢),s <t <s + h) >u}/h(u)

< limsup P{max( X(¢),s <t<s +h) > u)/hp(u) < CY/°H,.

u—®o

Since ¢ is arbitrary, C; — C(s) and C, —» C(s) uniformly in s as ¢ — 0. This
implies our statement. O

3. Some lemmas. For the proof of the results in the next section we use
the following comparison lemmas. They are based on the ideas which have
been introduced in the stationary continuous time case [see, e.g., Leadbetter,
Lindgren and Rootzén (1983)] and in the nonstationary discrete time case
[Hiisler (1983), (1986)]. We assume in this section that X is a locally station-
ary standardized Gaussian process with some a, 0 <a <2, and that
lim supy _,., J(T') < » holds with respect to a boundary u (-) with u, ., — .
It means that

(11) lim sup Xn: U(ugp(jh))h < .

n—o j=1

Note that we may replace u7(-) in (11) by u7(-) and that (7) obviously implies
(11). Most of the following proofs are based on this assumption and do not
depend on the particular choice of u7(-). Instead of thusly writing some of the
statements for u7(-) and for uz7(-), we formulate a particular statement with
u%(-) and mean that it holds for both particular boundaries [or even any
piecewise constant boundary satisfying (11)]. We use also the notation () =

‘uy(jh) for tel;, as well as uz(?) =sup(ur(s), s €(nh,T]D, uz()=
inf(u,;(s), s € (nh,TD and u}(¢) = ui(T) for t € (nh,T1]

LemMa 3.1. Assume that (11) holds with respect to some boundary
{ur()}. Let I; = ((j — Dh, jh] be subintervals of [0,T], j <n=I[T/hl, of
length h = h(T) — 0, satisfying (8) and (9). Let ¢ = (T) < h(T) and I;* =
I\ (jh — &, jh]. Then as T — oo,

@

(12) 0<P(X(t)<uz(),t<T}—-PX@) <up@),t<T}—0and

0 < P{X(1) <uq(t),t < T} — P{X(t) <up(8),t <T}) - 0.
(ii) For any boundary u#(t) satisfying (11)

(13) 0= P{X(t) <u¥(t),te CJ Ij*} - P{X(¢) <uj(t),t<T} >0

j=1
as T - o, if &(T)/h(T) - 0 and (T Xmin(u%(?), t < T)?* > »,
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Proor. (i) Obviously, the differences of the two probabilities in (12) are
nonnegative. The first difference is bounded above by

Xn: P{X(t) <uj(t),t €l;, sup(X(s) —urp(s)) > 0}
j=1

s€l;

+P{X(t) <ur(t),te (nh,T], sup (X(s) —uqp(s)) > O}

se€ (nh,T]
< ¥ Pluz(jh) < M(I;) < uz(jh)}
j=1

+ P{luzp(T) <M((nh,T]) <uzp(T)}.
Note that by (8), hu#2/%(jh) — » for all j > 1. Using Theorem 2.2 we get for
this upper bound

Y h(CY(jh) Hyp(uz ()L + o(1))
j=1

—CY*(jh)H, p(ur (jR))(1 + o(1)))
+h(CY*(T)H,yp(uzp(T))(1 + o(1))

—CY*(T)H (ur(T))(1 +0(1))),

with o(1) uniformly in j < n.
Hence the sum is bounded by

H, Y h(CY(h)w(uz (jh)) — CY=(jh)p(us(jh))) + o(1),
j=1

which tends to 0 by (9). In the same way, the second difference in (12) tends
to 0.

(ii) Also the difference of the probabilities in (13) is nonnegative and
bounded by

Y P{sup(X(2), t €(jh — &, jh]) > up(jh))
j=1

+ P{sup( X(¢),t €(nh,T]) > us(T)}

n

<0(1)(e/k) X hp(uf(jh)) +o0(1) >0
j=1

j=

as T — « by the assumptions. O
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Note that we did not use an assumption on the correlation function besides
(5) and (6). Hence the statement (13) is also true in the version

[TP{X(¢) <uf(2),t eI} - TIP{X(¢) <uj(t),tel} - 0.
j=1 j=1
The next lemma relates the continuous time case to the discrete time case.

LeMMA 3.2. With the same notations and assumptions as in Lemma 3.1,
let

(14) = qo/u}**(jh)
for every j < n. Then
0 < limsup (P{X(ig,) < u}(Jjh),iq; € I, j < n)

T -
—P{X(¢) <up(jh),t €, j<n}) >0
as qo — 0, where h = h(T) satisfies (8).

Proor. We use now the stationary Gaussian processes Y; and Y, of
Section 2 to locally approximate the process X, where we adapt the constants
C, = Cy,; and C, = C, ; for every interval in an obvious way. Note that as in
Lemma 3 1, the dlﬁ'erence of probabilities in the statement of the lemma is
nonnegative and is bounded above in the same way by

Jzn:l(P{X(iqj) <u$(jh),iq; € I} - P{M(I,) < u;(jh)}) = §*
By Slepian’s lemma we again get for any u = u$(jh),
P{X(iq;) <u,iq; € I} — P(M(I;, X) < u}
< P(Y\(ig;) <u,iq; € I,} - P{M(I,,Y;) < u}
< (P{Yy(ig;) < u,iq; € I} — P{M(I;,Y,) < u})
+(P{M(1;,Y,) <u} - P(M(I,,Y,) < u}).

The first term is bounded by using Lemma 12.2.11 of Leadbetter, Lindgren
and Rootzén (1983) (modified for &~ — 0) by

RH,CY/(1)p(g0) + b(u) /u,
with p(q,) — 0 as g, — 0, not depending on C, ;, since again
hu/e = h(TY w3/ *(jh) = h(T)ug(s, >
and u*?/%q ; = qo- Observe that ¢(u)/u = o(y(u)h), by the same reasoning.
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The second term is bounded by using Theorem 2.1:
o()hy(u) + (C3/f = CL/F)hH, ¥ (u)

uniformly in j, where 0(1) > 0 as T — o,
Taking the sum, we observe that S* is bounded by a constant times

n

(p(a0) +0(1) 5 hi(us(jh)) + 5 (CY — CYo)Hop(uj(jh))h.
j=1

j=1

Letting T' — o, the lim sup of S is bounded by O(p(q,)), using (9) and (11).
Hence the statement follows as ¢, —» 0. O

Note that Lemma 3.2 also implies that

lim sup P{X(iq;) <u%(jh),iq; € I;}
T > J=1

- ﬁP{X(t) <uf(),t EIJ-} -0
j=1

as g, — 0. Both statements also hold if the I;’s are replaced by the I*’s.

The next step is to show the asymptotic independence of exceedances above
the boundary which occur in different time intervals I*. This is true if we
assume Berman’s condition (10). But first we show that we may also delete
certain intervals I; from our consideration. This is important for the use of
Berman’s comparison lemma. It means that we delete intervals I, which have
a negligible influence in (7), but which get too much weight in the double sum
.of the comparison lemma (see Lemma 3.4). We use the technique which was
introduced in Hiisler (1983), by adapting it to the new situation.

For given T and h(T'), define

a1=min{u?‘(jh)ajsn} and J1= {Jalsu?(.]h) S20’1}’
a, = min{uf(jk) > a;} and Jy = {jiay <u}(jh) < 2a,}

and soon: a,,,dJ,, with m < H < n.
Let

fm= ¥ ¥(u3(jh))h/q;

JEJy,
with g; given in Lemma 3.2 and
G ={m < H: f,, > exp(—a?,/4)}
Let 4y = U,, cg,,- Note that for every m < H,
(15) fm = ¥(a,)hay/q,,

since there exists at least one j € J,, with u%(jh) = a,,.

.
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LEmMA 3.3. Assume that (11) holds. Then
(i) 0<P{X(iq;) <uj(jh),iq; €1;, j € Jy}
- P{X(ig,;) <u3(jh),ig; €I, j <n}—0 asT-w,
and also |

(ii) 0 < [ P{X(ig;) < u}(Jjh),iq; € I}

J€Jy
- TTP(X(ig,) < ui(jh), ig; € 1} =0.

j=

Both statements hold also with I* instead of I;.

Proor. Both differences are bounded by

Y. P{X(ig;) > u}(jh) for some ig; € I;, j € J,,}

meG
< Y X X o(ui(n)/up(ih) < X X hy(up(ih))/q0
m$Gj€JmquEIj me&G jed,,
< Z fm/azrr{a'
me&G
But

f < exp(—a?,/4) < exp(—a?,_,) < fn_, exp(—a2,_,/2)a}; *{“cqo/h

with ¢ = (27)'/2 using (15), for m > 1, m & G. If 1 & G, then f,/a%/* <
exp(—a?/4)a?’* - 0 as T — «. Hence

Y fn/a¥e
meQ
<o(1) + (cqo/k) Y,  al Y *exp(—a?,_1/2) fm_1/0%"
(16) m>1,me&G
H
<o(1) + (cqo/h)ai ¥ exp(—a3/2) ¥ fn/a%".

m=1

Now observe that T, f,,/a%* = O(X7_,hg(ui( jh))), which is bounded by
assumption. By (8) the term (16) converges to 0 as T — o, for every g, > 0. O

Since we may restrict our considerations on the time subset J, we can
now use Berman’s comparison lemma [Berman (1964); cf. various versions in
Leadbetter, Lindgren and Rootzén (1983)].
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LemmA 3.4. If (5), (6), (8), (10) and (11) hold, we have that
S= .k L |rlig; i'q;)|exe(—2(ut*(jh) + ut*(Sh))/
iq el* iqpelf, j+j'edy

(1 + r(i‘Ij,i'CIj')))

=Y d(i,i') >0 asT >
for every g, > 0.

Proor. Note that all points [ig; —i'q;| > ¢ for all j+#;’, while &=
&(T) - 0 as T — ». First we consider the points i, i’ with
(17) e <lig; —i'q;l <exp((1—8)a/(1+8)4)=1r=ANT),
with 8 = 8(e) < 1 for fixed T'; but 8(e(T')) - 1 as T — ». Observe that by (5)
and (6), (1 — 8(e(T))/(1 + 8(e(T))) = ce*(T) for all large T where the con-
stant c is positive because inf C(¢) > 0. (17) implies that A > exp(ce*(T)a?).
Hence A — o, if we select & such that ea?/*/(log a;)"/* —» » and
e(T)/h(T) — 0 (because of Lemma 3.1). For example, &(T) = h(T)/y(T) with
y3(T) = h(T)a3’*/(log a,)*/* satisfies both conditions. Our first partial sum
of S is denoted by S; = X d(i, ") with 7, i’ such that (17) holds.

(i) Split the sum S, into partial sums S, ,, which add the terms d(i,i")
with iq; € I*, j €, i'q; €I}¥, j'€J,, m" = m and (17) holds.

If now m < m/, then for all iq; € I* with j € J,,, there are at most A/h
intervals I} (j #j') with such points i'q ;. In each of these intervals I* there
are at most A /q; points i'q; with the required property. Hence the sum on
these points i'q; € I¥, j' € J,,, iq; € I}* fixed, is bounded by a constant times

exp(—5u$*(J'h) /(1 + 8))h/q; < exp(—3a%,./(1 + 8))ha’*/qq
= exp(_%a%n+1/(1 + 5))haz,,{f_‘1/q0,
since u$(j'h) = a,, = a;,,, for m' > m. If m = m’, then by using
exp(—x —y) < exp(—2x) + exp(—2y)
and the same argument again, we get that the sum S, ,, is bounded by
Y exp(-zu’(Jh) /(1 +8))exp(—5a%,,1/(1 + 8))ha%{$11/hgq
iqjte*,jeJm
+(rha¥{*/hqy) X exp(-uf*(jh) /(1 +9))
iq;elf, jed,
+(rha%*/hgy) X exp(—ui(h)/(1+96))
i'q,elf, j'ed,
< ca ,((Aa%$1/q0) exp(—3a%, . 1(1 ~ 8) /(1 + 8))
+2(Aal"/q0) exp(~ 37,1 = 8)/(1 +8))) L ko (ui(h))/90
JEIm

é(cAawz/“ exp(—3a2,(1-8)/(1+8))/q3) ¥ hu(ui(jh))

JE€Ip

with some constant ¢ > 0.
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Taking the sum of S; ,, on all m, gives the upper bound

e[Aad /= exp(~ 2a2(1 - 8) /(1 + 8))/q2] & hu(us(ih)).
j=1

Since the remaining terms with m’' < m are bounded in the same way, by
interchanging m and m/, it remains to prove that the term in the brackets
tends to 0 as T — «. By definition of A = A(T), this is true for any g, > 0
since by (17),

al*¥ % exp(—1a2(1 — 8) /(1 + 8)) < exp(—caZe® + (1 + 2/a) log a;)
<exp(—(c +o0(1))a%e*) >0 asT - o,
(ii) Now we consider the sum on i, i’ points such that
MT) <lig; —i'q;| <Yy, and |ig; —i'q;| = ¥y

with je€d,, j €d,, where y,, . = exp(max(a?,,a?,)/8). Let us denote
these partial sums for given m, m’ by S/, . and S;, ., respectively. We also
use &' = 8(A(T')) and 8" = 8(y,, ,,).

(a) We approximate first the term S, . As in (i), we get for m < m’ that
the exponential term in d(i, ') is bounded by
exp( - ju3*(jh) — qu*(J'h)(1 - 28)) < exp( = 3u$*(jh) — 3a%.(1 - 28)),

using u3(jh) < u%(j'h) and T sufficiently large (8’ < 3). If m = m/, we use
again the bound

exp(— Ju3*(jh)(1 - &) — us(j’h)(1 - &)
< exp( - 2a%,(1 - ) - $u3*(j'h) + 202,5)
< exp(— 3u3?(jh) — a%(1 - 58")).

Hence, together for all m < m’, we use the factor 55’. For a fixed i there are
at most vy,, ,/h intervals I* with at most 2 /q; points. Thus

S, < ca,(Ym,m’/h)(hazrr{'a/qO) Z exp(_%u;"z(jh))hu%'z/a(jh)

m,m’ — Jes
xexp(—3a2,(1 — 58"))/q,

< ¢8'(Vpm, m/a3)a%* exp(—$a%(1 - 58)) L hy(uk(jh))2a,,.
J€dm

Now we derive for m € G,

22/ ¥ hy(up(jh)) = ¥ hu(ui(jh))ao/(a;0%°)

JjE€Jd,, JE€J,

> fn@0/a%* > qoexp( - a2,)/a%".
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Inserting this inequality for the term exp(— ;a2,), it follows that

S} < cé (ym w/q8)a% exp(—ga 1 — 58 ))
X Y hy(ui(jh)) X hy(ui(i'h))
JEJ, J'E€d,,

<cd(at™/qd )exp(—ga (3 — 58 ))

x X hu(up(jh)) X hy(ui(i'h))

j€d, STy

for T sufficiently large (58’ < ).
The same holds by interchanging m with m'. Thus taking the sum on all m
and m’', we find that ©,, .. <S;, , is bounded by

o (at v /af) exp(~3a2(i = 50)) £ T huui(im)]

meqG jeJ,,

which tends to 0 as T — o, for all g, > 0, since the last sum is again bounded.
(b) Finally, we deal with S;, .. For the exponential term in the sum S;, .,
we use the bound

exp(— 3u$?(jh)(1 = 8") — qu3*(j'h)(1 = 8"))
< exp( — uT2(_]h) + 28"a 2 . %u*z(.]rh) + 26”(12 ).
2 T m

" Hence for m < m/, the sum S}, . is bounded by

8"exp(26"a%,) ¥ w(u$(jh))2a,(h/q,) exp(28a%,)

JEJ,,

x X ¢(up(j'h))2a,,(h/q,)

J' E€J,,

< 48"a2,.q5%exp(46"a?,) L. hy(ui(jh)) L hy(ui(j'h))

J€dn Jedp

<4ArgPexp(4ar) X hy(ui(jh)) X ho(ui(j'h)),

i€ J €T

with A, = A(y, ;) = A(y,, ,,), where A(x) = sup(86(y)logy; y =x) > 0 as
x — o by (10). Note that y1,1 = exp(a}/8) = © as T — o, hence Ay — 0.

The same inequality holds for S;, . with m’ <m. Summlng these S;, .,
we get as in (a) an upper bound which tends to 0.

Combining all these partial results implies the statement of the lemma. O

Lemma 3.3 and 3.4 imply now with Berman’s lemma the asymptotic
independence of exceedances in the intervals I* and I;.
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COROLLARY 3.5. Assume that (5), (6), (8), (10) and (11) hold. Then
P(X(iq;) <u3(jh),ig; €17, j < n}

- I_[lP{X(iqj) <u}(jh),iqg; €I}-0
jo
and
P{X(iq;) <u%(jh),iq;€1;, j <n}

n

~ TTP{X(iq;) < ut(jh), ig; € L} -0,

Jj=1
as T — o, for every q, > 0.

Obviously, the second statement of the corollary follows by the first one and
Lemma 3.1(i).

4. Results for increasing T. With the lemmas of the previous section
we can now derive the asymptotic behaviour of the probabilities of no ex-
ceedances of the local stationary Gaussian process X above a moving barrier.
We suppose again that X is standardized.

THEOREM 4.1. Assume that the standardized Gaussian process X satisfies
(5), (6) and (10). Let {up(2), t < T} be a real continuous function for every
positive T such that (8) and (9) hold. Then

(1) P{X(t) <ug(t),t <T} —exp(—J(T)) - 0
as T — oo, if limsup J(T') < oo,
(i) P{X(t) <up(t),t<T} - exp(—7) iff J(T) >1<wasT — .
Proor. (ii) follows obviously from (i). We approximate P{X(¢) < u (),
t <T}by P{X(¢) <uf(t), t <T}and P{X(#) <uz(t),t < T} with the use of

h = h(T) in (8). By Lemma 3.1(i) and the assumptions (8) and (9), we have to
show that

P(X(t) <ub(i),t <T} — exp(—J*(T)) = 0

and

P{X(t) <ur(t),t<T} —exp(—J (T)) >0
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as T — ». For every difference the proof is the same. By Lemma 3.1(ii) it
remains for the first limit to verify that with ¢ = &(T') defined in Lemma 3.4
and with ¢ ; given in (14),

P{X(t) <up(t), te O Ij*} — exp(—J*(T))

Jj=1

P{X(t) <uz(t),te U Ij*} - P{X(iq;) <uz(jh),iq; € I*, j <n}
j=1

P{X(ig;) < uj(jh),ig; € I, j < n)

- ﬁlP{X(iqj) <uz(jh),ig, € Ij*})

j=

+
=

P{X(iq;) <u}(jh),iq; €I} - lf[lP{X(t) <uf(t),te Ij*})

J

~.
Il
-

P{X(t) <uz(t),telr} - ﬁP{X(t) Su;(t),telj})
j=1

j=

+
:[:

~.
I
[un

+
:[:

P{X(t) <uz(t),t eI} — exp( —J+(T))).

~.
I
-

By the results of Section 3, the lim supy _,,, of each difference is either O(q,)
(for the first and third difference) or else 0. The convergence of the last
difference follows simply by using Theorem 2.2, (8), (9) and the fact that
hy(uz(jh)) = 0 uniformly in j < n. Hence the statement follows by letting
g,— 0. O

We now apply this general result with a moving barrier for some particular
boundaries. We begin with a fixed level u,(¢) = uy, to derive the limiting
distribution of M, of a locally stationary, standardized Gaussian process.

THEOREM 4.2. Assume that X is a locally stationary Gaussian process with

mean 0 and variance 1, satzsfyzng (5), (6) and (10). Let {uy, T > 0} be such
that.(7) holds with a T < =, i.e.,

Hal/f(uT)/;Tcll/a(t) dt — 7.
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Then

() PIM; <uqp} > exp(—71)as T — .
(ii) Let Cp = [fCY/*(t)dt and

up . =x(2log Cp) % + (2log Cp)"?
+(21log cT)‘l/z(((z — a)/2a)loglog Cp + log( H,2%~/2%(2) "/2)).

Then for every x € R,
P{M; <up,} —exp(—exp(-x)) asT — o.

Note that uy , is a linear normalization, giving
P{Mr < apx + by} - exp(—exp(—x)),

and that C;, plays the role of the process specific time. If C(¢) = C as in the
stationary case, then C;, = TC'/* and uy , is the known linear normalization
of the stationary case. The proof of Theorem 4.2 is straightforward, since we
have mainly to verify that

J(T) = Ha‘//(uT,x)CT - exp(—x) as T — o,

which is an easy calculation. Also the verification of (8) and (9) is obvious.
Since C(t) is bounded we also might use the normalization u , of the
stationary case with T instead of C; and an additional varying term Cj}:

up ,=x(2logT) "*+ (21og T)"? + (2log T) ~/*
(18)
X(((Z —a)/2a)loglog T + log(C%‘HQZ‘Z_“)/z"(%r)1/2))

with bounded
C# = (1/T) [ CV*(t) d.
0

This shows explicitly the influence of local stationarity by the function C(¢)
in the limit distribution of M,. Assume now that X is locally stationary with
index a, 0 < a < 2, with mean —¢d(T') and variance 1. Assume that 0 <
d(T) » 0 as T — » and that C(s) » C, > 0 as s —» » to simplify. Then we
have to consider up (t) =apx + by +td(T)=uy , +td(T) as boundary
with

ap=(-2logd(T))
and

br = a;,l + aT(log(C*Ha21/a—1(27T)—1/2)

+(1/a — 1) loglog1/d(T))

(19)

with C* appropriately chosen.
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Assume that
(20) Td(T) >d, <~ and Td(T)u,— d, €(0,x]

as T — . Then let C* = C/*(1 — exp(—d,)). Note that if d, = 0, then the
trend has asymptotically no influence on the extreme behaviour and we find
the same result as in Theorem 4.2. If d, < «, then d, = 0; if d; > 0, then
dy = . If d, < », we may simplify the normalization by using u , , defined in
(18) with C/*(1 — e~?2) /d,, instead of C}.

THEOREM 4.3. Let X be a locally stationary Gaussian process with index «,
0 < a < 2, and with trend —td(T) and variance 1, such that (5), (6) and (10)
hold. With the normalization (19) and conditions (20), we have

P{X(t) <up,,t<T} > exp(—exp(-x)) asT — =.

Proor. We verify that J(T') — exp(—x) for every x. With u, = ur ., J(T)
is asymptotically equal to

Tupd(T)

Hy(uz) [ CV(y/urd(T))exp(~y — y*/2u%) dy/urd(T)

0
~ H(ur)C/ [ “ exp(—y) dy/urd(T),

which tends to exp(—x) by a similar calculation as in Theorem 4.2. It is rather
straightforward to verify the conditions (8) and (9). O

Note that the important role is played by d, not by d; in this case with
d; < «. The theorem deals with a particular case with a bounded trend, since
Td(T) — d, < ». This can be generalized in the following way, similar to the
case of random sequences [Leadbetter, Lindgren and Rootzén (1983)]. Let

(21) Yr= ful;m(t) = o((log T')'/?),

where m(¢) denotes the continuous trend function of X. The extension is
possible if we find m#% such that
J*(T)

(22) = 1/7[ "V (t)explaf(m(t) = m3) ~ (m(t) = m})*/2) dt—1
0

as T — », where a% = (2log T)'/? — (2 — a)/2a)loglog T)/(2log T )'/2. We
assume that the integral J*(T') in (22) can be approximated in the same way
as J(T') in conditions (8) and (9).

THEOREM 4.4. Let X be a locally stationary Gaussian process with index «a,
0 < a < 2, with continuous trend m(t) and variance 1, satisfying (5), (6) and
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(10). Assume that (21) and (22) hold with a suitable m% and that J*(T) can
be approximated as J(T') in (8) and (9). Then

P{X(t) <up,+m}§,t <T} - exp(—exp(—x)) asT — o,

where uy , is given in (18) with C} =

Proor. Note that by (21) the boundary values u, , — m(¢) + m% tend
uniformly to . Hence one verifies along the same lines that J(T') converges to
exp(—x). (8) and (9) follow directly by the assumption on the approximation of
(22), since J(T') ~ exp(—x)J*(T). O

5. Final remarks. We used an approach to the problem which is strongly
related to the methodology in the stationary case. This implies that our
considered processes are behaving in a certain sense like stationary processes.
This is included in the condition of the local stationarity. Also the index «,
describing the local behaviour of the correlation function, is assumed to be the
same for all time points. Obviously, we might try to extend our results to
processes where the index @ may change also. If a = a(t) is piecewise con-
stant, our results can easily be adjusted. But for more general cases the
problem becomes tedious to deal with.

Another interesting question arises in cases where the conditions (8) and (9)
are not satisfied. These conditions restrict the boundary to be rather smooth in
relation to the local behaviour of the sample functions. It seems that another
approach might be used, which is more related to Berman’s paper (1985).

The assumption that 0 < inf C(s) < sup C(s) < » is sometimes too restric-
tive also. For instance, in some applications we have that C(s) —» 0 or » as
s = 0 or . We believe that some similar results can be derived, depending on
the limit behaviour of C(s).

These results are applied to the particular statistical problem of the first
zero R, of the empirical characteristic function. Heathcote and Hiisler (1990)
derive some limit distributions of R,, depending on the assumptions of the
underlying statistical sample of size n [see also the review and some extensions
in Hiisler (1989)].
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